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SIMD (Single Instruction stream, Multiple Data stream)
computers can only execute the exact same instruction across
all processing elements. This paper presents a new compiler
optimization that transforms multiple distinct code threads so
that they have as many instructions in common as possible,
hence, SIMD execution time is minimized. For example, SIMD
“parallel if” statements typically take the then clause time
plus the else clause time to execute, but this new transforma-
tion usually can induce identical code sequences for most of the
code in the then and else clauses, often yielding a 40%
improvement in execution speed. The same principle also could
be used to transform code which operates on multiple short vec-
tors into operations on long vectors containing the catenation
of the shorter vectors; for example, operations on two
8,192-element arrays might be combined into a single operation
apparently acting on a 16,384-element array.

1. Introduction

Traditional compiler analysis and code transformation are
based on tracking what happens to values, as noted in [4]. For
example, in common subexpression elimination (CSE) the com-
piler recognizes when the same value would be computed more
than once and rewrites the code to make multiple references to a
single computation of that value.

Dependence analysis [2] and alias analysis [7] are differ-
ent from the above in that they are not so much concerned with
values as with storage locations. The compiler tries to recog-
nize when references might access the same storage location,
and can parallelize references in which different storage loca-
tions are accessed. Register, cache, and page allocation/man-
agement are also based on tracking storage locations.

The interesting point is that there is yet another type of
program entity which can be analyzed: the code itself. A few
compiler transformations, such as code straightening [4], oper-
ate directly on the code structure, but relatively little attention
has been given to this type of analysis and transformation.

Common subexpression induction (CSI)(a), the topic of
this paper, is the code-based equivalent of the value-based CSE
optimization; CSI recognizes when the same code can be used
for multiple execution threads. Whereas CSE is clearly
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(a) This name was coined in [7], without a practical algo-
rithm. It refers to the concept that, since some machines
can have common subexpressions share the same code, it
can be useful to induce such code sequences even if some
additional instructions (e.g., register moves) must be
inserted.

beneficial when the execution time is directly proportional to
the number of instructions executed, CSI is most beneficial
when the execution time is proportional to the sum of the execu-
tion times for all control-flow paths — as in single instruction
stream multiple data stream (SIMD) parallel computers.

The following section describes the machine properties
that can make the CSI optimization useful. In section 3, each
step of the CSI algorithm, and our prototype CSI tool, is
explained. A simple example is used to illustrate the analysis
and to expose an issue for further research involving the concept
of register liveness for parallel machines. Section 4 presents a
second, larger and less symmetrical, example. This second
example is used to drive a discussion on how the algorithm
from section 3 can be made still more efficient for large CSI
problems. In section 5, we briefly present an example of how
CSI can be used to increase apparent vector length, although we
do not present an algorithm for this transformation. In closing,
section 6 summarizes the contributions of this paper and direc-
tions for further study.

2. Machine Characteristics for CSI

The basic premise of CSI is that some machines have
structures that permit a single instruction to compute several
different values, hence, for those machines it is useful to be able
to induce code structures that can maximize the number of use-
ful values computed by each instruction. In some architectures,
an improvement in parallelism results; in others, the primary
effect is an improvement in cache performance. Machine archi-
tectures that can benefit from CSI include:

• SIMD: In a SIMD machine with N PEs (Processing Ele-
ments), up to N values can be computed by a single instruc-
tion. However, this performance can only be achieved if all
N PEs (processing elements) will be executing the same
operation — PEs that need to execute different operations
cannot do useful work in that cycle. Because CSI increases
the fraction of PEs that simultaneously execute the same
instruction (the useful parallelism width), large speedups
can be obtained. Examples of this type of machine include
the TMC CM-2 [16] and the MasPar MP-1 [3].

• Vector: Although typically not as parallel, vector machines
profit from CSI in essentially the same way that SIMD
machines do. A good example of such a machine is the
Cray Y-MP C90 [5].

• MIMD with shared I-Cache: CSI, as described in this
paper, is directly usable to improve performance of shared-
memory MIMD (Multiple Instruction stream, Multiple Data
stream) systems that have instruction caches with a mecha-
nism for sharing. For example, such a sharing mechanism
was proposed for the FMP [9] and is generalized in [12].



