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ABSTRACT

Muhammad, Tariq. M.S.E.E., Purdue University, May 1995. Hardware Barrier Syn-
chronization for a Cluster of Personal Computers.
Major Professor: Dietz, Henry J.

Personal computers offer execellent performance per unit cost, and a cluster of
such machines might make a useful parallel computer. However, conventional net-
working methods cannot provide the low-latency barrier synchronization needed to
coordinate interactions between fine-grain parallel processes distributed across a clus-
ter. This thesis describes how simple custom hardware can be interfaced to a group of
unmodified personal computers to provide an appropriate barrier mechanism. Both
the interface and the hardware implementation are discussed, with an emphasis on
how the notion of barrier synchronization has evolved from the first theoretical work
to the lessons learned in experiments with the first prototype PAPERS (Purdue’s
Adapter for Parallel Execution and Rapid Synchronization).



1. INTRODUCTION

If clusters of personal computers and workstations are to function effectively as
reasonably fine-grain parallel computers, conventional networking methods and hard-
ware are not sufficient. Low-latency barrier synchronization and communication is
needed to coordinate interactions between fine-grain parallel processes distributed
across a cluster. The mechanism described in this thesis uses simple custom hard-
ware, generically called PAPERS (Purdue’s Adapter for Parallel Execution and Rapid
Synchronization), to effectively integrate a group of unmodified personal computers
as a single parallel machine.

Although the initial goal of the project was simply to test a new architecture for
dynamic barrier synchronization, much was learned in the implementation and testing
of the new mechanism, and the resulting system performance was unexpectedly good.
Thus, this thesis focuses on what we initially wanted to accomplish, how we went
from theoretical work on barrier mechanisms to the actual implementation of the
new architecture, precisely what was implemented, and what we learned from this
implementation. In summary, this thesis traces the jump from theory to practice in
the creation of the first PAPERS prototype: PAPERSO.

Chapter 2 explains the basic principles of barrier synchronization, and provides a
survey of previous work on barrier synchronization done outside Purdue. A discussion
of methods currently used to execute parallel code on a cluster of workstations is
also presented. In contrast, Chapter 3 presents a history of barrier synchronization
research within Purdue, with emphasis on the CARP Machine and the CARD system.
It also details the evolution of the dynamic barrier mechanism which forms the basis

for PAPERS.



How the interface between the PAPERS unit and the personal computers was
defined is described in Chapter 4. Part of this involves the choice of computer interface
and part involves modifying the dynamic barrier synchronization mechanism to better
fit that interface. For example, the concept of parallel interrupts arises out of the
need to obtain an initial synchronization. The resulting design of PAPERSO, the first
implementation of PAPERS concept, is given in Chapter 5.

The measured performance and lessons learned from experiments with PAPERSO
are reviewed in Chapter 6. Although it may seem strange to be discussing lessons
learned from a prototype that is less than a year old, at this writing, our experiences
with PAPERSO have already led to the creation of five more types of PAPERS units.
In addition to the theoretical insights, there have been a wide range of practical
contributions, including the demonstration that fine-grain cluster computing really
can work. Chapter 7 briefly summarizes the contributions and describes the new
directions that we are currently pursuing.

Although this thesis uses few terms unfamiliar to those involved in parallel com-

puting, the following definitions may aid other readers:

Compile-time : This refers to anything involving compiler recognition, analysis, and

transformation of a program to generate executable code for some target machine.

Run-time: This refers to anything involving information generated as a program is

executing.

MIMD: Multiple Instruction Stream, Multiple Data stream. A parallel computer
architecture with multiple program counters, each following a separate instruction

stream.

SIMD: Single Instruction stream. Multiple Data stream. A parallel computer archi-
tecture with a single program counter, but for which each instruction applies across

multiple data items.

VLIW: Very Long Instruction Word. A computer architecture with a very long in-

struction word that can control multiple, heterogeneous operations in parallel during



each clock cycle. Like a SIMD machine, a VLIW behaves as though it has a single

program counter.

Barrier Stream: The sequence of barrier group specifications (e.g., barrier masks)

that will be used by a parallel program as it executes.



2. BACKGROUND

2.1 Barrier Synchronization

A barrier is a point in program instructions where a processing element must wait
until all other processing elements associated with the barrier have finished their part
of the program instructions.

Barrier synchronization can be accomplished by either software or hardware. A
software barrier synchronization usually involves message broadcast from each proces-
sor to all the other processors. On the other hand, a hardware barrier synchronization
requires some kind of dedicated hardware which is interfaced to all the processing el-
ements of a system.

A processor typically performs the following three steps upon reaching a barrier:
1. Marks itself as present at the barrier.
2. Waits for all other participating processors to arrive at the barrier.

3. After all participating processors have arrived at the barrier, it proceeds past

the barrier.
In contrast, our barrier mechanism changes step [3] into:

3. After all participating processors have arrived at the barrier, and after small
(bounded) delay to detect this condition, all participating processors simulta-
neously resume execution past the barrier.

This subtle difference is actually the enabling condition for the use of static timing

analysis and compile-time code scheduling.



2.2 Classes of Barrier Synchronization

There are actually two separate classes of barrier mechanisms that can provide
precise timing constraints: static [1] and dynamic [2].

The difference between these techniques involves how the hardware determines
which barrier synchronization should be the next to fire. The static version assumes
that there is a complete order for all barrier synchronizations, whereas the dynamic
version allows barrier synchronizations to be specified as a partial order. Thus, a
dynamic barrier mechanism allows barrier synchronizations involving disjoint portions
of the machine to fire in any order.

To illustrate the difference between static and dynamic barriers, consider the si-
multaneous execution of two different programs on a four processor machine such
that program A is executed by processors 0 and 1, and program B is executed by
processors 2 and 3. Since these two programs are independent, each may contain any

number of internal barrier synchronizations, as shown in Figure 2.1.

Prog. B Prog. A Static Dynamic
Ordering Ordering
PE3 PE2 PE1 PEO

o T T
f s s

B1 v \/

. Bj Ai

SRR

Figure 2.1 Difference Between Static & Dynamic Barriers



While either the static or dynamic barrier mechanism can be used, the static
mechanism requires a complete ordering of the barriers, while the dynamic mechanism
allows a partial ordering.

Thus, for the static mechanism, because barrier A0 is first in the static order, if
processors 2 and 3 reach barrier B0 before processors 0 and 1 reach A0, barrier B0
will be ‘blocked’ from firing until after barrier AQ has fired. In contrast, the dynamic
barrier mechanism allows the barriers within independent groups of processors to
proceed without interfering with each other; no delays can be introduced by blocking.

In other words, a dynamic barrier mechanism allows simultaneous firing of multiple
barrier streams, whereas a static barrier mechanism allows execution of only one
barrier stream. Therefore, the static barrier mechanism requires merging of multiple
barrier streams if multiple programs are executing on disjoint sets of processors. Thus,

the dynamic mechanism is clearly superior to the static mechanism.
2.3 Partitionable Barrier Mechanism

If a barrier group (PEs involved in a barrier stream) can be broken in subgroups
such that each subgroup can execute an independent barrier stream of its own, then
that barrier mechanism is partitionable.

The dynamic barrier mechanism requires partitioning capability from the barrier
synchronization logic. A barrier mechanism that uses barrier masks (bit vectors
with one bit for each PE in the machine) to specify the PEs in a barrier group is
partitionable. Partitioning can be classified as either compile-time (static) or run-
time (dynamic).

Compile-time partitioning requires all the barrier masks to be computed by the
compiler before the start of program execution and is therefore restricted by the
amount of information that can be extracted by the compiler. Run-time partitioning
allows the formation of sub-groups of PEs on the basis of the result of conditional con-

structs like if-then-else, case statement, and do-while. Therefore, new barrier



masks are computed and enqueued during the program execution. A run-time parti-
tionable dynamic barrier mechanism provides the maximum functionality to parallel

code execution.
2.4 Survey of Hardware Barrier Synchronization Schemes

This section briefly describes some of the barrier mechanisms and the machines

that implement barrier synchronization. Most of the following subsections are taken

or modified from [3].

24.1 FEM

The term ‘barrier synchronization’ was first used in a paper by Harry Jordon [4].
This paper described the FEM (Finite Element Machine), a MIMD machine designed
to efficiently manage problems with an SPMD structure such that all processors must
complete one phase of the program before any can enter the next.

In contrast to the direct wire connections and logic tree used in the proposed
barrier architecture, the FEM used serial ‘priority chain’ connections to transmit
synchronization status information to and from all processors. This yields a simple
implementation, but causes the propagation delay for synchronization to be propor-
tional to the number of processors. Further, there was no method for partitioning the

machine into multiple barrier groups.

24.2 FMP

The Burroughs FMP [5] was designed to be the Flow Model Processor in a system
for performing aerodynamic simulations. Although it was never built, it is the first
machine design to incorporate hardware barrier synchronization with timing proper-
ties and hardware structure similar to the barrier mechanism discussed in this paper.

The FMP’s barriers are implemented using an AND tree that spans all 512 pro-
cessing elements. When a PE executes a WAIT instruction, that instruction does not

terminate until a GO signal is received. The GO signal is received by all PEs within



160ns after the last PE has begun to execute a WAIT instruction. Given that each
PE has a peak performance of 3 MFLOPS, this synchronization cost is only about
half the time taken to perform a floating point operation, hence, very fine grain.

The FMP’s barrier tree can be partitioned by configuring AND gates at lower
levels in the tree as root nodes for independent barrier groups. This partitioning sup-
ports multiple user programs sharing a single machine, but is insufficient to support
the dynamic partitioning of the machine suggested in the descriptions of the SPMD
worker and structured SIMD models.

2.4.3 Fuzzy Barrier

The hardware barrier synchronization scheme described by Gupta [6] is known as
the fuzzy barrier. The ‘tuzzy’ part of the fuzzy barrier is basically a delayed barrier
firing mechanism where the actual wait, if necessary, may occur several instructions
after a processor indicates it has encountered a barrier. The concept is similar to
the delayed branches in pipelined machines. The fuzzy barrier scheme uses m-bit
barrier tags with each barrier along with the barrier signal (‘I am at the barrier’) to
distinguish it from other barriers.

Several problems exist with the fuzzy barrier, hardware complexity is the most
significant. Each processor has its own separate barrier processor, and has expensive
matching hardware at each node to match the barrier tags. There are N? connections
between the N processors, and each connection has m lines. The hardware connec-
tions required for a system restricts the fuzzy barrier implementation to systems with

only small number of processors.

244 CM-5

The Thinking Machines CM-5 [7] is a commercial supercomputer that combines
conventional processors in an architecture supporting both MIMD and SIMD execu-
tion. It has the distinction of being the first machine to implement SIMD execution

without a traditional SIMD control unit broadcasting instructions.



In the simplest sense, a CM-5 consists of a hypertree network linking up to 16,384
computational nodes, host interfaces, or I/O connections. Each computational node
in a CM-5 contains a standard Sparc processor, a custom network interface unit, and
four custom vector arithmetic units. The Sparc peak floating point speed is only 5
MFLOPS, thus, the Sparc’s primary purpose is to control the network interface and
four custom vector arithmetic units yielding 32 MFLOPS each, or 128 MFLOPS per
computational node. The Sparc also runs the node operating system.

A barrier synchronization is initiated by sending a control message noting arrival
at a barrier. The synchronization is terminated by receiving a barrier-completed mes-
sage. This decoupling is sometimes called a ‘fuzzy barrier’ mechanism [6]. Although
the control network has the ability to be partitioned at configuration time, there is no
support for partitioning barrier groups under program control. The result is a static
barrier hardware structure resembling that of the FMP.

In that the Sparc is only a small portion of the computational node design, it
can be argued that the CM-5 is not really based on a standard processor. However,
the more significant issue is that the vector units within each node are very fast
compared to the control network that is used to implement barriers. Thus, although
the CM-5 implements both MIMD and SIMD execution, it does so with a grain size
of 100s of instructions, quite different from the few instructions overhead implied by

our mechanism.

2.4.5 Triton/1

The Triton/1 [8] is a 260 PE SIMD/MIMD machine closely resembling the PASM
prototype. There are many differences, but the similarities are striking: PEs are
based on MC68010 microprocessors, the interconnection network is very fast, and the
mechanism for SIMD instruction broadcast is much like that in PASM. However, bar-
rier synchronization is implemented using a ‘global wired-OR’ across the processors.
Thus, Triton/1 supports only static barrier synchronization in which all processors

participate.
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2.4.6 OPSILA

Unlike the other machines described in this paper, OPSILA [9] employs PEs con-
structed using bit-slice processors (AMD 29116). Despite this difference, the methods
used to support SIMD and SPMD are again very similar to those used in the PASM
prototype. The most serious difference between OPSILA and PASM is that OPSILA’s
interconnection network is only operable in SIMD mode; in SPMD mode, PEs cannot
communicate. Although SIMD execution is directly implemented in hardware, a bar-
rier synchronization (referred to as a ‘join’ operation) is used to regain synchronization

when switching from SPMD into SIMD execution mode.

2.4.7 OSCAR

OSCAR [10], the Optimally SCheduled Advanced multiprocessoR, differs from the
other machines in that it is explicitly oriented toward compile-time static scheduling
of MIMD code rather than toward implementing a simpler fine-grain execution model.

OSCAR is a shared-memory MIMD machine using 16 custom processing elements.
Each of these PEs completes one operation per clock cycle, yielding 5 MFLOPS per
PE. Because each operation takes a known amount of time, synchronization can only
be lost by some PEs executing conditionals or loop iterations while other PEs take
different paths. To support this type of asynchrony, there is a hardware barrier
synchronization mechanism implemented using a control line on a bus. However, the
machine is capable of being arbitrarily partitioned into two or three independent PE
clusters, each with its own bus, bank of shared memory, and barrier synchronization
hardware.

