Minimizing MAXLIVE For
Spill-Free Register Allocation

Shashi Deepa Arcot, Henry Gordon Dietz, &
Sarojini Priyadarshini Rajachidambaram

University of Kentucky
Electrical & Computer Engineering

Kettudky™

Register Allocation Is Critical

* Memory ~1,000X slower than processor

*|LP often depends on register use

* Automated coding & compiler optimizations
often build

* Microcontrollers & nanocontrollers often

Kﬂ’?m&j’h

LW AR ER. SRRIT -

Nanocontrollers

* This is NOT a talk about nanocontrollers...
but they do make register allocation critical
* To minimize circuit complexity:
* All data must fit in
(there is no “main memory” to spill to)
* Bit-serial computing...
*ALU is a 1-of-2 MUX... If-Then-Else

Kettudky™

Optimizing Register Allocation

* Minimize spill/reload cost

* Shortest path & MIN algorithms

* Graph coloring techniques
* Tune higher-level optimization interactions
* Directly try to reduce MAXLIVE

Kﬁﬂm&;ﬁ

LW AR ER. SRRIT -

MAXLIVE

* MAXLIVE is the maximum number of values
whose lifetimes (D-U chains) overlap
* Need 2MAXLIVE registers to be spill-free
* MAXLIVE depends on access order;
reordering alone can change MAXLIVE
* MAXLIVE depends on the operations;
arithmetically equivalent expressions can
yield different MAXLIVE
Kentucky™

First Approach:
Genetic Algorithm Reordering

* Search legal orderings for min MAXLIVE

* Search space is ;
nanocontroller blocks often 1,000s of ops

* Use a “steady state” “island model” GA...
other search techniques were less effective

Kettudky™

The Genetic Algorithm

®* Trick is searching only valid schedules...
genome is not a schedule, but a set of
priorities to break ties in list scheduling
* A segmented population evolves:
* Fitness: MAXLIVE, time at MAXLIVE
* Selection: by tournament
* Crossover: splices parts of 2 parents
* Mutation: random change to 1 parent
Kentucky™

Experimental Procedure

* Pseudo-random BitC block generator
* Optimizing BitC compiler generating ITEs
* Converter makes data structures from ITEs
* GA Reordering code (~300 lines C)
* Scripts & filters control test runs,
discard duplicates & MAXLIVE<3 cases,
collect and summarize results

Kettudky™

M Boordercd MAXLIVE

4096

1024 -

756 |-

64 -

16

GA-Reordered MAXLIVE
Vs.

. 1 . . 1 .
4 16 54 256 1024 4035
Crriginal MAXLNE

Kﬁnm&ﬁ

LW AR ER. SRRIT -

Experimental Results

* Results from 32,912 accepted test cases

* Execution time was kept fast by:
* Population of 50, 4 islands, cross 3X mut
* Stop after evaluating 1,000 schedules

* Average reduces MAXLIVE by 18%

* Clearly worthwhile, but

Kﬁﬂﬂliﬁjﬁ

LW AR ER. SRRIT -

Sethi-Ullman Numbering (SUN)

* Optimal technigque for coding an assignment
* Fast, deterministic, algorithm
* Finds tree walk order that minimizes:

* Number of generated instructions
* MAXLIVE

* Published in 1970
* Many attempts to extend to DAGs...

Kﬁﬂm&;ﬁ

LW AR ER. SRRIT -

SUN Labels Each Node With
MAXLIVE For Its Subtree

1.1f nis a leaf and a left descendant, L(n)=1.
If it is a right descendant, L(n)=0;
2.1f n has descendants with labels |1 and 12,
(a)lf 1=l2, L(n)=max(I1, 12);
(b)If 11=12, L(n)=I1+1

Kﬂ’?m&j’h

LW AR ER. SRRIT -

Our Modifications To SUN

* Common Subexpression Elimination (CSE)
creates DAGs; disabling CSE yields trees
* Once a particular CSE is enabled, that
register can be treated as “reserved” for as
long as it is live using the SUN walk order
* Use a GA to selectively re-enable CSEs
* Must generalize SUN for trinary ops and
modern instruction formats
Kentucky™

SUN For Trinary Ops (e.g., ITES)

1.1f nis a leaf, L(n)=0;
2.1f n has descendants with labels 11, [2, & I3 and
sorted such that [1=12>(3

f)If 11=12=1320, L(n)=I1+2;
If 11=12=13=0, L(n)=1

(@)lf 11512513, L(n)=I1;
(b)If 11>12=13=0, L(n)=I1;

(0)If 11512=1320 & 11-12=1, L(n)=I1+1;
(d)If 11512=1320 & 11-12>1, L(n)=I1;
(e)If [1=12513, L(n)=1+1;