The logic is simply that if a MIMD is programmed using the
SPMD model (Single Program, Multiple Data), separate
MIMD processes execute independently, but often are
executing the same region of code at about the same time.
Hence, sharing an instruction cache can allow trailing pro-
cessors to reuse the instructions fetched by the leading pro-
cessors. Clearly, by reducing the number of different con-
trol flow threads in the SPMD program, CSI can maximize
the regions of code over which this sharing can occur.

• VLIW and Superscalar: Although VLIW (Very Long
Instruction Word) [8] and Superscalar machines can execute
multiple operations within a single instruction, they also can
benefit from a variation on the CSI optimization. The rea-
son is simply that most N-PE VLIW machines cannot pack
N arbitrary operations into a single instruction — there are
usually constraints on which operations can be packed
together. For example, it is common to see a limit placed on
how many load/store operations can be placed in each
instruction. This optimization differs from CSI as described
in this paper primarily in that the classification algorithm
(see section 3.2.4) is somewhat more complex.

• Sequential Nulling versus Jumps: Some processors have
instructions that allow the operation to be nulled depending
on a condition code. For example, this is the mechanism
used to implement “Squashing Branches” [11]. In such a
serial machine, CSI can improve performance because it can
replace branching overhead (both the branch instruction
and the cache behavior it often introduces) with just a few
instructions being marked as nullable.

In this paper, we will focus on the application of CSI to mas-
sively parallel SIMD machines, in particular, to the MasPar
MP-1. This is partly because the expected benefit to SIMD
machines is very large, but also because the algorithm and
examples are more easily understood. In addition, the MasPar
MP-1 has hardware support for PEs to make indirect memory
references, and this makes the CSI technique much more effec-
tive.

Throughout the rest of this paper, we use CSI to refer to
CSI for a SIMD target machine.

3. The CSI Algorithm

The CSI algorithm analyzes a segment of code containing
operations executed by any of multiple threads (enabled sets of
SIMD PEs). From this analysis, it determines where threads
can share the same code and what cost is associated with induc-
ing that sharing. Finally, it generates a code schedule that uses
this sharing, where appropriate, to achieve the minimum execu-
tion time. Unfortunately, this implies that the CSI algorithm is
not simple.

Our prototype CSI tool implementation is also quite com-
plex. It implements only CSI on assembly-level tuples — it is
not a compiler and does not even perform final register alloca-
tion. Written in C using PCCTS [15], the prototype consists of
over 8,000 lines of C source code.

3.1. Example Code Segment

In order to make the CSI algorithm more clear, the
description of each major step in the algorithm is accompanied
by a simple example code segment processed up to that stage in
the CSI algorithm. The example code is not particularly mean-
ingful, but clearly demonstrates the algorithm. The code is:

if (parallel_expression) {
/* Then clause */
c = a + b;

} else {
/* Else clause */
c = a - b;

}

this high-level C-like parallel code corresponds to assembly-
level code like:

“then” clause else clause

c = a + b; c = a - b;

0 const #a 0 const #a
1 load 0 1 load 0
2 const #b 2 const #b
3 load 2 3 load 2
4 add 1,3 4 neg 3
5 const #c 5 add 1,4
6 store 5,4 6 const #c

7 store 6,5

In executing this code, first the value of parallel_expression
would be computed on all currently enabled processing ele-
ments (PEs). Next, the set of enabled processors would be
masked down to only those for which parallel_expression eval-
uates as true. Only these PEs would execute c = a + b;.
Having completed the “then” clause, the SIMD machine would
prepare to execute the else clause by changing the enable
mask so that only PEs whose parallel_expression is false are
enabled. After these PEs have executed c = a - b;, the
enable mask is restored to its state prior to entering the if.
Hence, the time taken within the if statement clauses is essen-
tially the time for the “then” clause + the time for changing the
enable mask + the time for the else clause.

In contrast, the CSI optimization attempts to bring the
execution time as close as possible to maximum(“then” time,
else time), which would be the time taken if both clauses
could be executed simultaneously without masking overhead.

Since the CSI optimization is explicitly based on mini-
mizing execution time, we also need to associate a cost with
each operation. In this paper, we use the approximate execution
times of the instructions counted in units of machine cycles for
a MasPar MP-1 [3]. Note, however, that our instructions do not
match those of the MasPar and we do not model the overlap that
the MasPar allows between memory references and other PE
operations. Hence, these times are realistic, but only approxi-
mately correspond to MasPar times.