Although OSCAR’s barrier mechanism appears to be dynamic, it is actually just
three static mechanisms within a single machine. Further, making changes to a barrier
group is not addressed in [10], and it appears that making any change would require

multiple communication operations among the processors.
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2.4.8 Cray T3D

The Cray T3D [11] is a shared-memory MIMD machine incorporating up to 2,048
nodes. Each node contains an Alpha processor and a large amount of custom support
circuitry, including an interface to a barrier mechanism most closely resembling eight

separate copies of the FMP’s mechanism.
2.5 Parallel Computing Using Clusters of Workstations

In the last couple of years, parallel computing industry has seen a shift from
Massively Parallel Computing(MPP) to loosely coupled parallel computing. This
trend has blurred the distinction between the parallel and distributed computing.

A distributed memory MIMD parallel computer can be constructed by intercon-
necting standard single/multiple processor workstations through a conventional or
high speed data communication network; such systems are referred to as workstation
cluster. Workstation clusters have gained popularity with the availability of work-
stations that are capable of above 100 MFLOPS performance, and the falling cost of
high speed data communication networks like Fast Ethernet, FDDI, HIPPI and ATM.
Most of the current implementations of the workstation clusters use PVM (Parallel
Virtual Machine) library routines under the UNIX operating system for parallel codes
execution.

A number of studies have been undertaken on the clusters of workstations con-
nected through ATM (Asynchronous Transfer Mode) network at various universities
and research centers.

Results from a study of communication efficiency using various protocols over
an ATM workstation cluster are presented by Megjou Lin et al. in [12]. The test
set-up used 4 Sun workstations with a Fore Systems ASX100 ATM switch for ATM
network, and also had a standard Ethernet network. Specifically this study addresses

point-to-point communication latency atop ATM using protocols such as

1. Fore Systems ATM API over ATM AAL3/4
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2. Fore Systems ATM API over ATM AAL5
3. BSD stream socket over TCP/IP over ATM AAL5
4. PVM Advise mode using Stream sockets over ATM AAL5 and

5. Sun RPC/XDR using Stream sockets over ATM AALS5.

It was shown that all the protocols have a high startup latency with a minimum of
869us for ATM API AAL5 and the maximum of 2957us for Sun RPC/XDR protocol.
An interesting observation is that the network utilization of ATM for BSD stream
is only 16% and the effective bandwidth (2.09 Mbyte/s) is only twice that of a 10
Mbits/s Ethernet.

A paper by Chengchang Huang et al. [13] deals with the software and hardware
multicast operations on an ATM cluster. The cluster testbed used in experiments
comprised 11 Sun SPARCstation-10 workstations running SunOS, three Fore Sys-
tems ASX100 switches, and a conventional Ethernet network. Software multicasting
was implemented using a modified PVM, while AAL5 protocol was used to imple-
ment the multicasting in hardware. Again, the latencies for data communication are
significantly high (1000us for 1Kbyte block of data).

C. A. Thekkath has presented a model of network communication based on remote
memory access to support multicomputing on ATM networks [14]. The testbed for
this experiment used 4 DECstations 5000s with Fore systems ASX100 ATM switch.
This report presents a network access model along with OS interface for implementing
distributed shared memory system on an ATM workstation cluster. The report quotes
a figure of 30us for a 40 byte remote memory write operation and 45us for a 40
byte remote read operation. The report claims to achieve these extremely good
results using the Fore ATM host-network interface, but these numbers have not been
duplicated elsewhere. In any case, the PAPERS mechanism yields markedly lower
latency.

NAS (NASA AMES Research Center) has experimented with a number of clusters
of workstation with both standard (Ethernet, FDDI) and proprietary (IBM Allnode
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switch) data communication networks [15] [16]. DCF (Distributed Computing Fa-
cility) Condor and LACE are the few of such clusters. All the implementations use
some variation of the PVM parallel programming package. A comparative study of
data communication latencies and cluster performance is presented in [15] [16].

In summary, there has been significant efforts towards parallel processing using
clusters of workstation. With the availability of high performance workstations and
high speed data communication networks, clusters seems to be the dominant mode

of parallel processing in future.
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3. BARRIER SYNCHRONIZATION RESEARCH AT PURDUE

Since 1987, hardware barrier synchronization has been a key element of parallel
computer architecture research at Purdue. Starting with the PASM (PArtitionable
Simd Mimd machine) prototype, which was actually the first parallel system built at
Purdue to implement hardware barrier synchronization, all the subsequent theoreti-
cal designs including the CARP Machine and the CARD System have depended on
a hardware barrier mechanism for fine-grain parallel code execution. The concept of
Barrier MIMD architecture was proposed in 1987 by H. J. Dietz and T. Schwedersky.
This idea led to the development of whole new class of MIMD architectures that
was based upon hardware barrier synchronization. The Purdue notion of hardware
barrier synchronization was formalized by Matthew O’keefe in his Ph.D. dissertation
[17]. This classification, and the implementation architectures it suggested, remained
the standard view of barrier hardware until October 1993. At that time, while work-
ing on the design of the CARD system, a new implementation architecture for the
dynamic barrier mechanism was discovered. It was this new structure that triggered

the creation of PAPERS, and inspired this thesis.
3.1 PASM Parallel Machine

The PASM prototype [18], a PArtitionable Simd Mimd machine designed and
built at Purdue, has the distinction of being the first machine to implement both
instruction-level SIMD and MIMD execution using conventional processors and spe-

cial barrier synchronization hardware [3].
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Although PASM’s design is said to scale to 1,024 processors, the PASM prototype
implements just 16 PEs, each of which is a standard Motorola MC68010 micropro-
cessor. These 16 PEs are divided into four groups; each group has a separate control
unit incorporating a Motorola MC68010 and custom hardware implementing a SIMD
fetch unit, enable masking, and barrier synchronization. Thus, PASM can be parti-
tioned into at most four barrier groups (or 32 groups for a 1,024 PE machine), with
partitioning restrictions.

A PE invokes a barrier synchronization by making a read access to an address
that is decoded as a barrier synchronization request; memory wait states are inserted
to stall until synchronization has completed. Basically, the barrier hardware in the
control units contains queues of both mask patterns and values to return. PASM’s
enable mask patterns are used to determine which processors participate in each bar-
rier. The return values are typically ignored in conventional barrier synchronizations,
but are the instruction sequence to broadcast in SIMD execution. If the barrier read
is implemented by a LOAD operation, a barrier synchronization is performed; if the
implementation is an instruction fetch, a barrier synchronization is performed and
the next SIMD instruction is returned. Thus, changing between modes is simply a
matter of MIMD mode executing a JUMP into barrier address space or of SIMD
mode broadcasting a JUMP out of that space. Therefore, PASM prototype supports
only static barrier synchronization.

The above implementation provides limited functionality in that only the static
barrier ordering is permitted. However, the more severe limitation is that only the
control units can enqueue barrier patterns and return values. Thus, PASM is very
inefficient if mask patterns must be derived from the result of runtime evaluation of
parallel expressions empirically, the most common case. Stated differently, PASM’s
barrier mechanism is a very powerful and efficient implementation of static barrier

synchronization hardware, but PASM’s barrier enqueue hardware is too centralized.
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3.2 Barrier MIMD Architectures Introduced

Although PASM was the first prototype to implement hardware barrier synchro-
nization at Purdue, the idea of new MIMD architectures based upon hardware barrier
synchronization was presented for the first time by H. G. Dietz and T. Schwederski
in 1987 [19] [20].

This research was the result of an effort to extend the PASM hardware to support
a VLIW mode besides SIMD and MIMD modes. Although VLIW mode could not
be supported on the PASM prototype, the PASM architecture was trivially modified
to provide the support for barrier synchronization in MIMD mode. This formed the
basis for defining new MIMD architectures, namely; Lock-Step MIMD (LSM), Static
Barrier MIMD (SBM) and Dynamic Barrier MIMD (DBM). The Table 1 from [19],

reproduced here in Figure 3.1 provides a comparison of different modes.

Lock- Static | Dynamic
Step Barrier Barrier
SIMD VLIW MIMD | MIMD MIMD MIMD
(LSM) | (SBM) (DBM)
Simultaneous
Operations 1 1<k<N N N N N
Control Flow
Threads 1 1 N N N N
Relative Time
Sync. Error 0 0 0 <k <k =>log N
Sync. Control
Flow Threads 0 0 0 1 N/2 N
Directed Sync.
Primitives? — — — no no yes

Figure 3.1 Hardware Parallelism Constraints for SIMD -> MIMD

Static code scheduling for Static Barrier MIMD (SBM) mode was also described
and a comparative study between VLIW code scheduling and SBM scheduling was

also presented in [19].
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3.3 Barrier MIMD Architectures Formalized

Matthew T. O’Keefe’s Ph.D. dissertation in 1990 [17] was a major step toward
formalizing the definition of and implementation methods for barrier MIMD architec-
tures. It expanded the original notion of barriers by formally defining and studying
the properties of various types of barrier MIMD, as well as proposing generic archi-

tectural implementations for:
e Static Barrier
e Hybrid Barrier
e Lookahead Barrier
e Dynamic Barrier

The static barrier mechanism presented in the thesis is the simplest of the barrier
mechanisms, while the dynamic barrier mechanism is the most complex. The common
element between the various barrier schemes is that they all use centralized barrier
control logic, termed the barrier processor. The synchronization is not PE to PE,
but rather PE to barrier processor. The barrier processor is responsible for tracking
which processing elements participate in each barrier synchronization.

One of the distinguishing features of the barrier MIMD synchronization mecha-
nisms is that the set of processing elements that will participate in each barrier is
represented by a bit mask. In all the architectures presented by O’Keefe, a queue
or associative memory within the barrier processor is used to manage these masks.
Masks for a program can be derived at compile time and enqueued by one or more
processing elements at run time, however, the actual mechanism to be used is es-
sentially unspecified. Thus, it is not clear how barrier masks would be managed
for a program construct that partitions the current mask based on run time condi-
tions (e.g., a parallel if statement in which both the then and else clauses contain

independent barrier synchronizations). This omission is partly due to the focus on
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enhanced VLIW-style execution (in which all masks are known at compile time). The
other reason is that the barrier processor by itselt provided no way for PEs to agree
upon a new mask; whatever communication mechanism the machine possessed would
have to be involved, but the communication mechanism was not specified.

Beside the barrier architectures, this thesis also presents compiler techniques for

using the barrier MIMD architecture.

3.4 The CARP Machine

CARP! (Compiler oriented Architecture Research group at Purdue) machine was
an effort to design a parallel supercomputer which can achieve higher efficiency by
using information extracted from the program at compile time. The CARP machine
used a barrier MIMD architecture to support fine-grain parallelism.

Superscalar processors use dynamically extracted (run time) information to opti-
mize the code execution. Due to the small size of instruction window used by these
systems for extracting information, the optimizations which can be performed to
speedup code execution are limited. Besides, some aspects of architecture like cache
efficiency (utilization of data brought in the cache) cannot be increased at all by dy-
namic mechanisms. The design of CARP machine incorporates a variety of low level
features to help utilize statically derived (compile time) information for better code
efficiency.

Normally, a processor fetches a block of data from main memory on every cache
miss and places it into the cache memory regardless of the future references to other
cache elements in the block. If only one word is used by the processor and the rest
of the cache block is not referenced, then fetching a data block on each miss in-
creases the fetch time and results in inefficient cache utilization. A processor working
upon a small instruction window cannot predict future references to a memory block.
Cache efficiency can be significantly increased by using the information about mem-

ory references extracted by the compiler. The CARP Machine’s design supported

Information about CARP Machine is from unpublished internal documents
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the bypassing of a cache block fetch on the basis of additional information tagged by
the compiler on all memory references. This mechanism reduces unnecessary memory
fetch cycles and hence increases the performance of a memory system.

Hardware barrier synchronization is a key element for fine-grain MIMD paral-
lelism. Additionally, low latency barrier synchronization provides the system support
necessary for meeting static (compile time) timing constraints of SIMD and VLIW
code execution on a MIMD system like the CARP Machine. The design of the CARP
machine provided not only the hardware barrier synchronization mechanism on each
CARP node, but also built access to the barrier mechanism directly into every in-
struction.

A typical CARP Machine would have consisted of 64 CARP nodes with each
CARP node having one floating-point processor, four 32-bit integer units, a fine-grain
hardware synchronization mechanism and the interconnection network interface. The

block diagram of a CARP node is given in Figure 3.2

| | L I |
Integer Integer Fggmg
: Processor Processor ILProcessorE .
; A N O A N A =
' | Barrier : + Portion |
| | Processor | | o of
| || 11 : Memory |
Integer Integer I\C/If)rr?t(r)(;)ll Lo |
Processor Processor L Switch
i | | ;

Basic CARP Node

Network(s)

Figure 3.2 Basic CARP Node
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A single VLSI chip was proposed for implementing the CARP node. As the CARP
Machine was intended to be a stand-alone system, it required not only the design of

computation nodes but also the development of 1/O and data storage sub-systems.
3.5 The CARD Project

Although theoretically attractive, building the CARP Machine requires design and
fabrication of a custom VLSI processor, as well as a wide range of other hardware
and software components. It simply is not something that Purdue’s current resources
can support.

Thus, the CARP research drifted toward using as much commercially available
technology as possible, yet preserving at least some of the interesting and novel fea-
tures of the system design. The result was a focus on designing the CARD system
to make use of a custom board design incorporating standard parts and hosted by
standard personal computers. This board was dubbed CARDBoard ? (the Compiler-
oriented Architecture Research Demonstration Board).

