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Register Allocation Is Critical

* Memory ~1,000X slower than processor

*|LP often depends on register use

* Automated coding & compiler optimizations
often build

* Microcontrollers & nanocontrollers often
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Nanocontrollers

* This is NOT a talk about nanocontrollers...
but they do make register allocation critical
* To minimize circuit complexity:
* All data must fit in
(there is no “main memory” to spill to)
* Bit-serial computing...
*ALU is a 1-of-2 MUX... If-Then-Else
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Optimizing Register Allocation

* Minimize spill/reload cost

* Shortest path & MIN algorithms

* Graph coloring techniques
* Tune higher-level optimization interactions
* Directly try to reduce MAXLIVE
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MAXLIVE

* MAXLIVE is the maximum number of values
whose lifetimes (D-U chains) overlap
* Need 2MAXLIVE registers to be spill-free
* MAXLIVE depends on access order;
reordering alone can change MAXLIVE
* MAXLIVE depends on the operations;
arithmetically equivalent expressions can
yield different MAXLIVE
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First Approach:
Genetic Algorithm Reordering

* Search legal orderings for min MAXLIVE

* Search space is ;
nanocontroller blocks often 1,000s of ops

* Use a “steady state” “island model” GA...
other search techniques were less effective
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The Genetic Algorithm

®* Trick is searching only valid schedules...
genome is not a schedule, but a set of
priorities to break ties in list scheduling
* A segmented population evolves:
* Fitness: MAXLIVE, time at MAXLIVE
* Selection: by tournament
* Crossover: splices parts of 2 parents
* Mutation: random change to 1 parent
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Experimental Procedure

* Pseudo-random BitC block generator
* Optimizing BitC compiler generating ITEs
* Converter makes data structures from ITEs
* GA Reordering code (~300 lines C)
* Scripts & filters control test runs,
discard duplicates & MAXLIVE<3 cases,
collect and summarize results
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Experimental Results

* Results from 32,912 accepted test cases

* Execution time was kept fast by:
* Population of 50, 4 islands, cross 3X mut
* Stop after evaluating 1,000 schedules

* Average reduces MAXLIVE by 18%

* Clearly worthwhile, but
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Sethi-Ullman Numbering (SUN)

* Optimal technigque for coding an assignment
* Fast, deterministic, algorithm
* Finds tree walk order that minimizes:

* Number of generated instructions
* MAXLIVE

* Published in 1970
* Many attempts to extend to DAGs...
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SUN Labels Each Node With
MAXLIVE For Its Subtree

1.1f nis a leaf and a left descendant, L(n)=1.
If it is a right descendant, L(n)=0;
2.1f n has descendants with labels |1 and 12,
(a)lf 1=l2, L(n)=max(I1, 12);
(b)If 11=12, L(n)=I1+1
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Our Modifications To SUN

* Common Subexpression Elimination (CSE)
creates DAGs; disabling CSE yields trees
* Once a particular CSE is enabled, that
register can be treated as “reserved” for as
long as it is live using the SUN walk order
* Use a GA to selectively re-enable CSEs
* Must generalize SUN for trinary ops and
modern instruction formats
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SUN For Trinary Ops (e.g., ITES)

1.1f nis a leaf, L(n)=0;
2.1f n has descendants with labels 11, [2, & I3 and
sorted such that [1=12>(3

f)If 11=12=1320, L(n)=I1+2;
If 11=12=13=0, L(n)=1

(@)lf 11512513, L(n)=I1;
(b)If 11>12=13=0, L(n)=I1;

(0)If 11512=1320 & 11-12=1, L(n)=I1+1;
(d)If 11512=1320 & 11-12>1, L(n)=I1;
(e)If [1=12513, L(n)=1+1;
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DAGs To Trees:

A Sample DAG
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DAGs To Trees:
The Corresponding Trees
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The SUN-Based GA

again use “steady state” “island model” GA
* Genome is a traditional bit vector in which
each potential CSE is a bit, 1 if enabled
* The population is initialized to include both all
CSEs enabled and all disabled
* Fitness computes MAXLIVE, but dynamically
adjusts a cutoff threshold (“terrible”)
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Variations On One Test Case

* A large nanocontroller basic block
* Initial parameters:
* Number of SITEs = 3,041
* MAXLIVE = 561
* With MAXLIVE minimized by SUN GA:
* Number of SITEs = 23,819;
* MAXLIVE =12; 47:1 reduction
* What about less extreme MAXLIVE targets?
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CSEs
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SITEs

SITEs Vs. MAXLIVE
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More Experimental Results

* Results from 32,912 accepted test cases...
the same ones used for the reordering GA,
so direct comparison of results is valid

* The goal was to minimize MAXLIVE,
secondarily minimizing number of SITEs

* Execution time was limited to about 1 minute
per test case on an Athlon XP
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SUN Bnscd GA MAXLIVE

18

16

14

12

10

| T | |
v
s &3 = @ = -
L] L ¢ B @ o *e
@ Te " TEED ENE Sews s o ® -
L] SRR W W O R R
L] * 8 & EE SR S e e -

7B A T —C 5
* 0 0 4500 R &
& & & 0 &0 ¢
o ¢ 5 3 NI &
8 4 & & 804000
L # ¥ 5 0¥
F—d— 0 S IO : . 1

4 16 B4 256
Origina VAXLIVE

1024

4095

Kﬁﬂm&jﬁ

LW AR ER. SRRIT -



)
i
]

EUMN Bascd GA Instruction Count {SITEs

Vs. Original SITEs

4.1943= 106
1.04858=+06 -
262114 —
65336 -
6384

4055

1174 |-

258 —

B4 |-

64 256 1024
riginal Instruction Couns (211 Es)

4088

16384

Kﬁﬂm&;ﬁ

LW AR ER. SRRIT -



SUM-Bazed GA MAXLIVE
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SUN Bascd GA MAXLIVE
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Summary
'he Reordering GA should be widely used

'he SUN-Based GA is very aggressive:

* X Increase in SITEs was common, worst
was 15,309 and became

* MAXLIVE reduction also was huge, from a
maximum over all test cases of 3,409 to 18
(a 189:1 improvement!)

* Fortunately, targeting a specific MAXLIVE

can greatly reduce SITE count -
Jreaty G



Future Work

* SUN GA uses modified SUN order within
trees; how should we order across trees?

* How well will SUN GA work for conventional
pProcessors?

* Can we incorporate substitution of equivalent
arithmetic expressions?
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Questions?
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