Given that disclaimer, the execution time for the above
code is:

Then time 615
Mask time + 9
Else time + 639

1263 clock ticks

and our goal is to use CSI to reduce the time to be as close as
possible to maximum(615, 639), or 639 clock ticks. If this goal
is achieved, the execution time of the code would be reduced by
a factor of 49%.

3.2. Algorithm Walk-Through

Sections 3.2.1-3.2.8 detail each major step in the CSI
algorithm as it is currently implemented in our prototype CSI
tool. The state of the above example is given with each step’s
description.

The algorithm can be summarized as follows. First, a
guarded DAG is constructed for the input, then this DAG is
improved using inter-thread CSE. The improved DAG is then
used to compute information for pruning the search: earliest and
latest, operation classes, and theoretical lower bound on execu-
tion time. Next, this information is used to create a linear
schedule (SIMD execution sequence), which is improved using
a cheap approximate search and then used as the initial schedule
for the permutation-in-range search that is the core of the CSI
optimization.

3.2.1. Step 1: Construct Guarded DAG

The first step in the CSI algorithm is the construction of a
guarded DAG for the assembly-level operations. The use of a
DAG, Directed Acyclic Graph, to represent data dependencies
has long been a standard technology for optimizing compilers
[1]; however, the concept of a guarded DAG is somewhat
unusual. Normally, each node in a DAG represents an operation
and each arc represents data flowing between operations. It is
assumed that every operation is executed if any operation is
executed. This is not true for the code of a traditional if state-
ment.

However, in the SIMD view, every operation within a par-
allel if is executed if any operation is executed(b). The catch is
that operations may be executed by different sets of PEs.
Hence, we need some way of tracking which PEs will execute
which instructions.

We do this by associating a unique guard value with the
alternative path selected by each conditional expression in the
code segment. These guard values are then encoded as individ-
ual bits. It is then possible to tag each instruction with a guard
which is the “or” of the guard values that dominate its execu-
tion. In this way, code with arbitrary forward branching can be

(b) Some SIMD languages implicitly perform a test to see
if any PE will be enabled and jump over the clause if none
will be enabled. For example, this is the definition used by
MPL for parallel if statements [10]. Here, we assume that
no such test and jump is made.

analyzed as a single DAG in which each node is tagged with its
guard value. For example, consider the guard markings in list-
ing 1.

/* guard 1|2|4|8|16 */
if (parallel_expression1) {

/* guard 1|2|4|8 */
switch (parallel_expression2) {
case A: /* guard 1 */ break;
case B: /* guard 2 */
case C: /* guard 2|4 */ break;
default: /* guard 8 */ break;
}
/* guard 1|2|4|8 */

} else {
/* guard 16 */

}
/* guard 1|2|4|8|16 */

Listing 1: Example of Guard Labeling

Neither multi-way branches (parallel cases) nor
nested conditionals is a problem. Loops, which are formed by
backward branches, require that the inside of the loop be han-
dled as a separate problem from the code before and after the
loop. A similar difficulty occurs when independent conditional
statements are executed in a sequence, rather than nested; in
such a case, the easiest solution is to analyze the conditionals
separately(c). Although the examples in this paper have no
more than two threads (guard bits), the current prototype CSI
tool can process arbitrary guarded input with up to 32 threads.

Returning to our example if statement, the result is the
guarded DAG of figure 1.
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Figure 1: Original Guarded DAG for Example

(c) It is actually better to modify the guard handling so
that this case can be analyzed intact, but that is much more
complex, and has been omitted from the algorithm in this
paper.



3.2.2. Step 2: Inter-thread CSE

Given a guarded DAG, the next step is very similar to rec-
ognizing and factoring-out “common subexpressions.” How-
ev er, it is not quite traditional CSE, because operations with
different guards can be factored-out as common subexpres-
sions. Hence, we call this step “inter-thread CSE,” although the
effect is more like a combination of conventional CSE and code
hoisting (except we don’t need a dominator or code motions).

Whereas traditional CSE recognizes when two computa-
tions would produce the same value, inter-thread CSE recog-
nizes when two computations would produce the same value if
they were executed by the same processor. For each inter-
thread common subexpression, the remaining operation is given
the guard that is the “or” of the guards for all operations
absorbed by that optimization.