With the goal of constructing a 32 GFLOPS supercomputer with minimal custom
hardware and relatively low-cost parts, the CARD project focussed on combining
commercially available micro-processors in a barrier MIMD structure based on the
CARP Machine design. Thus, the CARD system also is designed to support fine
grain parallelism and to utilize static (compile-time) timing constraints to enhance
execution efficiency.

The following sections provide the design methodology and block design of various
components of the CARD system. However, design details may change in future when

fabricating a CARD system.

3.5.1 CARD System’s Overview

CARD system was designed on the same principals as that of CARP Machine,
therefore the basic element (computation node or CARDBoard) of CARD system

2Information about CARDBoard Project is from unpublished internal documents
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was designed to provide much of the functionality of a CARP node using off-the-shelf
microprocessors. To eliminate the design of 1/O and data storage systems, it was
decided to use a standard computer to house CARDBoards (Computation Nodes).
In this way, CARD system uses the resources of host computer to simplity program
development and debugging. The complexity of custom components is also reduced.
In order to provide scalability, each host computer can house a communication in-
terface which is used to connect compute nodes housed in different hosts. As more
compute nodes means a larger number of host computers in a CARD system, data
storage and 1/O speed also scales with the system’s computation power.

Figure 3.3 gives the overall picture of typical CARD system.

Data Communication
Network

CARDBoard'’s CARDBoard's | -------__ CARDBoard'’s
Host# 1 Host# 2 Host# N

Figure 3.3 A Typical CARD System

3.5.2 The CARD System’s Host Computer

The criteria in selecting the type of host computer for the CARD system were:

1. Type of expansion bus available for plug-in compute nodes and host-to-host

communication interface.

2. Availability of free-ware UNIX and support software on that computer.

Due to the simplicity of the interface logic required for the ISA bus available on the
IBM PC and compatible computers, and the availability of Linux operating system
with numerous application softwares on these systems, it was decided to use IBM PC

and compatibles as the host computer for CARD system.
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A 16-bit ISA bus interface can support a peak bandwidth of 16 Mbytes/sec on
a 16 MHz PC AT system [21]. This may create a I/O bottleneck on a large CARD
system. The PCI bus interface is a better alternative for a higher performance CARD
System, because it can support data transfer rates up to 120 Mbytes/sec for a 32-bit
interface. However, PCI is relatively new, and it requires a complex interface circuit.
With the availability of PCI chip-sets from different vendors, this problem could be
solved and we expect to use PCI bus when CARDBoard is finally built. New PCs
and compatibles also provide a PCI expansion bus, therefore the choice of platform
for the host computer remains the same even when PCI bus is chosen.

A typical CARD host will have 4 CARDBoards (plug-in computation cards) with
each node having four floating-point microprocessors and a communication/barrier
interface card. This communication/barrier card will provide inter-host communica-
tion and inter-host barrier synchronization. This card may also provide inter-node
(CARDBoard to CARDBoard) communication and inter-node barrier synchroniza-
tions for the CARDBoards mounted on the same host computer, but this issue is still
unresolved.

Figure 3.4 provide the basic block diagram of the proposed CARDBoard host.

Host Computer

CARD System’s Elements

______________________________________________

»  CARDBoard # 1

Communication/ To Other

: Synchronization |« CARDBoard

CARDBoard # 2

Interface Hosts

-
»  CARDBoard # 3
-

CARDBoard # 4

Expansion Bus

Y L
Host Host Host

CPU Disk Storage I/O Interfaces

Figure 3.4 A CARD Host
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3.5.3 CARDBoard

The CARD system is designed to be modular and scalable in nature, therefore a
system can be based on either a single node (only one CARDBoard), or can have up
to 4 CARDBoards in a single host, or it can be a large system with multiple hosts
each containing 4 CARDBoards.

The most detailed CARDBoard design is for an ISA plug-in card with:

1. Four microprocessors with floating point units, each with a local memory.

2. A small shared memory which is connected to all the PEs and also to the ISA
bus. This could be a dual port memory with one side connected to the ISA bus
and the other side shared between the 4 PEs.

3. ISA bus interface logic.
4. Barrier Synchronization Logic.

5. Communication mechanism for data transfer with other computation nodes on

the same host as well as to with the computation nodes on other host computers.

Evaluation of timing constraints during compilation of code requires predictable
timing for each instruction of the target processor. Therefore, it was the basic criteria
in selecting a microprocessor for the CARDBoard. Beside this, we wanted to get a
peak performance of at least 1004+ MFLOPS from each CARDBoard (Computation
Node) which translated into the requirement for a microprocessor with high floating
point performance.

Initially, the TMS320C30, a digital signal processor (DSP) was selected as the
microprocessor for CARDBoard. TMS320C30 can execute 33 MFLOPS with 17 MHz
clock [22]. Except for a few instruction that take 2 cycles each, the instructions of the
TMS320C30 execute in 1 clock cycle. This simplifies the compiler’s timing analysis.
Another reason for selecting TMS320C30 was the availability of two separate memory
buses on the TMS320C30, which could have simplified the interface to the shared
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memory. Texas Instruments promised to donate TMS320C30 chips but none have
arrived to date, so we had to look for other processors.

In the meantime, while working on the barrier mechanisms for the CARD system
(described in section 3.5.5 and 3.6) we discovered new efficient and simple hardware
implementations for dynamic barrier synchronization. Originally we assumed that the
CARD System would use a static barrier mechanism that can support only one barrier
stream. However, we would be able to use the new dynamic barrier implementations
that support multiple independent barrier streams. Thus, space sharing would be
possible.

The current choice of CARDBoard microprocessor, AMD’s Am29050, is partially
based upon the donations we received from AMD. The Am29050 is a RISC processor
that can execute 80 MFLOPS at 40 MHz [23]. The instruction execution times for
Am29050 are not as tightly bound as in TMS320C30. However, an instruction timing
is still relatively predictable.

A major advantage of the Am29050 is the availability of 3 user defined signals
which are controlled by bits 16-18 of a load or store instruction. These user defined
signals can be used to construct new instructions for a barrier hardware interface,
thus bringing more of the functionality of a CARP node to the CARDBoard. A
slight hitch in using the Am29050 arises from the separate data and instruction buses
that fetch data and instruction from separate memories, but share a single address

bus. This requires additional buffers for memory interfacing.

3.5.4 CARD’s Data Communication/Synchronization Card

An additional plug-in card is used by each host computer for data communication
between the computation nodes of different hosts. This network can also be used
to transfer barrier mask and barrier synchronization information between the PEs of
the CARD system. It can also be used for communication between PEs belonging to

separate CARDBoards, but housed in the same host computer.
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Due to long delays involved in transmission of data through copper cables, it was
proposed that a fiber-optic link should be used for data communication. Use of a
fiber link also reduces the latency of barrier hardware when barrier synchronization
is performed across multiple host computers. However, fiber optic link results in new

design problems. The conceptual design of this card is not yet final.

3.5.5 Evolution of Barrier Synchronization Mechanism in CARD System

As mentioned earlier, the CARD system is based on the design concepts of the
CARP machine, therefore hardware barrier synchronization is a key feature of CARD
system. The hardware barrier mechanism is used by the CARD system for execution
of fine-grain MIMD codes and for efficient emulation of SIMD and VLIW codes.

Since the inception of the CARD project, great progress has been made in efficient
and cost-effective implementations of hardware barrier synchronization. The CARD
project has been the driving force behind all these efforts. Starting with a machine-
wide static barrier implementation, we have progressed to a dynamically partitionable
dynamic barrier mechanism, which in turn has led to the design and implementation
of the PAPERS system.

At the start of the CARD Project, the only feasible implementations of barrier
mechanism were the ones proposed in [2] by Matthew O’Keefe. The centralized barrier
processor and use of a central queue or associative memory was not compatible with
the distributed and scalable design of a CARD system. Besides, a centralized control
unit requires different hardware for different numbers of processing elements in a
parallel system. Additionally, the masks for a program are computed at compile-time
and enqueued before executing the program. Execution of multiple programs on a
group of PEs requires merging of barrier streams from different program before staring
the execution of any program. Once the barrier masks are enqueued and a program
starts executing, no new program can be started on free PEs without stopping the
whole machine. This is highly undesirable in a CARD system with large number of

PEs. Therefore, much of the effort was directed towards an implementation which can
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be distributed across multiple host computers and yet could be connected together
to scale up the system without any modification to hardware design.

The barrier synchronization mechanism for CARD started with a machine-wide
implementation of a static barrier. The barrier hardware in this case was simply an
AND tree connected to barrier requests from all the PEs in the machine similar to
Burrough’s FMP [4]. A barrier synchronization is achieved by performing a LOAD
operation from a specific address space to indicate a barrier synchronization request.
This barrier request signal is routed to the AND tree, and the output from the AND
tree is used to force a processor to wait for the completion of barrier. This was termed
the Fztended-LOAD Barrier Mechanism. The sequence of operations involved in a

barrier are:

1. A PE marks itself present at a barrier by simply referencing a specific memory
region. The address decode logic of the PE decodes this as a barrier request
and sends a 1 to the barrier AND gate.

2. These bits from all the PEs are ANDed together. The return bit from the gate
is used to insert wait states in the memory cycle. A return value of 0 from
the AND gate indicates that all the PEs have not reached the barrier; a return

value of 1 indicates completion of the barrier.

3. As soon as the value of the AND becomes 1, all the processors are released
from their memory waits. Therefore, all the PEs terminate the barrier request

simultaneously, and execute their next instruction in unison.

Next, we realized that a dynamic barrier mechanism could be implemented by
replicating the barrier tree described in [1] at each PE and by keeping the barrier
masks computed at compile time in the local memory of all the PEs. The purpose of
this tree is to determine whether the processor it is associated with needs to wait for
the barrier synchronization to complete. The processor needs to wait if and only if

at least one processor it should synchronize with has not notified this processor’s tree
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that it is waiting. This technique eliminates the barrier processor and the central
barrier queue or associative memory required by dynamic barrier implementation
described in [17].

In this implementation, each PE in a group of PEs (PEi through PEj) executing
a parallel program keeps the barrier masks associated with that program within their
own local memory. The PEs which are not part of the parallel program are masked
off in the barrier masks of PE: through PEj. Therefore, new programs can be started
on the idle processors without interrupting the programs already executing on the
system.

The hardware which is replicated at each PE is simply an OR-AND tree as shown
in Figure 3.5.

PEk BO
PE(0) Barrier Active

PEk B1
PE(1) Barrier Active : To PEk Wait

Control

PEk Bn-1
PE(n-1) Barrier Active

Figure 3.5 Dynamic Barrier Mechanism for PEk

This new barrier synchronization method uses a modified extended-LOAD barrier
mechanism. In a general implementation, a 1 at the most significant address bit is
used to indicate a barrier request and the rest of the address bits are used as barrier
mask bits to specify the PEs with which a PE wants to synchronize.

The sequence of operations for a barrier is:

1. An array of bit masks is kept inside the program memory of a processor for

the series of barriers required in a program. The bit position corresponding to
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the processors which are enabled for a barrier is a 1 and for others it is a 0. A

barrier counter is also maintained by the processor.

2. A processor indexes into barrier mask array and reads the barrier mask, forms a
barrier address with a 1 at most significant address bit, and performs a LOAD

operation.

3. The address decode circuitry of the processor decodes the address as the pres-
ence of this processor at the barrier, and sends this one bit of information to all

the other processors in the system.

4. The barrier logic of the processor also gets the presence-at-barrier bits from all
the other processors. The return bit from the barrier tree is used to insert wait
states. A return value of 0 from the logic tree indicates that all the processors
included in the barrier (processors with corresponding barrier mask bits set to
1) have not reached the barrier, while a return value of 1 from the barrier tree

indicates the completion of a barrier.

5. The output from the logic tree of processors with identical mask bits becomes
1 after the arrival of last processor at the barrier. Therefor, all the processors

in a group resume their execution simultaneously.
6. After returning from barrier, the PE increments its barrier counter.

For the CARDBoard that is based upon Am29050, we can define a new barrier
synchronization instruction (a modified LOAD) which utilizes the user defined signals
to generate a barrier request, however, the address lines are still used as barrier mask
bits.

This implementation of dynamic barrier hardware eliminated the barrier processor
and associative memory at the cost of higher wiring complexity. There was only one
output from PE to barrier processor and one input from barrier processor to each

PE in the dynamic barrier implementation presented by Matthew O’Keefe [17]. But
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now, the barrier tree is replicated at each PE, and there are N wires coming to the
barrier logic. However, each PE sends only one signal to all the other PEs, therefore
the wiring complexity of this implementation is O(N).

The issue of efficiently partitioning a group of PEs dynamically on the basis of
evaluation of some parallel conditional statement remained unresolved. As mentioned
earlier, a possible solution is to use the data communication network to gather infor-
mation about conditional evaluation from all the PEs in the barrier group and use
this information to derive a new barrier mask. This operation has O(N) latency as
compared to the constant latency of barrier synchronization. However, we do not have
the problem of enqueuing the new masks calculated. All the PEs keep the barrier
masks in their own memory, and therefore can update their barrier masks without
any problem.

Although partitioning can be performed using the data communication network,
this mechanism does not support the enlarging of partitioned subgroups (recombi-
nation of subgroups). Only one signal is sent to other PEs by a PE to indicate the
presence of the PE at the barrier. A PE does not indicate which PEs it actually
wants to synchronize with. Figure 3.6 is used to explain the problem in recombining

subgroups with this implementation.