()]

(o)

g o
Kentucky™

LW AR ER. SRRIT -

DAGs To Trees:

A Sample DAG

(b) () (ot § (o § [8)

EE{SU

.
G5(4764:2) | B7(372:64)

 BBI476766)

Kﬁﬂﬂliﬁjﬁ

LW AR ER. SRRIT -

DAGs To Trees:
The Corresponding Trees

Kﬁﬂm&;ﬁ

LW AR ER. SRRIT -

The SUN-Based GA

again use “steady state” “island model” GA
* Genome is a traditional bit vector in which
each potential CSE is a bit, 1 if enabled
* The population is initialized to include both all
CSEs enabled and all disabled
* Fitness computes MAXLIVE, but dynamically
adjusts a cutoff threshold (“terrible”)
Kentucky™

Variations On One Test Case

* A large nanocontroller basic block
* Initial parameters:
* Number of SITEs = 3,041
* MAXLIVE = 561
* With MAXLIVE minimized by SUN GA:
* Number of SITEs = 23,819;
* MAXLIVE =12; 47:1 reduction
* What about less extreme MAXLIVE targets?
Kentucky™

CSEs

Enabled CSEs Vs. MAXLIVE

1600

1500

1400

1300

1200

1100

1000

900

a0l

o0

GO0

& -'1-'

10

100

MaxLIve

1000

Kﬁﬂm&;ﬁ

LW AR ER. SRRIT -

SITEs

SITEs Vs. MAXLIVE

1C0

MaxLive

1000

Kﬁﬂm&;ﬁ

LW AR ER. SRRIT -

More Experimental Results

* Results from 32,912 accepted test cases...
the same ones used for the reordering GA,
so direct comparison of results is valid

* The goal was to minimize MAXLIVE,
secondarily minimizing number of SITEs

* Execution time was limited to about 1 minute
per test case on an Athlon XP

Kettudky™

SUN GA Vs.

SUN Bnscd GA MAXLIVE

18

16

14

12

10

| T | |
v
s &3 = @ = -
L] L ¢ B @ o *e
@ Te " TEED ENE Sews s o ® -
L] SRR W W O R R
L] * 8 & EE SR S e e -

7B A T —C 5
* 0 0 4500 R &
& & & 0 &0 ¢
o ¢ 5 3 NI &
8 4 & & 804000
L # ¥ 5 0¥
F—d— 0 S IO : . 1

4 16 B4 256
Origina VAXLIVE

1024

4095

Kﬁﬂm&jﬁ

LW AR ER. SRRIT -

)
i
]

EUMN Bascd GA Instruction Count {SITEs

Vs. Original SITEs

4.1943= 106
1.04858=+06 -
262114 —
65336 -
6384

4055

1174 |-

258 —

B4 |-

64 256 1024
riginal Instruction Couns (211 Es)

4088

16384

Kﬁﬂm&;ﬁ

LW AR ER. SRRIT -

SUM-Bazed GA MAXLIVE

18

16

14

12

10

SUN GA MAXLIVE Vs.

CSEs Enabled

L] T & & % & 8§ 5 PPENMMPPMHERE—-
w & & 9 @ 8 §F SN

— o —— TG ET T 1

AL

4 B 16 32
SlIN-Based GA G5Fs Fnaaled

128 256

Kﬁnmck;h

LW AR ER. SRRIT -

SUN Bascd GA MAXLIVE

18

16

14

12

10

SUN GA MAXLIVE Vs.

& 2 0 2 %00 HMMTEEEEEEEE
= - F @ @ ¥ ¥F N
* & 4 8 9 %0 O
(I B R NN TR
o e A B L R ' '
4 16 B4

GA-Raardersd MAXLIVE

256

1024

4026

Kﬁnm&ﬁ

LW AR ER. SRRIT -

Summary
'he Reordering GA should be widely used

'he SUN-Based GA is very aggressive:

* X Increase in SITEs was common, worst
was 15,309 and became

* MAXLIVE reduction also was huge, from a
maximum over all test cases of 3,409 to 18
(a 189:1 improvement!)

* Fortunately, targeting a specific MAXLIVE

can greatly reduce SITE count -
Jreaty G

Future Work

* SUN GA uses modified SUN order within
trees; how should we order across trees?

* How well will SUN GA work for conventional
pProcessors?

* Can we incorporate substitution of equivalent
arithmetic expressions?

Kentucky™

LW AR ER. SRRIT -

Questions?

Keztucky™

UNBRIDLED SPIRIT

Aggregate 0rg—

Kettudky™