This works because, even though operations with differ-
ent guards may be executed on different PEs, the instruction
sequence that combines one PE’s local data in a particular way
must perform the same function for another PE working on its
local data. If the guards have bits in common, it simply means
that traditional CSE was performed on some PEs.

After inter-thread CSE, the cost of the example drops
from 1263 to 891 clocks(d); a 29% reduction. The resulting
guarded DAG is giv en in figure 2.
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Figure 2: Guarded DAG After Inter-Thread CSE

3.2.3. Step 3: Earliest and Latest Computation

After performing inter-thread CSE, there are a few search
pruning characteristics that need to computed before the CSI
search phase is begun. Perhaps the most basic of these are ear-
liest and latest.

The CSI search operates on a linear schedule of the
instructions, rearranging that linear schedule and considering
combining only those instructions which are adjacent in the lin-
ear schedule. This implies a permutation search. The problem
is simply that even a small CSI example, such as the one used in

(d) Actually, 891 is the cost obtained after conversion to a
linear schedule in step 6 (section 3.2.6), but this number
reflects only the benefit gained by the use of inter-thread
CSE.

this paper, would yield too large a search space if a complete
permutation search was used. Using a full permutation search
on the small example in this paper would require consideration
of 10!, or 3,628,800, linear schedules; the larger example given
in section 4 contains 23 instructions, hence, 23!
(25,852,016,738,884,976,640,000) different schedules would
need to be examined. Without very effective pruning, CSI is
infeasible.

One of the most effective pruning methods is to simply
eliminate the linear schedules that violate the precedences
expressed by the DAG — for example, any linear schedule that
places the neg operation before const #b is invalid and need
not be considered. The problem is that to check each schedule
for validity using the DAG is relatively expensive because we
would still have to generate the bad schedules in order to check
them. The earliest and latest measures provide a way of per-
forming a somewhat conservative version of the DAG check
without actually generating the schedules that would fail the
test.

Earliest for an operation is the earliest position in the lin-
ear schedule which that operation could occupy without violat-
ing the DAG, in other words, it is the number of DAG predeces-
sors. Latest is the latest viable position for that operation in the
linear schedule, which is equivalent to the total number of oper-
ations minus the number of operations which have that opera-
tion as a predecessor (including the operation itself). Rather
than performing an ordinary permutation search on the linear
schedule, a permutation-in-range can be used, restricting each
operation to move only through slots in its earliest to latest
range.

For our example, the result of earliest and latest labeling
is shown in figure 3.
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Figure 3: Earliest and Latest Labeling of the DAG

We applied a similar technique to reduce the search space
for generation of optimal code schedules for pipelined
machines. An overview of this code scheduling technique
applied to pipelined machines appears in [13]; a more detailed
treatment, including a proof that optimal schedules are
obtained, is given in [14].



3.2.4. Step 4: Classification

Just as the earliest and latest information is used to prune
a search, it can save a significant amount of time if operations
are grouped into classes prior to the start of the search. Each
class consists of a set of operations such that it is allowable for
each operation in that class to be merged with at least one other
member of that class. Hence, if two operations are not in the
same class, there is no need for a more detailed (and more
expensive) check to determine if they could be merged.

Classes are formed to be as small as possible so that for
each class:

1. The opcodes for all members of this class are the same.

2. The immediate operands, if any, for all members of this
class are the same.

3. The class members cannot be partitioned such that the oper-
ations in some partition element all must execute after all
the operations in some other partition element. Using the
DAG, this is quite complex to check; hence, we use a con-
servative approximation.

If the members of a class are sorted by earliest as the pri-
mary key and latest as the secondary key, one can simply
check that each pair of adjacent operations in the class have
overlapping earliest..latest ranges. If the ranges do not over-
lap, then the class can be partitioned into two classes by
splitting it between the nonoverlapping adjacent operations.

4. Every operation whose guard covers all other guards within
its class can be made into a singleton class.

As a simple approximation to this, we used the rule that an
operation whose guard is all threads is a singleton class.

5. All members of this class do not have a thread in common.
If they do, each should be its own singleton class.

The first two conditions are a direct consequence of basic SIMD
execution: the same information must be broadcast to all PEs.
Condition 3 reduces classes by applying DAG constraints. The
4th and 5th conditions actually follow from the observation that
after CSE, no two instructions that can be executed by the same
thread can be merged; if they could be, they would have been
factored-out when inter-thread CSE was performed.