P.EO PE1 PIIEZ P.ES
SRR B A
'y |
e l /,' BR3
BR4 v‘//, y l
R

Figure 3.6 Problem in Recombining Subgroups



30

PEO-PE3 execute a full barrier BR1 and then repartitions to form two subgroups,
PEO and PE1 form one group while PE2 and PE3 forms other group. The masks are
therefore appropriately set for the PEs in the two subgroups. PEO and PE1 execute
the barrier BR2 and then restores there mask for recombining barrier BR4. PE2 and
PE3 arrive at BR3, a subgroup barrier. As PEO and PEl are waiting for PE2 and
PE3 at the barrier point, they will see that the PE2 and PE3 have reached barrier
and have no mechanism to tell that PE2 and PE3 do not want to synchronize with
them at this point. PEO and PE1 will complete the barrier BR4 and will resume their
execution, thus recombining barrier BR4 will not be executed properly and PEs will
get out-of-sync.

As this implementation uses address lines to specify barrier masks during bar-
rier synchronization, the scalability issue also arises from the limitation of available

address pins (32 on a Am29050).
3.6 Partitionable Dynamic Barrier Mechanism

The quest for a more efficient barrier mechanism for CARDBoard led to a a
novel approach to implement run-time partitionable dynamic barrier mechanism in
October 1993 [24] [3] [25]. This implementation forms the basis for the PAPERS
design presented in the following chapters. Therefore, this section presents some

excerpts from [24] to convey the key concepts of this new mechanism.

3.6.1 Barrier Architecture

This partitionable dynamic barrier mechanism also uses an extended-LOAD oper-
ation to perform barrier synchronization. The address referenced by the LOAD must
be decoded as a barrier synchronization and all relevant signals must be appropriately
latched by the processor for the barrier logic. The new barrier architecture, which is

replicated for each processor, is depicted in Figure 3.7



31

Yann PEk Flag Output

(to Flag Vector)
from PEO Bk
from PE1 Bk
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Flag Barrier Mask

Barrier Wait (Load) Instruction Address Used

PEN-1 PE1 PEO
0 as above Flag [ ] Flag Flag as above

Flag Vector

Barrier Wait (Load) Instruction Data Read

Figure 3.7 Partitionable Dynamic Barrier Mechanism for PE£

The logic tree in Figure 3.7 is virtually identical to Figure 3.5. The new ar-
chitecture also eliminates the barrier processor and central barrier mask queue or
associative memory by replicating the barrier tree for each processor.

The interesting twist is that each of the processors is responsible not only for
determining when it may proceed past the barrier, but also for informing all the other
processors in that barrier that it is waiting. Both these functions are accomplished by
use of the barrier mask, which is extracted from the LOAD address. Thus, instead of
having just one output line from each processor, there is one output line for each of
the other processors in the machine (i.e., for N processors, O(N?) wiring complexity),
and it is the responsibility of each processor to set these lines appropriately for each

barrier. This feature is the key for enlarging current barrier groups (recombination
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of subgroups), which was not possible with the barrier mechanism described in the
previous section.

If the set of processors participating in each barrier was known at compile time,
or did not change during execution, the above portion of the hardware would be
sufficient. However, to support enqueuing of different barrier masks, the barrier
architecture also constructs a return value for the LOAD. The value LOADed is
identical to the barrier address referenced in the LOAD, except in that the flag field
is forced to 0 and the barrier mask is replaced by the flag bits gathered from all the
processors. This gathering is implemented by direct wiring. Thus, data is gathered
from all the PEs on each barrier synchronization which gives the capability of low
latency dynamic partitioning to this implementation of dynamic barrier without any
external communication network.

To better understand how this barrier architecture functions, it is useful to de-
scribe in detail how barrier masks are manipulated to perform each of the fundamental
types of barrier manipulations. The most basic barrier operation is to perform a dy-
namic barrier synchronization. In addition, we describe the two most fundamental
ways of enqueuing new barrier patterns: partitioning the current barrier group and
enlarging the current barrier group, which was not supported by the dynamic barrier
mechanism in previous section. Because the hardware does not literally use a queue,
these two cases degenerate into simply determining the proper barrier mask within

each processor on the basis of data gathered on each barrier synchronization.

3.6.2 Dynamic Barrier Synchronization

The basic operation of a barrier synchronization is accomplished by each partic-
ipating processor asynchronously performing the following sequence of operations.

Notice that the sequence is not strict; some steps can be overlapped.

1. Internal to processor, a bit mask is created or maintained such that the bit
position corresponding to each processor that will participate in the barrier is

a 1, and the positions corresponding to the other processors are all 0.
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. Internal to the processor, the bit mask is aligned to the ‘Barrier Mask’ positions
B0 through Bn — 1, and is inserted into the base address that will be decoded

as a barrier synchronization request.

3. The processor initiates an external reference, apparently to fetch the contents

of the address computed in [2].

. The barrier hardware recognizes that the address reference is actually a barrier
synchronization request, and thus gates each of the barrier mask bits both to
this processor’s tree and to the corresponding processor’s tree. For example,
the bit Bz from processor 7 would be an input to both the tree from processor
7 and the tree from processor . Notice that there is no network involved in
routing each bit; each connection is literally a dedicated wire. The bits coming
from processors that are not performing barrier synchronization are forced to

be zero.

. After a small propagation delay, this processor’s tree yields a single bit answering
the question: ‘Is there a processor that the local barrier mask indicates should
participate in the barrier, that has not sent this tree confirmation that it has
reached this barrier?’. Notice it is up to each processor to ensure that it knows
which processor it should synchronize with (as suggested in step [1]; if these

masks are inconsistent, strange behavior can result.

. If the signal generated by the tree is a 1 (true), then this signal is used to stall
the processor until other processors cause the tree’s signal to change to a 0

(false). Typically, this staling is implemented by inserting memory wait states.

. Upon the tree’s signal becoming a 0, the barrier hardware is reset (the barrier
mask latches are cleared) and the processor is allowed to complete the access

that initiated the barrier.
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It is also usetul to note that, since all processors determine their firing conditions
independently, there is no conflict in firing multiple non-overlapping barriers simulta-

neously. This constitutes yet another improvement over the original dynamic design
[2].
3.6.3 Partitioning A Barrier Group

Because it is the responsibility of each processor to know the set of processors
with which it will synchronize, a method is needed to notify all processors that will
participate in a barrier as to the complete set of processors in its barrier group. If
the partitioning into groups is known at compile time, as it might be in ELP [26],
then this notification is accomplished by simply placing appropriate lists of barrier
addresses within the code generated for each processor. However, it is more common
that this partitioning is not statically known. Instead, new barrier groups are most
often created by partitioning an existing barrier group into two groups based on
the runtime evaluation of a conditional expression. Those processors for which the
condition evaluates as true form one barrier group and those for which it evaluates
as false form the other.

The dynamic partitioning of a barrier group is accomplished by using a barrier
synchronization to ensure that all processors in the original barrier group have eval-
uated their conditional expressions. This same barrier is also used to gather and
broadcast the results of the conditions for all the processors. The barrier operation
sequence is as described in Section 3.6.2, with the following changes:

Insert step [la] before step [2]:

la. Internal to the processor, the conditional expression is evaluated. Depending
on the truth of the expression, the barrier base address is selected as an address
that will be decoded as a barrier synchronization with the flag bit equal to
either 0 (false) or 1 (true).

Insert step [4a] before step [5]:
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4a. In addition to gating and routing the barrier mask bits, the flag bit from each

processor is sent to a global register such that the flag from processor & is placed
in the bit position that aligns with bit Bk. The bits of this global register that
do not align with barrier mask bits are hardwired to match the aligning bits in

the base barrier address with a flag value of 0.

Change step [7] to:

7.

Upon the tree’s signal becoming a 0, the processor is allowed to complete the
access that initiated the barrier. The value read from the data bus is the value
sampled from the global register. This value is essentially a barrier address,

including the barrier mask bits.

Add steps [8], [9], and [10]:

8.

10.

The barrier hardware is reset (latches cleared) and the bit position in the global

register that corresponds to this processor is reset.

This step is performed only if the conditional expression is false on this proces-
sor. The new barrier address for this processor should contain barrier mask bits
for only those processors that had flag values of 0, thus, the barrier mask field
within the value read should be inverted. Typically, this is done using an XOR

with a value that has 1s in the barrier mask positions and 0 in all other bits.

If all processors participated in the original barrier, the result value is directly
usable as the new barrier address, including the barrier mask bits, for the pro-
cessors in this processor’s barrier group. However, it some processors do not
participate, the barrier mask bits corresponding to processors that did not par-
ticipate in the barrier may have undefined values. In this case, ANDing the
value with the original barrier address will force the undefined bits to be 0,

thereby excluding the corresponding processors from the new barrier group.
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If a partitioning must decompose a barrier group into more than two subset barrier
groups, a sequence of binary partitionings can be used to create the subset barrier

groups.
3.6.4 Enlarging A Barrier Group

Just as each processor is responsible for determining which processors it should
synchronize with in the case of partitioning a barrier group, each processor is also
responsible for determining which processors it should synchronize with when the
current barrier group is to be enlarged. There are two ways in which the current
barrier group can be enlarged - and neither one requires execution of a barrier syn-
chronization.

The first case involves enlarging the current barrier to encompass a statically-
known set of processors. This is accomplished by simply embedding the (compile-time
constant) barrier address for the new barrier group in the code for each processor that
will participate.

The second case, which is the most common case for structured programs, involves
restoring the barrier group that existed prior to a partitioning operation. This can
be accomplished by having each processor save its current barrier address just before
each partitioning operation. Thus, any partitioning can be undone without a barrier
synchronization.

Notice that there is nothing to prevent processors from partitioning or enlarging
barrier groups using whatever communication hardware mechanisms are available,
because barrier masks/addresses can be transmitted by any mechanism capable of
sending integer/address values. However, this barrier implementation provide low

latency flag gathering that supports the execution of fine-grain parallel programs.
3.6.5 Scalability

The scalability issue arises as the partitionable dynamic barrier mechanism uses

the extended-LOAD mechanism and has an O(N?) wiring complexity.



37

There are limits to the number of processors that can be synchronized with a
single LOAD instruction. For most modern processors, the direct implementation
of the above architecture is limited to systems with fewer than about 32 processors.
However, in a machine using many more than 32 high-performance processors, signal
propagation delays alone are likely to extend the cost of synchronization well beyond
the cost of a single LOAD. Thus, the most reasonable scaling method is to use this
barrier architecture within a cluster and another method across clusters.

Acknowledging that the proposed barrier architecture does not scale well to mas-
sively parallel systems, it is useful to understand that the processor interface can
scale to massively parallel systems. For example, the barrier mask field could be used
to represent the number of the barrier group that this processor wants to synchro-
nize with, and external barrier hardware could maintain information about which
processors participate in which barrier. The flag bit could still be used to generate
new partitions of the barrier group, but the external barrier hardware would have
to assign a new group number and arrange for the processors to be notified of their
new group number through the return value LOAD. Although such a scheme im-
plements a weaker form of barrier synchronization, and probably executes somewhat
more slowly due to the complexity of the barrier synchronization unit, it would yield
the same functionality (provided the maximum number of active barrier groups was
not exceeded).

Another possible variation would be to maintain the barrier architecture as de-
scribed here, but to use multiple operations to load barrier masks and to retrieve flag
vectors. This can be thought of as simply ‘time multiplexing’ the operation of the
barrier hardware’s inputs and outputs to meet limitations on address and data bits
available and to dramatically reduce wiring complexity. This achieves the complete
functionality, but with a significant performance penalty. Notice that the performance
penalty in detecting that a barrier has fired is proportional to the multiplexing factor,
but the other overheads might not increase significantly. For example, if the same

barrier mask will be used in multiple consecutive barrier synchronizations, there is
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no need to enqueue the barrier each time nor to compute and examine the return
value. It is also possible to specify only the portion of a barrier mask which is differ-
ent from the previous barrier mask, or even to reference barrier masks from a ‘cache’

maintained within the barrier synchronization hardware.
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4. PURDUE’S ADAPTER FOR PARALLEL EXECUTION AND RAPID
SYNCHRONIZATION (PAPERS)

As mentioned earlier, CARDBoard is one of the proposed target systems which
will use the partitionable dynamic barrier mechanism [24] described in section 3.6,
but the given implementation of dynamic barrier can be used by any parallel computer
for hardware barrier synchronization. This meant that building of a CARDBoard pro-
totype was not the only way to test the partitionable dynamic barrier synchronization
logic.

We realized that we could use commercially available computers as Processing El-
ements (PEs) to test the barrier synchronization mechanism. Use of the barrier syn-
chronization mechanism with stand-alone computers proved to be an effective method
for executing parallel codes on a cluster of computers. Thus, the Purdue’s Adapter
for Parallel Ezecution and Rapid Synchronization(PAPERS) has become much more
than a convenient testbed for dynamic barrier synchronization.

Figure 4.1 gives the overall picture of N PEs (PCs/Workstations) connected with
each other through PAPERS.

PEO \ / PE1
PE2 | »| PAPERS |« » PE3
PEN-2 PEn-1

Figure 4.1 PAPERS
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The PAPERS design is greatly influenced by our choice of the printer port as the
computer’s interface to the barrier synchronization logic. Printer port input/output
operations are significantly different from the LOAD instruction interface used by the
barrier implementation described in 3.6. This required modifications to the original
implementation of dynamic barrier synchronization. Besides, connecting computers
with each executing an independent and non-parallel OS (Linux) required additional
functionality from the PAPERS, which resulted in addition of an Interrupt mecha-

nism.
4.1  Computer’s Interface to PAPERS

When we began to design a system to test the implementation of dynamic bar-
rier synchronization using standard computers, we had two options for interfacing a

computer to the barrier synchronization logic:
1. Design a custom interface for the computer.

