
How Low Can You Go?

Hank Dietz

LCPC, 11:30AM Oct. 11, 2017

University of Kentucky
Electrical & Computer Engineering

Abstract

It could be said that much of the evolution of computers has been the quest to
make use of the exponentially-growing amount of on-chip circuitry that Moore
predicted in 1965 – a trend that many now claim is coming to an end. Whether
that rate slows or not, it is no longer the driver; there is already more circuitry
than can be continuously powered. The immediate future of parallel language
and compiler technology should be less about finding and using parallelism
and more about maximizing the return on investment of power.

Programming language constructs generally operate on data words, and so
does most compiler analysis and transformation. However, individual word-
level operations often harbor pointless, yet power hungry, lower-level
operations. This paper suggests that parallel compilers should not only be
identifying and manipulating massive parallelism, but that the analysis and
transformations should go all the way down to the bit or gate level with the
goal of maximizing parallel throughput per unit of power consumed. Several
different ways in which compiler analysis can go lower than word-level are
discussed.

What’s The Problem?

∙ No parallel programs!
– Compiler finds stuff to execute in parallel
– Parallel languages & libraries & tools

∙ How should it be done in parallel?
– “All the wires, all the time”
– Pipeline, SIMD, MIMD, VLIW, …

∙ Not enough power!
– Scheduling to manage power use
– Eliminate stuff I don’t need to do

What’s The Problem?

∙ No parallel programs!
– Compiler finds stuff to execute in parallel
– Parallel languages & libraries & tools

∙ How should it be done in parallel?
– “All the wires, all the time”
– Pipeline, SIMD, MIMD, VLIW, …

∙ Not enough power!
– Scheduling to manage power use
– Eliminate stuff I don’t need to do

What’s The Problem?

∙ No parallel programs!
– Compiler finds stuff to execute in parallel
– Parallel languages & libraries & tools

∙ How should it be done in parallel?
– “All the wires, all the time”
– Pipeline, SIMD, MIMD, VLIW, …

∙ Not enough power!
– Scheduling to manage power use
– Eliminate stuff I don’t need to do

 What Don’t We Need To Do?

∙ Algorithms with too high O() complexity
∙ Common subexpressions; recomputation
∙ Excessive data motion

…

These things happen all the way down to the bit
level, so why don’t compilers look that low?

 A Word About Words

∙ Most programming languages treat data
objects as indivisible, atomic, entities

∙ The programmer specifies type and size
Fortran: REAL*8 A
C: int i; long long j;

∙ Compiler anaylsis should look inside
– Eliminate processing meaningless bits by

using smaller words or packed fields
– Optimize algorithms at the bit level

Not All The Bits,
Not All The Time

∙ Integer range analysis
∙ Floating point accuracy, not precision
∙ Packing of smaller data

Integer Range Analysis

∙ Programmers are lazy (paranoid?)
– Language issues: how big is an int?
– Overly generous specifications… e.g.:

∙ PCC: 2,882 int, 174 unsigned,
only 44 specifying 8, 16, 32, or 64 bits

∙ LLVM: 3,135 int, 242 unsigned
∙ Why not allow syntax like C’s int:10?
∙ Compiler range analysis set types in 1965!

Benefits Of Integer Ranging

∙ Can ignore the bits that aren’t active, e.g.,
only access low 16-bits of an int in [0..999]
– Disable some wires and circuitry
– Scatter/gather values (e.g., RISC-V AVS)

∙ Can use smaller storage space, thus reducing
power use by:
– Keeping more objects in registers/cache
– Moving fewer bits/object

FP Accuracy, Not Precision

∙ Normally specify precision of floating-point
∙ Accuracy analysis is very difficult
∙ Accuracy analysis is very conservative;

analysis often finds no significant digits,
while computations typically have plenty

∙ Language constructs can help…

The Loosest Slots In Reno

∙ 32-bit usually ok; 64-bit sometimes isn’t!

Specifying FP Accuracy

#faildef exit();
#specdef fd(float, double)
#speculate fd
fd a=x; double b=sqrt(a);
if (!mytest(b, x)) {
#fail
} y=b;
#commit

Specifying FP Accuracy

#define faildef { exit(1); }
#define fd float
{fd a=x; double b=sqrt(a);
if (!mytest(b, x)) {goto fail0;}
y=b; } goto commit0;
#define fd double
fail0:; {fd a=x; double b=sqrt(a);
if (!mytest(b, x)) {faildef}
y=b; } commit0: ;

Benefits For Floating-Point

∙ Huge performance gains for low precision
– AMD RADEON INSTINCT MI25 GPU:

64-bit: 0.768 TFLOPS
32-bit: 12.3 TFLOPS
16-bit: 24.6 TFLOPS

– Memory footprint & bandwidth
∙ Potential to use LNS or scaled integer

Packing Smaller Data

∙ SWAR (SIMD Within A Register)
– Originally, to obtain vector-like parallelism
– More efficient use of memory & datapaths

∙ Virtualized in RISC-V AVS
∙ Compiler can pack unstructured things:

Common Subexpression Induction (CSI)

From Bits To Words

∙ 1958 EDSAC 2 used microcoded bit-slicing;
Various PDP-11 were 4-bit; then 8, 16, 32, 64

∙ Massively-parallel microcoded bit-slicing in
DAP, STARAN, MPP, CM, CM2, GAPP;
MP-1 was 4-bit; then 32 and 64

∙ This was done to speed sequential code…
assuming not enough parallelism is available

From Bits To Words,
And Back Again

∙ Why go back to bit-slicing?
– Sequential code is handled elsewhere
– Lots of parallelism available

∙ Fewer gates active per computation, e.g.:
– 32 ripple carry 32-bit Adds in 32 clocks
– To get one 32-bit Add in 1 clock, need

additional hardware for carry lookahead...

True Bit-Level Optimization

∙ Bit-slice systems were generally microcoded
to implement a simple word-level ISA

∙ Word-level operations can imply useless work
– E.g., using an Add to add 4 to a register:

True Bit-Level Optimization

∙ How do we optimize gate-level designs?
– Karnaugh maps?
– Quine-McClusky algorithm?
– Espresso?
– Pattern matching with fixed modules?

∙ BitC language & compiler for nanocontrollers
– Karplus algorithm for BDD normal form
– Transformations to reduce execution cost

True Bit-Level Optimization

Whole Program Scale Gate
Optimization

New Targets

∙ Reconfigurable logic, GPUs, TrueNorth
∙ Adiabatic is thermodynamically reversible
∙ Quantum is adiabatic using entangled Qbits

Conclusions

∙ Reduce power by doing less work
– Limit precision to what’s needed
– Remove extra bit-level operations from

word-level constructs
∙ Reduce power by using new architectures

– Massively-parallel bit-slice systems
– Reversible computing, etc.