The class formation procedure simply applies rules 1 and
2 to create initial class groupings and then recursively attempts
to reduce these classes using rules 3, 4, and 5. The result for
our example code is shown in figure 4.

3.2.5. Step 5: Theoretical Lower Bound

Using the classes and expected execution times for each
type of operation, it is possible to compute a good estimate of
the lower bound on minimum execution time. This estimate can
be used to determine if performing the CSI search is worthwhile
— i.e., if the potential for improvement in code execution time
by CSI is small, then one might abort the search. The same
algorithm is used to evaluate partial schedules to aid in pruning
the search.

The estimate is computed by:
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Figure 4: Classification of Operations in the DAG

1. For each class, group members together if the guards do not
overlap.

2. The cost for each class is the number of members remaining
times the cost of that operation.

This bound might be unachievable because it ignores detailed
dependence constraints (DAG checks) and it ignores the cost of
masking, but it is quick to compute and the estimates are usu-
ally very close to the best achievable execution time.

The minimum number of instructions remaining after
CSE, or minimum “ticks”, is also computed at this stage.

For the simple example if statement, the computed
lower bound is 639 clock ticks, resulting in a total of 8 instruc-
tions after CSI.

3.2.6. Step 6: Creation of An Initial Schedule

Before the search can be performed, the code must be
converted into a linear schedule. In the linear schedule, the Nth

operation in a schedule is either executed at the same time as
the (N-1)th instruction or in the next “tick.” There are two rea-
sons that a linear schedule is used:

1. The permutation-in-range search (step 8, section 3.2.8) is
relatively efficient using the linear schedule.

2. The linear schedule corresponds to a SIMD execution
sequence, and this instruction sequence must be examined
in order to compute an accurate cost. There is a great temp-
tation to view CSI as a graph node matching problem on the
DAG, but combining some graph nodes implies a significant
cost which is not computable without the linear order.

When two nodes (operations) are combined, it might not be
possible for the operands to be directly placed in the same
registers under both original guards. Hence, it may be nec-
essary to insert one or more register-to-register moves that
would be executed under one of the guards. This may, in
turn, involve additional cost for masking — unless the reg-
ister-to-register move can be executed immediately before
or after another instruction that has the same guard. Since
these costs depend on properties of the SIMD (linear)
schedule, and these costs can easily outweigh the benefit of
combining, the linear schedule must be examined.



Hence, in this step we convert the DAG into a linear schedule.

The linear schedule is created by performing a level-order
traversal of the DAG, but in this traversal operations in the same
class as the previous operation in the schedule are given prefer-
ence. This tends to group together instructions that could be
combined by CSI.

3.2.7. Step 7: Improving the Initial Linear Schedule

Although any linear schedule that does not violate the
DAG constraints would be valid as input to the search, cost
pruning is used and finding a better schedule earlier will cause
more pruning. This makes it worthwhile to invest a little effort
in making the initial schedule relatively good.

Currently, the prototype CSI tool performs a “sort” of the
schedule generated in step 6. Instead of using comparison of
key values, in this “sort,” elements in the schedule exchange
places only if the exchange reduces a very crude estimated cost.
This portion of the CSI tool is a “hack,” but it does tend to sig-
nificantly improve the schedule, and hence improves pruning in
the “real” search.

At this stage, the code for the simple if example has
been restructured so that it requires only 690 ticks. This repre-
sents an additional reduction of 23% over the improvement due
to inter-thread CSE, or a total improvement of 45% as com-
pared to the original code.

3.2.8. Step 8: The Search

Given the information determined in the previous steps,
we are now ready to perform the permutation-in-range search
for the minimum execution time schedule. The technique pre-
sented here is very similar to that which we used in code
scheduling for pipelined machines [13][14], except in that the
pruning and cost criteria are different and we have the extra
dimension of considering merges of adjacent instructions.

For the search, the initial N-operation linear schedule is
partitioned into two parts: the n-operation partial schedule
under evaluation (schedule slots 0..n-1) and the portion of the
schedule that has not yet been evaluated (n..N-1). The basic
step in the permutation-in-range search is to consider swapping
the instruction in slot n with any of the instructions in slots
greater than n. Whenever a  viable swap is found, the incremen-
tal change to the partial schedule is evaluated. A viable swap
causes the partial schedule to be extended by moving the parti-
tion to between slots n and n+1; a swap that cannot lead to a
better complete schedule prunes all schedules with that n-opera-
tion prefix.