2. Use one of the standard I/O interfaces: the serial port, SCSI bus, or printer
port.

Design of a custom interface would have required building a plug-in I/O card for
a specific peripheral expansion bus. At that time, there was no single bus standard
across different platforms. Until recently, IBM PCs and compatibles have used and
ISA bus or an enhanced version of ISA like EISA or VESA. Pentium based computers
and workstations from various vendors now use PCI as the primary bus interface, but
also support an enhanced variant of the ISA bus standard. All Sun workstations use
the SBus expansion bus. PCI seems to be the bus standard that will be supported
by the most workstations and high-end PCs, but this was far from obvious in 1993.

Since all these buses are used for memory and 1/O expansion, appropriate (address,
data and control) signals from the computer’s processor are available on these buses.
Therefore, the dynamic barrier mechanism based on an extended LOAD operation, as

described in previous chapter, can be directly implemented by a custom interface card.
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However, depending upon the structure of the refresh circuit for dynamic memory on
a computer, the number of memory wait states that can be inserted in an extended
LOAD operation may be limited. The logic tree of the dynamic barrier mechanism
is replicated on each node, and requires only the appropriate signals from other PEs.
Therefore, the barrier logic can be built on the interface card itself with only the
signal connections between interface cards. Hence, an external circuit module (like
current PAPERS units) is not required. Besides, a custom interface card can perform
the barrier synchronization operations at the computer’s interface bus speed.

The worst drawback of a custom interface design lies in its non-portability across
different platforms. None of the interface buses mentioned earlier are compatible with
each other. Thus we would have to design multiple interface cards to support dynamic
barrier synchronization on different computers. Besides, design of an expansion 1/0
card generally requires expensive interface chip-sets for a specific expansion bus. In
addition to the hardware design, a custom interface card also requires writing of Unix
device drivers for software interface to the hardware. Device drivers are also machine
dependent, therefore each interface card would have required different device driver
software.

The advantages of a custom interface card, outlined in previous paragraphs may
seem good enough to implement dynamic barrier synchronization on a cluster of
computers using custom interface card. In fact, after experimenting with PAPERS
units, we now realize that the hardware dynamic barrier synchronization is a very
effective way to provide the capability of fine-grain code execution and low-latency
communication to a cluster of workstations. Therefore, design of a custom interface
card to build a tightly coupled parallel computer using a cluster of workstations is
quite viable in the future.

However, the disadvantages of a custom interface card outweigh its advantages
for the design of a system that was intended only to be a testbed for the dynamic
barrier mechanism. Therefore, we postponed the design of a custom interface card,

instead focusing on using a standard interface. Use of a standard interface requires
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an external hardware module (PAPERS) to implement the dynamic barrier synchro-
nization. Computers in a cluster communicate with this module using a standard
interface, therefore clusters based on heterogenous collection of computers can use
the same synchronization hardware. Thus use of a standard interface makes the
barrier synchronization hardware portable.

The implementation of dynamic barrier synchronization requires parallel input and
output signals. Therefore, the selection of an interface was based on the availability of
input and output pins on that interface. Among the standard /0O interfaces available
on computers, the serial port was not selected due to the low bandwidth serial nature
of its data I/O and limited number of 1/O pins. Although, the SCSI bus supports
parallel input and output, it was not selected due to its complex interface and difficult
software control. Thus, the only reasonable option was to use a printer port as an
interface to the barrier synchronization hardware. A printer port has enough input

and output signals and provides a simple, direct, software control of 1/0O pins.

4.1.1 Centronics Printer Port as an Interface to PAPERS

Almost all PCs and workstations provide a centronics parallel printer port inter-
face. A centronics printer port is basically a parallel port having an 8 bit output bus
with some control outputs and status inputs. Counting these status lines, there are
actually 12 output signals and 5 input signals on a centronics printer port. Some
computers provide extended functionality parallel ports that allow 8-bit bidirectional
data connections, but the specifications for the bidirectional printer port from dif-
ferent vendors are not standard, and the performance improvement is not as great
as one might imagine. However, all of these parallel ports can work as centronics
compatible unidirectional ports.

To ensure that PAPERS can be used with any PC/Workstation, PAPERS makes
use of only those functions that are supported by a standard Centronics Parallel

Printer Port.
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Physically, a centronics compatible printer port interface is available as a DB25
connector on almost all PCs and workstations. A notable exception to this is older
SUN workstation hardware, which does not have a printer port interface. SPARC-
station 5 and SPARCstation 20 workstations provide a centronics compatible printer

port interface through a non-standard 26 pin miniature SCSI like connector.

4.1.2 Software Control of Printer Port

PCs and Workstations executing a UNIX operating system provide control of the
printer port through device-specific control functions (using ioctl()) and system
calls. Although these functions provide a secure access to the printer port by a
user process, these functions incur system call overhead which significantly limits the
number of reads/writes to the printer port that can be performed in a given time
period. Besides, depending upon the system’s internal hardware interface to the
printer port registers, these operations are geared towards block data transfer.

A direct read/write access to the printer port’s control registers provides the
fastest mechanism for controlling signals on the printer port. These control regis-
ters can either be mapped into the computer’s memory address space or I/O address
space. PC XT/AT/386/486 systems and some of the Pentium-based computers have
an 1/O mapped printer port with provision for three printer ports with base addresses
378H, 3bcH, and 278H corresponding to MS-DOS printer names LPT1, LPT2 and
LPT3 [27]. Typical workstations, including IBM Power PCs, DEC Alphas, HP Apol-
los and SUN SPARCstations, have the printer port mapped in the memory address
space. Workstations having a PCI local bus generally provide an ISA bus interface
via PCI/ISA bridge circuitry. Although I/O devices on an ISA bus are intended to be
I/O mapped, workstations having PCI buses map the ISA interface (address space)
to a portion of memory [27]. Therefore, the printer port on such systems is in fact
memory mapped.

Some version of UNIX, including Linux, allow user processes to have direct access

to I/O devices. However, for those versions of UNIX that do not allow direct access to
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the 1/O device, the printer port register can be mapped into a user process’s memory

for direct control of the printer port.

4.1.3 Data Communication Network

The fact that PAPERS itself can be used for data communication between PEs was
not realized until the completion of the first prototype, PAPERSO. Therefore, during
the initial phase of the PAPERS design it was assumed that PEs (PC/Workstations)
would have a separate data communication network. In the simplest form, the data
communication network can be a SLIP connection (null modem connection through
a serial port), but generally it is an Ethernet network. Although PAPERS provides
low latency data communication between PEs, the data bandwidth is low (20-150
Kbytes/s). Therefore, a data communication network is desirable for block data
transfers between the PEs.

For the current implementations of PAPERS connecting 4 or 8 PCs, high band-
width data networks are not required. However, high bandwidth communication
networks like HIPPI, FDDI, Fast Ethernet (100Mbits/s) and ATM are attractive
choices for block data communication within a large (16 processors or more) cluster

of high-end workstations.
4.2 Dynamic Barrier Mechanism in PAPERS

As mentioned earlier, use of a printer port as an interface to the dynamic bar-
rier synchronization hardware (PAPERS) for a cluster of workstation resulted in
new problems. An extended LOAD dynamic barrier synchronization operation as
described in section 3.6.2 cannot be implemented using the printer port interface.
The solution to this problem, although similar to the extended LOAD implementa-
tion, required not only a new operation sequence for barrier synchronization, but also
modification of the barrier logic itself. The key differences are the use of a memory
element in the barrier logic and a two-phase barrier synchronization operation, both

of which are described in the following sections.
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4.2.1 Background

The sequence of operations for a dynamic barrier synchronization, as described in
section 3.6, requires only one memory reference per barrier synchronization and can

be implemented using a combinatorial circuit for barrier synchronization logic as:

e The address and data buses of the PE (processors) are directly connected to
the barrier tree logic. The address decode circuit of the processor is responsible
to decode the memory references to specific memory space as barrier synchro-
nization request. Therefore, no additional bit is required to indicate barrier
synchronization request. Besides, the address decode logic is responsible for
latching the address (Data flag + Mask) for barrier logic and for the insertion
of memory wait states on the basis of the output from the barrier tree. Hence,

barrier logic tree is implemented exactly as shown in Figure 3.7.

e The PEs that execute barrier synchronization request (a LOAD) are forced to
wait (if barrier not satisfied) by the address decode logic. This is accomplished
by extending the LOAD operation (by inserting memory wait cycles), therefore,
a PE that is waiting cannot execute any other operation until the barrier is
satisfied (until PE returns from LOAD). This eliminates the possibility of a PE
arriving at the barrier and then performing other operations which can result

in the PE missing the output of the combinatorial barrier logic tree.

e All the PEs participating in a barrier, terminate their LOAD cycles simultane-
ously after the arrival of the last PE in the group at the barrier. Thus, all the
PEs read (load) the same bit vector from the data bus as a result of completion
of LOAD cycle. No PE can change its output fast enough to cause the problem

of other PEs seeing a wrong (different) bit vector on its data bus.

These observations are presented to clarify the modifications required for imple-
menting dynamic barrier synchronization on cluster of workstation using a standard

printer port interface.
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4.2.2  Why a Memory Element in Barrier Logic of PAPERS?

Why is there a memory element within each PAPERS unit?. The short answer
is, because it is needed to ensure that the barrier go signal remains valid until it has
been obtained by all the processors. The long answer follows.

PCs and Workstations are connected to the barrier synchronization logic of PA-
PERS through a parallel printer port interface. A printer port is an I/O device in the
address space of a PC or workstation and the signals on the printer port output are
controlled by internal registers. The processor of a PC or workstation controls the
status of the printer port’s output signals by writing to the output registers (latches),
therefore a printer port maintains the previous value until a new value is written
to the register. To get the status of the input signals a processor performs a read
operation on input register (buffer). Thus, none of the processor’s signals (address,
data and controls) are available on the printer port.

The use of printer port poses new issues:

o As read and write operations on registers are internal operations, these oper-
ations (in fact LOAD operations) cannot be extended by an external device
connected to printer port. Therefore a single cycle extended LOAD dynamic
barrier mechanism cannot be implemented. The minimum implementation will
require a PC/Workstation to generate a barrier synchronization request by ex-
ecuting one port write operation and then performing one read operation to

check the answer (go/wait) from the barrier logic.

e Depending upon the hardware of the PC or Workstation, the minimum time

between two consecutive port operations ranges from lus to Hus.

e The PAPERS unit is designed to connect PCs or Workstations executing UNIX
operating system. UNIX provides a multi-tasking environment, therefore the
possibility of a context switch or an interrupt occurring between the two succes-

sive port operations cannot be ruled out (Although it is possible to temporarily
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disable interrupts, this is a dangerous practice and will be discussed no further).
A context switch or interrupt can introduce a delay in the order of milli-seconds

between consecutive port operations.

A printer port interface cannot support one cycle extended LOAD barrier synchro-
nization and there are significant delays in-between consecutive printer port accesses,
therefore, a combinatorial circuit cannot be used for the barrier synchronization logic
in PAPERS. An additional signal is also required to explicitly indicate a barrier syn-
chronization request and is called Strobe.

The following scenario, assuming the use of barrier logic tree of Figure 3.7 (a

combinatorial circuit) clarifies this.

1. PE7 outputs a barrier synchronization request with bits B¢ and By high (in-

cluded in barrier).
2. Context switch occurs for PE«.

3. PEj reaches the barrier instruction and outputs a barrier synchronization re-

quest with bits Bj and B¢ high (included in barrier).
4. PEj reads a go signal (barrier done) on its input.

5. PEj enqueues a new barrier synchronization request with a different barrier

mask.

6. PE¢ returns from context switch and reads its port to check the status of its
barrier tree output. PE: will not see the barrier synchronization (although it

has occurred). Thus, PEi has missed a synchronization point.

A new mechanism is required to ensure that all the PEs in a barrier group have
seen the completion of a barrier and that no PE which was involved in the barrier
changes its output (barrier mask) during this interval. There has to be a memory
element in the barrier logic to hold the status of the output of the barrier tree until

all the PEs have seen the barrier. Thus, this memory element must be reset when
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all the PEs have seen the barrier. The two logic levels of the ‘Strobe’ signal could be
used to differentiate between the barrier synchronization request from a PE and the
information that a PE has seen the completion of the current barrier.

Therefore a sequential circuit is required for implementing the dynamic barrier
synchronization for a cluster of computers using this parallel port interface. This
sequential circuit can be a clocked synchronous circuit or it can simply be an event
driven asynchronous circuit.

On the basis of these results, the implementation of dynamic barrier synchroniza-
tion was modified as shown in Figure 4.2.

This modification basically takes into account the use of an additional ‘Strobe’
signal. Barrier requests (Strobe = 1) with barrier mask bits sets the memory element
to signal the completion of a barrier whereas barrier-seen (Strobe = 0) with barrier
mask bits resets the memory element to signal that all the PEs in the group have
seen the completion of the barrier. For PEE’s barrier tree, the Strobe signal from PE:
is ANDed together with the kth barrier mask bit of PE: before it is ORed to the ith
mask bit of PEL. The barrier-seen tree or anti-barrier tree is similar to the barrier

tree except for the inversion of Strobe signal.

4.2.3 Barrier/Anti-Barrier Sequence

The modifications in the implementation of the dynamic barrier synchronization
mechanism also resulted in modifications to the sequence of operations required to
perform a barrier synchronization.

The sequence of operations for a barrier synchronization in PAPERS is:

1. Same as step [1] of 3.6.2. Internal to each PC/Workstation a bit mask is created
or maintained such that the bit position corresponding to each processor that
will participate in the barrier is a 1, and the positions corresponding to the

other processors are all 0.

2. The Strobe Signal is appended to the barrier mask.
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Barrier Logic Tree
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Figure 4.2 Barrier Logic of PAPERS

3. The PC/Workstation executes a write to the register controlling the output data
bits of the printer port. The barrier mask and Strobe output signals are latched
by the printer port. The barrier hardware recognizes the barrier synchronization
request by the logic 1 on Strobe signal. Strobe bit and barrier mask bits are

routed to this processor’s trees and to the corresponding processor’s trees.

4. After a small delay the barrier tree yields a single bit result indicating whether
all the PEs in the group specified by the barrier mask have also sent a barrier
synchronization request (have performed steps [1] through [4]). It is up to each
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processor to know which processors it should synchronize with (as suggested in

step [1]); if these masks are inconsistent, strange behavior can result.

. If the output generated by the barrier tree is 1 (true), the memory element is set

to 1 and indicates that the barrier is completed. This memory element in turn
drives a signal which is connected to one of the input pins (hereafter referenced

as RDY) of the printer port.

. The PE (PC/Workstation) performs a read from the register connected to the

input signals of the printer port. If the RDY signal is 0 (i.e the barrier not
completed) then the PE repeats this step (reads and test the register) until the
RDY signal is 1. In fact, a PE spin-locks waiting for the RDY signal.

The PE reads the flag vector from the input port by executing another read

operation (after seeing the completion of the barrier) on input register.

. The PE notifies the barrier logic that it has seen the barrier by outputting the

same barrier mask bits with an inverted Strobe (a logic 0).

. After a small delay, the anti-barrier tree yields a single bit result indicating

whether all the PEs in the group specified have also indicated that they have

seen the completed barrier.

If the signal generated by the anti-barrier tree is 1 (true), the memory element
is reset to 0 to indicate that all the PEs which were part of the previous barrier
have seen the completion of that barrier. This is an indication to the PE that

it can initiate a new barrier synchronization request.

Before initiating a new barrier synchronization request, a PE performs a read
on its input port. If the RDY signal is 0, then it can send a barrier request
by repeating steps [1] onwards. If RDY is a 1, then a PE must keep reading
the input port until the RDY becomes 0; only then it can send a new barrier

synchronization request.
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From the barrier/anti-barrier sequence, it is clear that a single partitionable dy-
namic synchronization will require 5 port references. Step [7] can be eliminated as
the PE can extract the flag vector from the input data read during step[6]. How-
ever, step[7] has more to do with the noise problems on the signal, and is dealt with
in chapter 6. With simple modifications to the barrier circuit, the complete bar-
rier synchronization can be accomplished using just 2 port references. The insight
about these modifications was gained only after implementing PAPERSO, therefore
this issue is dealt with in chapter 6.

Due to the limitations on output and input signals available using the printer port,
the above barrier/anti-barrier sequence is valid only for 4 or fewer PEs. PAPERS
can be implemented for a higher number of PEs by having latches within the barrier
hardware to hold the barrier masks and input flags. Multiple write operations will be
required to update the barrier mask and, similarly, multiple read operations will be
needed to read the input flags. The barrier/anti-barrier sequence remains the same,
except for step [3] and [7]. These steps will require multiple writes and multiple reads

on the printer port.
4.3 Interrupt Mechanism in PAPERS

Execution of parallel programs on a cluster of workstation requires some mecha-
nism to handle system level operations, exceptions and errors. This is in addition to
the synchronization and data communication capability provided by the network and
dynamic barrier synchronization hardware.

Most of the applications in MIMD execution mode utilize the data-parallel model
where each PE locally maintains its data. SIMD execution on a cluster of worksta-
tions require the PEs have same program code, while the VLIW execution model
yields different program code on each PE with either a complete or partial data set.
To execute a parallel program from one PE’s console (or, equivalently from a rlogin
to one PE), the PE has to initiate execution of the code on each of the PEs involved

in the program. As mentioned earlier, PAPERS was originally expected to use an
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Ethernet network in a UNIX environment for communication. UNIX’s ‘rsh’ com-
mand provides a simple way for starting the parallel program on all the PEs from
a single PE. The initial PE uses ‘rsh’ with appropriate parameters to sequentially
start the parallel program on each of the other PEs. This mechanism restricts the
cluster to execute only one parallel program at a given time. This limitation was con-
sidered to be insignificant for the first implementation of PAPERS. In fact, PAPERS
can support multiple parallel programs to execute simultaneously on one cluster with
modifications in the scheduler of standard Unix.

A correct startup requires that a PE involved in the parallel code must have all
the other PEs of the same group included in the barrier mask. Starting the program
execution sequentially using the ‘rsh’ command does not guarantee a correct ini-
tial synchronization between the PEs as the mask bits are in a unspecified state at
the start of the code. Therefore, in order to achieve initial synchronization among
the participating PEs, a mechanism is required in addition to the normal barrier
synchronization logic.

As explained in section 4.2, an error in a barrier mask pattern of one PE can
result in an improper program execution. The possibility of this happening cannot be
ruled out as a single error in reading the flag vector is enough to generate an incorrect
barrier mask. This can even halt the parallel code, as one or more PE may go into an
infinite wait for barrier synchronization. Therefore, a mechanism for recovering from
such errors must be provided by PAPERS. This error recovery mechanism must have
priority over the barrier synchronization logic.

The operating system on one PE may detect an anomaly in program execution, but
then it must inform the other PEs about the error. Irrecoverable errors like divide by
zero, disk read error, etc. are some of the errors which may require special handling.
This also requires a mechanism of higher priority than the barrier synchronization
logic.

Although it was not realized until the completion of PAPERSO, PAPERS can

provide data communication among the PCs/Workstation connected in the cluster.
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Therefore, an additional data communication network is not essential for executing
parallel code. In order to execute parallel programs on clusters which do not have
a data communication network, system commands must be sent through PAPERS.
System commands must be distinguishable from the data communication performed
by the parallel program. This cannot be done by only having barrier synchronization
logic in PAPERS.

If system level communication can be distinguished from the communication done
by a parallel program, then the code as well as data can be sent through PAPERS by
one PE to all other PEs before starting the program execution. Therefore, data and
program reside permanently on one PE, which reduces the data storage requirement
for other PEs.

From previous paragraphs, it is clear that PAPERS requires some higher priority
mechanism in addition to barrier synchronization logic for proper operation. This
high priority mechanism is used to interrupt other PEs during their normal execution
and hence is called the Interrupt Mechanism of PAPERS. (even if it does not generate
a true hardware interrupt)

In a simple implementation, the interrupt mechanism can be an OR of interrupt
request signals from all the PEs. An interrupt signal from one PE is seen by all other
PEs.

As PAPERS supports partitioning of PEs into barrier groups, it is essential that
a PE (PEi) gets an interrupt signal only if the interrupt is requested by a PE which
is part of the same group as PE: Interrupts are thus partitioned into the same
subgroups as barriers; and barrier mask bits are used to enable or disable the interrupt
requests from other PEs. This facilitates the concurrent execution of multiple parallel
programs on a PAPERS cluster.

A partitionable interrupt mechanism can be implemented by replicating an AND-
OR tree at each node of the PAPERS unit. The AND in the tree is used to enable
the PEs from which a PE can receive interrupt. This is done by using the barrier

mask bits. Two approaches can be used for an interrupt mechanism.
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In the first approach, a PE decides from which PEs it will accept interrupts.
Therefore, for the PEL interrupt tree, only the mask bits of PEL are used as shown
in Figure 4.3.

PEKBO ———|
PEOIRQ ———
PEKBlT ——
PEL1IRQ —

PEKkBn-1 ———
PEn-1IRQ ———

Figure 4.3 Interrupt Logic (Method 1) for PEk of PAPERS

PEK INT

In the second approach, a PE decides about the PEs it will send an interrupt to.
In this way, a PE receiving the interrupt does not have control over which PEs may
interrupt it. For the PEL interrupt tree, the interrupt signal from PE:is ANDed with
the kth barrier mask bit of PE¢ as shown in Figure 4.4.

PEOBK ——
PEOIRQ ——
PE1BK —
PE1IRQ —

PEn-1 Bk ———
PEn-1IRQ ———|

Figure 4.4 Interrupt Logic (Method 2) for PEk of PAPERS

PEK INT

Any of the above mentioned methods can be used to implement the interrupt

mechanism for PAPERS. However, the second method is less prone to errors.
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4.4 Block Diagram of PAPERS

From our discussion, it is clear that dynamic barrier synchronization logic and
interrupt logic are the main components of the PAPERS hardware. The run-time
partitionable dynamic barrier scheme is implemented by replicating the logic tree of
Figure 4.2 at each PE (Node). Beside this, logic tree of either Figure 4.3 or Figure
4.4 implements the interrupt logic and is also replicated at each node. Therefore,

PAPERS can be implemented by having an identical logic module for each PE.
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Figure 4.5 Block Diagram of PAPERS

Apart from the barrier synchronization and interrupt logic, PAPERS also pro-
vides data buffering for data/flags and has display drivers for a LED display. This
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display is used to present a visual status of PEs in PAPERS. Initially, there was no
data buffering in the PAPERS design but the PAPERSO implementation proved the
requirement for it beyond any doubts and is dealt with in chapter 6. Hence, data
buffering is part of all the PAPERS implementation.

Figure 4.5 shows the block diagram for the PAPERS unit with N processors.
The basic architecture as shown in this figure is common to all of the PAPERS
implementations.

PAPERS units can be fabricated in two ways:

1. Individual logic modules fabricated to be close to the PE (PC/Workstation),

which are then connected to each other.

2. A central system where all the logic is fabricated in a single box. In this case,
wires from the printer port of all the PEs come directly to the PAPERS unit

and interconnections between logic modules are done within that single box.

The second approach is better for implementing PAPERS with 4 to 16 PEs. All
the current implementations of PAPERS use the second approach for fabrication. In
order to connect a higher number of PEs, a distributed fabrication approach may be
suitable. For example, n PEs (where n is a fraction of the total PEs N) can connect

to one logic unit and then these units can be connected together to form a N PE

PAPERS system.
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5. PAPERSO IMPLEMENTATION

To keep the design simple and to minimize the fabrication and debugging efforts
for implementing PAPERS (Purdue’s Adapter for Parallel Execution and Rapid Syn-
chronization), PAPERSO, the first working system, connects only 4 PCs. Most of
the description given in this chapter is borrowed from, or derived from, the Purdue
Technical Report describing PAPERSO [28].

PAPERSO provides the full functionality of the partitionable dynamic barrier

mechanism described in the previous chapter. The following sections detail the design

of PAPERSO.
5.1 Defining Input/Output Signals for PAPERS0

The following is the list of notations and description of signals required to imple-

ment the partitionable dynamic barrier mechanism and interrupt logic.

Barrier Mask (B0-B3) Outputs from PE. Each bit in the barrier mask of a PE cor-
responds to each PE connected to PAPERSO.

Barrier Sync. Request (S) Output from PE. A logic high is decoded by the PA-
PERSO’s barrier logic as barrier synchronization request. A logic low is used to

indicate that the PE has seen the completion of barrier synchronization.

Barrier Sync. Completed (GO) Input to PE. Driven by PAPERO’s barrier logic, a
logic high indicates the completion of the pending barrier; a logic low indicates

that all the PEs in the barrier group have seen the completion of the barrier.
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Data Output (D) Output from PE. The value of this signal is read by all other PEs
- except the PE generating the signal. It is used by PEs to calculate the next

barrier mask in dynamic partitioning of barrier groups.

Data Inputs (10-12) Inputs to PE. These signals are connected to the data outputs
(D) from each of the other PEs. Thus, a PE can read a vector containing one

bit of data from each of the other PEs in one read operation.

Interrupt Request (IR) Output from PE. A PE puts a logic high on this signal to
request an interrupt. Interrupt takes precedence over the the normal barrier

sequence.

Interrupt Pending (INT) Input to PE. A logic high indicates that at least one PE in

the current partition has requested an interrupt.

Beside these signals, we have used 4 additional output signals. One signal (GI) is used
to control interrupt mechanism, one (CE) is used to indicate that the PE is connected
to the PAPERSO unit and two signals (U0,Ul) are used for status indication. Only
one of these signal, (GI) is connected to the barrier logic in PAPERSO; the others are

used for display only.
5.2 PE Interface to PAPERSO

PAPERSO redefines the use of input and output pins of centronics printer. The
following subsections provide the pin definitions for the physical connections and

corresponding bits in control registers.

5.2.1 Physical Connectors

The PAPERSO design uses 11 of the 12 available output lines and all 5 of the input
lines on a standard uni-directional centronics printer port. A PE(PC/Workstation)
connects to PAPERSO by a standard PC printer cable. The pin/contact assignment
in PAPERSO for each of these lines is given in Table 5.1 and Table 5.2. Table 5.1

lists the pin numbers as they appear on the PE’s DB25 connector. Table 5.2 lists the
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contact numbers for the signals as they appear on the 36-pin Centronics connector

which connects to PAPERSO.