The main components of the search are:

1. Only consider swaps for which the instruction being
swapped into the partial schedule at position n-1 has earli-
est≤n-1 and the instruction being swapped out has latest≥n.
Note that if this condition is not met, then not only is the
swap disallowed, but additional pruning is possible.

2. Only swaps that do not violate the DAG precedences are
valid.

3. As each operation is added to the partial schedule, it might
either execute in the tick after the previous operation. Alter-
natively, if it can merge with that operation, it would
execute in the same tick. Merges are permitted only if the
operations are in the same class and there are no DAG or
guard conflicts (i.e., no instruction being merged is the pre-
decessor of any other instruction being merged and none of
the guards overlap).

4. In a machine (like the MasPar) in which combining usually
is beneficial, give precedence to swapping-in operations that
are of the same class as the previous operation.

5. For much the same reason given in rule 4, when a merge of
instructions into the same tick is possible, the merger is
evaluated before the non-merged schedule.

6. Because merging happens with adjacent operations in the
linear schedule, if there are k instructions that can merge
into one, there are k! different possible orderings in which
they might appear with the same result. This would multi-
ply the search time by k!. Hence, merges are only allowed if
the operations being merged are in order of increasing inter-
nal identifier. For example, merging tuples 4 and 12 (the
add operations in the example) will be allowed only if their
order in the linear schedule is (4, 12), not if their order is
(12, 4).

This reduces the search space equivalently to using ticks,
rather than schedule slots, for the linear schedule. However,
since the number of slots is fixed and the number of ticks
varies, the slot scheme with this adjustment yields a more
efficient search.

7. A swap that must result in a schedule worse than or equal to
the best found thus far need not be investigated further.
Hence, if the cost of the current partial schedule + the theo-
retical minimum cost of the operations remaining to be
scheduled ≥ cost of the best complete schedule found thus
far, the swap is considered invalid.

Note that computing the cost involves more than just
observing whether a merge is possible; it is also necessary
to compute the approximate overhead in placing operands in
the same registers for the merged operations. The masking
and register move cost computation used in this paper is
simply that each operand that cannot be trivially renamed to
be in the appropriate register adds the cost of one register-
to-register move + one mask operation unless the previous
instruction has the same guard. This is a gross oversimplifi-
cation of how it should really work (see section 3.4), but the
ideal register allocation process is too complex to describe
in this paper and the method described here produces
acceptable results.

All of these techniques have the property that they will never
prune a unique optimal schedule. Hence, if allowed to run to
completion, the technique is equivalent to an exhaustive search
and ensures that the optimal schedule will be found.

Despite the pruning, running to completion is not always
feasible. We suggest that in such cases an upper limit should be
placed on the number of operation swaps considered. That limit
could be a fixed number or, perhaps more useful in practice, it
could be derived based on the level of optimization specified by



the programmer and the amount of potential improvement esti-
mated by the theoretical bound.

3.3. Final Output for Simple Example

After the search has completed (or been artificially termi-
nated before completion), the resulting linear schedule is the
SIMD program. In the version of the CSI prototype described
here, the SIMD program need only have registers assigned and
masking and register move code inserted.

The linear schedule output by the CSI prototype tool for
the simple if example is:

;Initial cost = 1263
;Cost after inter-thread CSE = 891
;Theoretical lower bound ticks = 8
;Theoretical lower bound cost = 639
;At perm #11, new cheapest is 690...
;At perm #21, new cheapest is 666...
;Final Tuples (651 perm calls, cost 666):
code
3:0 const #a ;tick 0
3:2 const #b ;tick 1
3:5 const #c ;tick 2
3:1 load 0 ;tick 3
3:3 load 2 ;tick 4
2:11 neg 3 ;tick 5
1:4 add 1,3 ;tick 6
2:12 add 1,11 ;tick 6
1:6 store 5,4 ;tick 7
2:14 store 5,12 ;tick 7

The format is guard: operation ;tick. Notice that the search
ran to completion in just 651 swaps (1 swap ≡ 1 perm call) and
only the Neg instruction is not executed by all PEs. The result
is 47% faster than the original code.

However, there is also an unpleasant little surprise: the
ideal execution time was not achieved. The execution time is
666 clocks when it should have been 639. The reason has to do
with a nasty complication concerning register allocation and the
concept of “register liveness.”

3.4. Partial Liveness

In a conventional machine, a register either holds a live
value or it is free for reuse. In a SIMD machine (or any parallel
machine), a register can be live or dead for any guard, and can
be simultaneously live with different values in different threads.
We call this new concept “partial liveness” and it is responsible
for the difference between 666 and 639 clocks for our simple
example.

To better understand this, consider the DAG showing the
final state of the example (see figure 5). Notice that the register
holding the result of loading b is used in two places: by Neg
and by Add. In the linear schedule (see above), the Neg
instruction comes before the Add. Hence, when allocating a
register for the result of the Neg instruction, conventional
liveness analysis finds that the register holding the loaded value
of b is still live and that register cannot be reused for the result
of the Neg. Hence, the result of Neg is placed in a different
register and then copied back for the Add.

In order to merge Add operations 4 and 12, a register-to-
register move is inserted to move the result of Neg into the
same register that holds the loaded value of b on the other
thread. 666 is simply 639 + the move overhead.

Had our CSI tool been smarter, it would have realized
that the register holding the loaded value of b is only partially
live after the Neg instruction, hence, it could have been reused
without conflict. That knowledge would have allowed it to
achieve the 639 clock theoretically optimal time; an execution
time reduction of 49%.

Unfortunately, partial liveness in the context of CSI
becomes much more complex as larger codes are considered,
hence, it will have to be the topic of a future paper. In this
paper, we assume the traditional definition of liveness — and
suffer the penalty.

add

store

neg

const #c const #b

loadload

const #a 3 33

3 3

2

3

3

op guardKe y:

2

1

2

Figure 5: DAG Showing Final State of Example

4. A Bigger, Tougher, Example

While the example case used to illustrate the CSI algo-
rithm obtained a good speedup, it is not clear how often the
code sequences for different threads will look that similar. Nei-
ther is it clear that any performance is gained when the threads
differ more significantly.

We do not have statistics available on how often threads
have very similar code, although it seems fairly likely that
SIMD code involving tests for “edge conditions” would have
this property. To answer the question of how performance
degrades with larger, less symmetrical, code, we present listing
2. Here, only the lvalue of a and the rvalue of c are inter-thread
CSEs. The “then” clause even has one more memory reference
than the else clause.

The interesting result is that CSI works nearly as well as
it did on the simple example. This is primarily because the
MasPar supports indirect memory references, so all memory
references can be merged. Such merges are usually profitable
because the PE local memory interfaces on the MasPar MP-1
are shared by groups of PEs [3], often making memory



“then” clause else clause

a = *b + c; a = c + e;
d = a + d; e = f - g;

0 const #b 0 const #c
1 load 0 1 load 0
2 load 1 2 const #e
3 const #c 3 load 2
4 load 3 4 add 1,3
5 add 2,4 5 const #a
6 const #a 6 store 5,4
7 store 6,5 7 const #f
8 const #d 8 load 7
9 load 8 9 const #g

10 add 5,9 10 load 9
11 store 8,10 11 neg 10

12 add 8,11
13 store 2,12

Listing 2: A More Difficult Example

reference time the performance-limiting factor. In addition, per-
formance is helped by the fact that enable masking and register-
to-register moves are both quick operations.

The initial code would have taken 2478 clocks. Inter-
thread CSE by itself would only have reduced that by 7%, to
2312; after the sort described in step 7 (section 3.2.7), the
reduction would have been just 13%, to 2159. However, the full
CSI algorithm gives an impressive performance, reducing the
time to just 1386 clocks — a 44% reduction.

Unlike the simple example, in this case the search did not
run to completion, so optimality is not guaranteed. The algo-
rithm examines swaps at a rate of about 20µs/swap running on a
SPARC server, and was allowed to run for 1,000,000 swaps (20
seconds). A total of just 21 complete schedules were consid-
ered — this should be contrasted with the 23! possible sched-
ules. In fact, the search very quickly yields good answers; over
half the improvement (a schedule requiring just 1803 clocks)
was achieved after performing only 106 swaps and examining
just five complete schedules. For this reason, the prototype CSI
tool is even effective in helping to optimize SIMD programs
that have over a hundred instructions and many threads [6].