Table 5.1 DB25 Parallel Port Pin Assignments

Pin # | Std. Name | Use In PAPERSO

Pin 1 | Strobe U0 (User bit 0)

Pin2 | DO D (Data Bit Value)

Pin3 | D1

Pin4 | D2 IR (Interrupt Request)

Pin5 | D3 S (Barrier Sync. Request)

Pin6 | D4 B0 (Barrier Mask Contains PEO)

Pin7 | D5 B1 (Barrier Mask Contains PE1)

Pin 8 | D6 B2 (Barrier Mask Contains PE2)

Pin9 | D7 B3 (Barrier Mask Contains PE3)

Pin 10 | Ack INT (Interrupt)

Pin 11 | Busy GO (Barrier Sync. Completed)

Pin 12 | PE 12 (PE<I2 = PEyD such that y = (z + 3)%4)
Pin 13 | SlctIn I1 (PEzIl = PEyD such that y = (« 4+ 2)%4)
Pin 14 | AutoFD Ul (User bit 1)

Pin 15 | Error 10 (PEzI0 = PEyD such that y = (x 4+ 1)%4)
Pin 16 | Init GI (GO Causes Interrupt)

Pin 17 | Slct CE (Connection Established)

Pin 18 | Gnd

Pin 19 | Gnd

Pin 20 | Gnd

Pin 21 | Gnd

Pin 22 | Gnd

Pin 23 | Gnd

Pin 24 | Gnd

Pin 25 | Gnd
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Table 5.2 Centronics Connector Contact Assignments

Contact # | Std. Name | Use In PAPERSO

Contact 1 | Strobe U0 (User bit 0)

Contact 2 | DO D (Data Bit Value)

Contact 3 | D1

Contact 4 | D2 IR (Interrupt Request)

Contact 5 | D3 S (Barrier Sync. Request)

Contact 6 | D4 B0 (Barrier Mask Contains PEQ)

Contact 7 | D5 B1 (Barrier Mask Contains PE1)

Contact 8 | D6 B2 (Barrier Mask Contains PE2)

Contact 9 | D7 B3 (Barrier Mask Contains PE3)

Contact 10 | Ack INT (Interrupt)

Contact 11 | Busy GO (Barrier Sync. Completed)

Contact 12 | PE 12 (PEz12 = PEyD such that y = (« + 3)%4)
Contact 13 | SletIn I1 (PEzI1 = PEyD such that y = (2 4+ 2)%4)
Contact 14 | AutoFD Ul (User bit 1)

Contact 19 | Ground

Contact 20 | Ground

Contact 21 | Ground

Contact 22 | Ground

Contact 23 | Ground

Contact 24 | Ground

Contact 25 | Ground

Contact 31 | Init GI (GO Causes Interrupt)

Contact 32 | Error 10 (PEz10 = PEyD such that y = (x 4+ 1)%4)
Contact 36 | Slct CE (Connection Established)
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5.2.2 PE Port Bit Assignment

Although the parallel port hardware is not altered to work with PAPERSO, the
parallel port lines are not used as they would be for driving a Centronics-compatible
printer. Thus, it is necessary to replace the standard parallel port driver software
with a driver designed to interact with PAPERSO.

There are three port registers associated with a PC parallel port. These ports have
I/O addresses corresponding to the port base address (henceforth, called PortBase
plus 0, 1, or 2). As mentioned earlier, typically, PortBase will be one of 0x378, 0x278,
or 0x3bc.

The first port register at base address controls the 8 data pins on a printer port.
The bit assignments for the first port register, PortBase + 0, are listed in Table 5.3.
A logic 1 at each bit location correspond to a high level signal at the corresponding
data pin. This register is used to send PAPERSO the information used in each barrier
synchronization. Notice that bit 1 is currently unassigned and is the only signal not

used in PAPERSO.

Table 5.3 PortBase + 0, Bit Assignments
Bit Name | Use In PAPERSO

Barrier Mask Contains PE3

bit 7| DT | B3 ( )
bit 6 | D6 | B2 ( )
bit 5 | D5 B1 (Barrier Mask Contains PE1)
bit 4 | D4 B0 (Barrier Mask Contains PEQ)
bit 3 | D3 S (Barrier Sync. Request)

Barrier Mask Contains PE2

bit 2 | D2 IR (Interrupt Request)

bit 1 | D1 0 (reserved for future use)

bit 0 | DO D (Data Bit Value)
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The second port register, PortBase + 1, is connected to the input pins of the
printer port. It is used to receive information from PAPERSO. Bit assignments for
this register are given in Table 5.4. The arrangement of bits within this register is
the result of the fact that PCs usually can generate an interrupt signal when Ack is
set; the interrupt line must be the Ack signal. The three remaining contiguous bits
of the register are thus designated as the data input from other PEs. This leaves bit
7 as the GO signal - the bit tested to determine if synchronization has been achieved.
It happens that the sense of bit 7 is inverted on the port; the PAPERSO hardware
compensates for this so that a port read sees the GO bit as a 1 when the barrier has

fired.

Table 5.4 PortBase + 1, Bit Assignments
Bit Name | Use In PAPERSO

bit 7 | Busy GO (Barrier Sync. Completed)

bit 6 | Ack INT (Interrupt)

bit 5 | PE 12 (PEzI2 = PEyD such that y = (« 4+ 3)%4)
bit 4 | Sletln | I1 (PEzIl = PEyD such that y = (x 4 2)%4)
bit 3 | Error | [0 (PEzI0 = PEyD such that y = (x 4+ 1)%4)

bit 2 | unused

bit 1 | unused

bit 0 | unused

The third port register, PortBase + 2, controls the handshake pins on the printer
port. It is used by PAPERSO only for output bits that change value relatively rarely
- the software does not access this register in the course of executing a typical barrier
synchronization . In other words, this register is used for the modal information
outlined in Table 5.5. Although this discussion refers to the signals as they are listed

in Table 5.5, the port actually inverts the sense of bits 3, 1, and 0; compensation
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for this inversion is done (by XOR with 0xB) inside the lowest-level PAPERSO port

driver.

Table 5.5 PortBase + 2, Bit Assignments
Bit Name Use In PAPERSO

bit 7 | unused

bit 6 | unused

bit 5 | unused
bit 4 | IntEn | IE (Interrupt Enable)

bit 3 | Slet CE (Connection Established)
bit 2 | Init GI (GO Causes Interrup)
bit 1 | AutoFD | Ul (User bit 1)

bit 0 | Strobe | U0 (User bit 0)

Three modal bits in port (CE,U0,Ul), PortBase + 2, are not actually used by the
logic in PAPERSO, but rather are used to drive an informational status display. The
CE bit is used to indicate that the PAPERSO hardware has been properly connected
to the PE. The other two bits are user-defined status bits that can be used in any
way desired, however, the suggested use is to encode the function that the PAPERSO

hardware is being used to implement. This use is summarized in Table 5.6.

Table 5.6 Meaning of Ul and U0 Signals
Ul U0 Meaning

0 0 PAPERS is not currently in use

0 1 PAPERS is being used to barrier synchronize

1 0 PAPERS is being used to transmit user data

1 1 PAPERS is being used by the operating system
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5.3 PAPERSO Hardware Overview

As described earlier, there are only two events in barrier synchronization sequence
of PAPERS, namely, barrier synchronizarion completed and barrier seen by all PEs.
These events can be handled easily by an event driven asynchronous sequential circuit.
Hence, PAPERSO hardware implemnts a simple asynchronous circuit.

PAPERSO follows the barrier architecture defined in section 4.5. The logic mod-
ules (LMO-LM3 for PAPERSO) are implemented using AMD 22V10 PALs (Pro-
grammable Array Logic) to minimize the chip count as well as to reduce the wiring
complexity. A total of 4 PALs are used, one for each PE.

The flag bits (D bits) from all the PEs were initially hardwired to each other,
but a buffer, a single 741.S541, was added during the test and debug phase of the
PAPERSO (see Chapter 6).

741505, open collector inverters are used to drive LED display. Each PE has 10
LEDs, therefore the total number of buffer chips used is [40/6] = 7.

5.4 PAL for Barrier/Interrupt logic

The four PALs used in PAPERSO have same internal logic but are connected
differently. However, the differences in connections follow a simple pattern. The
following description refers to the PAL for PEa with respect to PEb, PEc¢, and PEd.
Given a PE number for a, the PE numbers for b, ¢, and d can be derived by: b = (a+1)
Mod 4, ¢ = (a + 2) Mod 4, d = (a + 3) Mod 4. Externally, each PAL appears as shown
in Figure 5.1. PALASM software was used to generate the fuse mask for the PAL

from the logic equations.



5.4.1 Pinout

Figure 5.1 PAL Pin Layout

PAL22V10

CLK |1 24| VCC
PEaBb | 2 23 | PEaBa
PEaBe |3 22 | BREG
PEaBd | 4 21 | PEaGI
PEbBa | 5 20 | PEaGO
PEcBa | 6 19 | PEdS
PEdBa | 7 18 | PEcS
PEa«IR | 8 17 | PEbS
PEGIR | 9 16 | CLKRST
PEcIR | 10 15 | CLKSET
PEdIR | 11 14 | PEaINT

GND | 12 13 | PEaS

5.4.2 PALASM Code

PIN 1 CLK COMBINATORIAL
PIN 2 PEaBb  COMBINATORIAL
PIN 3 PEaBc  COMBINATORIAL
PIN 4 PEaBd COMBINATORIAL
PIN 5 PEbBA  COMBINATORIAL
PIN 6 PEcBa  COMBINATORIAL
PIN 7 PEdBa  COMBINATORIAL

PIN 8 PEaIR  COMBINATORIAL



PIN 9 PEbIR  COMBINATORIAL

PIN 10 PEcIR  COMBINATORIAL
PIN 11 PEdIR  COMBINATORIAL
PIN 12 GND

PIN 13 PEaS COMBINATORIAL
PIN 14 PEaINT COMBINATORIAL
PIN 15 CLKSET COMBINATORIAL
PIN 16 CLKRST COMBINATORIAL
PIN 17 PEbS COMBINATORIAL
PIN 18 PEcS COMBINATORIAL
PIN 19 PEdS COMBINATORIAL
PIN 20 PEaGO  COMBINATORIAL
PIN 21 PEaGI COMBINATORIAL
PIN 22 BREG REGISTERED
PIN 23 PEaBa  COMBINATORIAL
PIN 24 VCC

NODE 1 GLOBAL

EQUATIONS

PEaINT = ((PEaIR*PEaBa) +
(PEbIR*PEbBa) +
(PEcIR*PEcBa) +
(PEAIR*PEdBa) +
(BREG*PEaGI))

BREG = VCC
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GLOBAL.RSTF = CLKRST

CLKSET = ((/PEaBa+(PEaBa*PEaS)) *
(/PEaBb+(PEbBa*PEbS)) *
(/PEaBc+(PEcBa*PEcS)) *
(/PEaBd+(PEdBa*PEdS)) *

/BREG)

CLKRST = ((/PEaBa+(PEaBa*/PEaS)) *
(/PEaBb+ (PEbBa*/PEbS)) *
(/PEaBc+(PEcBa*/PEcS)) *
(/PEaBd+(PEdBa*/PEdS)) *

BREG)

/PEaGO = ((PEaINT*/((PEalR*PEaBa) +
(PEbIR*PEbBa) +
(PEcIR*PEcBa) +
(PEAIR*PEdBa))) +
(/PEaINT*BREG))

5.4.3 Description

The equations described in the previous sections are in fact implementing the
barrier logic tree of Figure 4.2 and the interrupt logic tree of Figure 4.4. However, the
PEaGO signal is not directly connected to the memory element (BREG) of the barrier
logic tree, and the interrupt tree is slightly modified to achieve better functionality.

The internal BREG signal is the memory element which gets set and reset asyn-
chronously by the events barrier completed and barrier seen by all respectively. As

described earlier, an additional signal, Strobe (S), is used with the barrier mask bits
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(B0-B3) by the barrier logic to achieve proper functionality. Strobe high with bar-
rier mask bits indicates the arrival of this PE at a barrier; Strobe low with the same
barrier mask indicate to the barrier logic that the PE has seen the barrier completion.

The latching of the internal flip-flops of the 22V10 PAL cannot be controlled by
an internaly derived signal, rather the clock inputs of all the flip-flops of the 22V10
are connected to the pin 1 of PAL. PRESET on the internal flip-flop is synchronous.
Therfore, the output of the barrier tree (upper part) of Figure 4.2 is brought out of
the PAL as CLKSET. The output of the antibarrier tree is connected to the CLKRST
output and ineternally to the reset pins of the internal flip-flops. The CLKSET output
is externally connected to the CLK input signal, and a logic 1 is hardwired to the
input of BREG ( the memory element). The completion of a barrier forces a 0 to
1 transition on the CLKSET signal, which causes a 1 to be latched in the BREG
flip-flop. When all PEs involved in a synchronization have read their input data, the
(asynchronous) reset of the BREG register is internally triggered by the CLKRST
signal, which forces the flip-fliop (BREG) state to 0.

The interrupt signal PEaINT is generated by two separate types of events:

1. A PE determines that the other PEs should be informed of some event. It can
interrupt any subset or all of the PEs by setting its IR bit (PEaIR).

2. If desired, the PAPERSO barrier hardware can be set to interrupt the PE (PEq)
when PAPERSO determines that this PE’s barrier has been satisfied. This

response can be independently enabled/disabled by each PE setting its GI bit
(PEaGI).

If any PEx asserts an interrupt request and PEa is contained in the barrier mask
of the PEz, then the PEaINT bit will become 1. Notice that the PE requesting an
interrupt will only interrupt itself if the corresponding bit is on in its barrier mask. If
PEaGI is 1, then completion of a barrier is signaled by setting both the PEaINT and
PEaGO bits to 1. If PEaGI is 0, then only the interrupt request can cause PEaINT
to be 1. The equations for PEaINT and PEaGO signals implements the functionality
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described above. The difference between the internal BREG register and the PEaGO
output signal is that it can change the meaning of the BREG bit. In essence, the
PEaGO and PEaINT signals are really encoding a two bit PAPERSO hardware state,
as outlined in Table 5.7.

Table 5.7 Meaning Of PEaGO and PE«INT Signals

PEaGO | PEaINT | Meaning
0 0 No interrupt, synchronization not achieved
1 0 No interrupt, synchronization achieved
0 1 Interrupt for all PEs
1 1 Interrupt for synchronization achieved

5.5 Fabrication

The prototype PAPERSO unit is housed in a natural finish red oak box that is
11.75” wide by 6” deep by 6” tall, with a simple 3”7 steel handle protruding by 1”
on the left side (to aid in carrying the system for demonstrations at remote sites).
The cover of the case is a simple piece of 0.25” thick oak, attached by velcro and
perforated above the power supply to allow convection cooling. The AC cord enters
the box from behind the power supply. In front of the circuit card, rear-mounted on
the front panel, is an array of LEDs used as a status display for the PEs connected
to PAPERSO.

Inside the box, there is one 4” by 6”7 wire-wrapped card containing the PALs and
LED driving circuitry and a 5 volt linear power supply (although a maximum of less
than 1.5 amps is needed, we used a supply rated at 3 amps). Behind the circuit card
on the back of the box are four panel-mounted Centronics connectors - so that the
cables used to connect PEs to PAPERSO are standard PC parallel printer cables.

Ribbon cables connect the circuit board to the the centronics connectors. One end
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of each ribbon cable is crimped to the centronics connector while the other end is
soldered to an 18 pin single-in-line (SIL) connecto on the circuit board.

Strictly speaking, there is no need to have any display connected to the PAPERSO
hardware. Indeed, eliminating the display can greatly simplify the hardware because
it eliminates the need for LED drivers and perhaps even eliminates the separate power
supply (the PALs might be powered by the combination of 7805 5V regulator and a
simple 9V-12V AC-adaptor). However, PAPERSO is a research prototype: the LEDs

make it a lot easier to see what is happening... and to debug the system.

Table 5.8 Front Panel LEDs
Display | Position | Label On The PAPERSO Unit | PAPERSO Signal

Green LED 5 PE Connection Established CE

Green | LED 4 | Interrupt Request IR
Green | LED 3 | User-defined Status Bit 1 Ul
Green | LED 2 | User-defined Status Bit 0 U0
Green | LED 1 | Data Bit Value D
Green | LED 0 | Barrier Sync. Request S

Amber | LED 3 | Barrier Mask Contains PE3 B3
Amber | LED 2 | Barrier Mask Contains PE2 B2
Amber | LED 1 | Barrier Mask Contains PE1 Bl
Amber | LED 0 | Barrier Mask Contains PEQ BO

The prototype LED display consists of 40 LEDs arranged in 4 columns, each
column representing the status of one PE. These columns are numbered in decreasing
order from left to right (as the LEDs are normally viewed), i.e., PE3 PE2 PE1 PEQ.
The signal descriptions are given in Table 5.8. Notice that none of the LEDs displays a
derived signal - this is because the two derived signals change value only momentarily,

so fast that the state change would not be perceptible.
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6. RESULTS FROM PAPERSO IMPLEMENTATION

Although, PAPERSO was primarily designed and fabricated to test the partition-
able dynamic barrier synchronization mechanism, the low-latency barrier synchro-
nization we achieved through PAPERS, and our discovery that PAPERS can be used
for arbitrary low-latency communications, led us to conclude that PAPERS is an
efficient way to execute fine-grain parallel programs on a cluster of computers.

The debugging and testing of PAPERSO gave us insights about the mistakes we
made in implementing PAPERS, not just restricted to logical design flaws, but also
fabrication follies. However, our experience with PAPERSO was very beneficial in the
implementation of the next five PAPERS prototypes, including TTL_PAPERS [29],
PAPERSI and 8-PE PAPERS.

6.1 Performance of PAPERSO

After fabricating PAPERSO, a software library was developed for the C language
executing under the Linux OS [28]. These library routines provide the software sup-
port required by applications to use PAPERS for barrier synchronization and data
communication.

As mentioned in section 4.1.2, direct access to the parallel port control registers
is the fastest method for controlling the PAPERS interface. Therefore, the library
routines access the printer port registers directly using assembly language constructs,
eliminating the overheads of system calls.

Theoretically, this should have allowed us to access the port registers at a speed
comparable to the memory fetch time. However, the printer port on the IBM PC

and compatibles (the computer used in our experiments) do not perform at the same
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speed as memory. Most systems apparently inserts wait states for all I/O references to
comply with the ISA bus specifications and to ensure that the signal transitions would
not outrun a centronics compatible printer. Depending upon the host processor, the
CPU clock rate, and the printer port implementation, the minimum time between
two successive port operations can vary from 1-5 ps, which translates into 200,000 to
1 million port operations per second.

Although the delay within the PAPERSO barrier logic is 7.5-25 nanoseconds (de-
pending on the PLA used, 25 nanoseconds in our implementation), long cables used
to interface computers to the PAPERSO introduce a delay of 50-150 nanoseconds.
Therefore, the total delay involved in sending a signal to PAPERSO and receiving the
result is roughly 125-325 nanoseconds.

Table 6.1 gives some benchmark figures for the basic PAPERS operations on a
33 MHz 386 cluster supporting an 1/O speed of 800,000 port operations per second.

Table 6.1 Timing of Key Operations of PAPERSO
Operation PAPERSO Time/Speed

Dynamic Barrier Sync. 11.2ps
with arbitrary PEs

Multiple Broadcast 25.0ps

communication operation | 40 Kbyte/s

ANY conditional 11.2us

Random Communication | 92.0us

0f One Byte (Per PE) 10.86 Kbyte/s

These timings, although much slower then the theoretical limits, are still orders
of magnitude faster than any synchronization mechanisms available on a cluster of
computers. In fact, these latencies are lower than those provided by most parallel

computers.
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6.2 SIMD/MIMD/VLIW Code Execution on Cluster of Workstations using PA-
PERS

Traditional methods of executing parallel programs on a cluster of computers are
restricted to the message-passing software constructs using standard data communica-
tion networks like Ethernet, HIPPI, FDDI and ATM. PVM (Parallel Virtual Machine)
is the most common library for such parallel programming model [30]. However, these
communication networks are designed for block data transfers, they suffer from high
startup latency, usually in 1000s of micro-seconds. Even, ATM has a startup latency
of more than 1000us [12]. Due to the high latency of data communication, tradi-
tional methods of parallel program execution on a cluster of computers are restricted
to coarse-grain MIMD and SPMD parallel applications only.

Low latency communication and fast barrier synchronization is the key to fine-
grain MIMD code execution, and for emulating SIMD and VLIW models on a MIMD
machine. A cluster of computers connected through a PAPERS unit provides low
latency communication, as well as fast synchronization (see Table 6.1). Therefore, a
PAPERS-based cluster of computers is capable of fine-grain MIMD and SPMD code
execution. In fact, a PAPERS cluster (an inherent MIMD system) can also be used
for efficient emulation of SIMD and VLIW codes [31].

6.3 PAPERS as a Data Network

A barrier synchronization on a PAPERSO cluster is accompanied by 1 bit flag
output and 3-bit flag vector input. The exchange of flags is accomplished by using
the waitvec() [28] software routine of the PAPERS library. This flag vector is used
by the PEs to dynamically partition the barrier groups on the basis of the result
obtained by evaluating conditional statement. Thus, data can be exchanged among
the PEs belonging to same barrier group at each synchronization point.

After implementing PAPERSO, we realized that these flags can indeed be arbitrary
data bits as long as the PEs are not executing a barrier synchronization operation for

partitioning of the barrier group. Data transfer at each barrier synchronization point
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provides a low latency synchronous multi-broadcast capability to PAPERS. Hence,
PAPERS can be used for low latency data communication. An arbitrary amount of
data can be exchanged through PAPERS by executing a series of barriers, one data
bit sent by each processor.

The data communication bandwidth of PAPERS is dependent upon the barrier
synchronization speed of PAPERS, which in turn depends upon the speed of the
printer port. The effective communication bandwidth of PAPERSO is 4 * (Barrier
Sync. speed) bits/sec due to its single-bit multi-broadcast capability.

The PAPERSO data bandwidth of 40 Kbytes/s may seem very low as compared
to the 10 Mbits/s (1.25 MByte/s) bandwidth of an Ethernet network. However,
PAPERSQO is faster for small data transfers (up to a few hundred bytes), because data
communication through PAPERSO do not suffer from the startup latency (packetizing
latency) and data collision problems of an Ethernet network.

Because, the PAPERS unit provides a data communication capability, parallel
programs can be executed on a group of computers that do not have another data

communication network but are simply connected through the PAPERS unit.

6.4 Scheduling Data Network Accesses using PAPERS

The effective bandwidth of bus-based networks like Ethernet is greatly reduced
by collision. This effect is compounded while executing a parallel code on a cluster
connected via Ethernet because multiple PEs tend to access the network at the same
time.

PAPERS can be used to get the vote from all the computers that want to access
the network and then statically schedule the network accesses [31]. This eliminates
the possibility of data collision on the network as only one computer has access to the
network at a given time. Therefore, Ethernet, or for that matter any network, can

be used at its maximum efficiency by scheduling network accesses through PAPERS.
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6.5 Minimizing Port Operations per Barrier

PAPERSO implements the barrier sequence described in section 4.2.3, which re-
quires a minimum of 5 port operations to perform one barrier synchronization opera-
tion. Step [6] and step [7] in section 4.2.3 can be combined together by using a delay
element on the RDY line (to let the data settle) to reduce the number of operations
per barrier to 4. 4/5 port operations per barrier are the result of reading the input flag
vector which is required to perform a partitionable barrier synchronization. Similarly
data communication also requires 4/5 port operations for one data bit exchange.

If the barrier group is fixed (no partitioning) and there is no data communication
associated with the barrier synchronization then the barrier and anti-barrier can be
used to achieve two barrier synchronizations by keeping track of the last operation
(Strobe bit value). Hence, simple barrier synchronization can be performed with only
2 port operations using the PAPERSO hardware.

The requirement for a complete barrier/anti-barrier sequence arises from the fact
that a PE can change its data value after a barrier and another PE can miss reading
the correct data. This problem can be solved by latching the input data at the com-
pletion of each barrier. Thus, if each logic module latches the data at the completion
of each barrier then a fully partitionable barrier synchronization and arbitrary data
communication can be done with only 2 port operations. This fact was realized only
after implementing PAPERSO0, and is used by PAPERSI (an enhanced implementa-
tion of PAPERS) to achieve high data bandwidth and faster synchronization.

6.6 Need for Data Buffers in PAPERS

During the debugging phase we encountered a lot of problems stemming from the
printer port driving long cables at high speeds using TTL logic levels.

10 foot long standard printer cables were used to connect PAPERSO. Initially,
the data bit (D) coming to the PAPERSO was just hard-wired (without buffer) to

the input lines (10-12). Thus, in effect, a single port pin was driving 40 feet of cables.
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This slowed signal transitions on this line and also accounted for the fact that the
GO signal could outrun the 10-12 lines. This caused the PE to get a valid GO signal
before the data lines stabilized, resulting in wrong data inputs. This problem was
partially remedied by adding the 74LS541 TTL buffer to drive the lines 10-13. For
error free data inputs, PAPERSO performs an additional (step [7] section 4.2.3) read
after getting a valid GO signal, therefore slowing data communication from 4 to 5
port operations.

Since that time, all the implementations of PAPERS have taken into account the
driving capability of the printer port, and provide data buffers to drive the cables.

6.7 Fabrication Blues

A number of lessons were learned about fabrication after building PAPERSO.

e 10 foot long cables were a cause of great trouble in PAPERSO, therefore it was
decided to use shorter cables whenever possible in subsequent implementations

of PAPERS.

e Another cable-related problem was due to the use of connectors on the PA-
PERSO box, adding two more contacts between the circuit board and the PE,
as well as increasing the cost of the system. Reliability became a problem due
to broken solder connections between ribbon cables and the SIL connectors on

the circuit board inside the PAPERSO.

It was decided to do away with the connectors, therefore, in all the other PA-
PERS implementations the cable is directly soldered to the circuit board. For

larger PAPERS configurations, PC-board mounted connectors may be used.

e The large number of LEDs (40) did help in the debugging phase, and provides a
good display, but increases the number of components, wiring complexity, and
the cost of PAPERSO. Weighing the pros and cons, all the subsequent PAPERS

versions use a single LED for each PE.
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e PAPERSO uses a $40 linear power supply. It is a waste of money in the sense
that we can get equal or even better performance by using a 7805 5V regulator
with a cheap 9-12V AC adaptors. Total cost for 7805 and AC adaptor is less
than $10 Besides PAPERSO and PAPERSI (another implementation), all the
other PAPERS systems use 7805 regulators with AC adaptors.
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7. CONCLUSION

In this thesis, we have discussed the evolution, design, construction, and perfor-
mance of PAPERSO — the first PAPERS prototype. Although originally intended to
be just a testbed for the new dynamic barrier architecture, PAPERSO has proved far

more useful:

e PAPERSO demonstrates that the new dynamic barrier mechanism works well

and provides very low latency — even across a cluster of personal computers

e PAPERSO showed that low-latency data communication as a side-effect of a

barrier synchronization is both efficient and useful

e PAPERSO exposed a variety of implementation issues that the theory had never

noticed; for example, the need for parallel interrupt handling

In summary, PAPERSO showed that fine-grain parallel computing on a cluster is
practical, and gave us good directions to pursue for making fine-grain, mixed-mode,
cluster computing a viable alternative to building customized parallel supercomput-
ers.

Current work focuses on these new directions. For example, the one-bit multi-
broadcast communication of PAPERSO has led to a wide range of other aggregate
communication mechanisms being developed in the later prototypes — along with the
software libraries and compilers to use them. Methods to effectively scale the design
to large numbers of processors (e.g., 128 or more) have also become a major research
focus.

Finally, we have taken advantage of the surprisingly good performance obtained

by creating a still simpler PAPERS design (TTL_PAPERS [29]), which can be easily
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and cheaply replicated by other researchers. Both the hardware design and support
software have been made available as a full public domain release on the WWW at

URL http://garage.ecn.purdue.edu/~papers/
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