4.1. Recursive CSI

While good performance was obtained using the CSI
algorithm in this paper, still better pruning would be desirable.
One obvious approach is to partition the original CSI problem
into two or more parts, schedule each independently from the
others, and then apply the CSI algorithm to the concatenation of
the schedules for each part.

The CSI prototype implementation does not automati-
cally provide this recursive subdivision, but can read its output
as input. Hence, we were able to perform a simple experiment
by hand-partitioning the original code into two parts, using CSI
on each, and then using CSI on the catenation of the two out-
puts. Although essentially the same final schedule was

obtained, the recursive application did cause a faster pruning,
and the number of swaps totaled for all three CSI runs was less
than that for the single CSI run over the complete initial code.

The problem is that the improvement in search speed by
recursive subdivision is critically dependent on choice of parti-
tioning, and we do not yet have a good method by which the
partitions can be mechanically generated.

4.2. Simulated Annealing

Another possible way to speed convergence of the search
is to modify the driver from section 3.2.8 to use a simulated
annealing approach. Notice that all the pruning methods can
still be applied, but the benefit would be somewhat less than in
the current search. All pruning in the simulated annealing
would be pruning complete schedules, whereas permutation-in-
range can incrementally prune a partial schedule and all com-
plete schedules that contain it. We hav e not yet implemented a
simulated annealing prototype.

5. CSI To Increase Vector Length

Thus far, this paper has discussed CSI as a method to
improve the execution speed of SIMD conditionals. In this sec-
tion, we suggest that the same technology, combined with care-
ful data layout, is also the key to creating long vector operations
out of short vector operations, or even vector operations out of
scalar references.

Suppose one has a 16,384-PE machine and SIMD code:

int a1[8192], a2[8192];
int b1[8192], b2[8192];
int c1[8192], c2[8192];

c1 = a1 + b1;
c2 = a2 - b2;

To get the best memory utilization, this should result in a mem-
ory layout like that shown in figure 6.
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b1[8191]
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PE8191

c2[0]

b2[0]

a2[0]

PE8192

c2[8191]

b2[8191]

a2[8191]

PE16383

. . . . . .

Figure 6: Memory Layout for 8,192-Element Arrays

However, giv en 16,384 PEs, it makes sense to imagine
that each memory object is 16,384 elements in width. This
renaming of the memory cells gives the layout depicted in fig-
ure 7. This is interesting because reflecting this renaming back
into the source program yields:
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Figure 7: Memory Layout for 8,192-Element Arrays

int a[8192 + 8192];
int b[8192 + 8192];
int c[8192 + 8192];

if (PE_number < 8192) {
c = a + b;

} else {
c = a - b;

}

which is exactly the same if statement that was used for the
simple example in section 3.1 of this paper.

Admittedly, there is much work to be done before CSI
can be combined with sophisticated data layout to mechanically
lengthen vectors, but this gives a clear direction for future
research.

6. Summary and Conclusions

CSI was originally proposed in [7], but no practical algo-
rithm had been found until April 1991. The algorithm is not
simple, and certainly can be improved further, but our prototype
implementation has shown CSI to be both feasible and surpris-
ingly effective in at least a few test cases.

In some sense, CSI is the most fundamental compiler
transformation for a SIMD, because it merges threads to keep
PEs enabled. It does this by merging instructions from different
paths within then and else clauses, multiway branches, and
ev en nested conditionals. Coupled with new techniques for data
layout, it should also be possible to use CSI to create “vectors”
out of groups of ordinary scalars, and longer vectors out of mul-
tiple short vectors.

In addition, the CSI prototype implementation has
exposed an important defect in current compiler technology for
parallel machines: the inappropriateness of using ordinary
liveness for register allocation. As a solution, we have intro-
duced the concept of “partial liveness” to more accurately man-
age register usage, especially in SIMD machines.

Finally, it is useful to recall that variations on CSI apply
to a fairly wide range of architectures (see section 2), not just
SIMD. Perhaps the generality of CSI will lead to research on
other new compiler transformations based on analysis of code
(operations), rather than the far more common analysis of val-
ues (data flow analysis) or of storage locations (dependence
analysis)?
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