WAPERS: The Wired-AND Adapter for

Parallel Execution and Rapid Synchronization

- *'
2)
it 4 - _.;._:‘_._4‘“ Nt i
T \a '
i‘-!' . .
-.--r-
-~

Page 1 of 17

WAPERS, February 10, 1999

Hank Dietz

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285
hankd@cn. pur due. edu

Abstract

PAPERS (Purdue’s Adapter for Parallel Execution and Rapid Synchronization) has
proven that a group of ordinary PCs and/or workstations can function as a tightly-
coupled parallel system. Unfortunately, PAPERS is hardware. True, TTL_PAPERS is
very simple hardware, but it is still a separate box, with its own power supply, that you
build or purchase.

In contrast, although WAPERS supports the full user-level AFAPI (Aggregate
Function Application Program Interface), the WAPERS hardware is entirely passive.
Literally, WAPERS is a wiring pattern. How does a wiring pattern implement aggregate
functions? The basic building block for TTL_PAPERS aggregates is NAND; WAPERS
replaces this by a wired-AND of open-collector outputs from standard parallel ports
(SPPs). Depending on the precise electrical properties of the SPPs and cables,
WAPERS is even modularly scalable.

What's the catch? There are three. (1) WAPERS yields somewhat lower
performance than TTL _PAPERS. (2) Scaling may be limited to as few as about 8
machines. (3) WAPERS can fry parallel port hardware if things are not configured
correctly. However, for a lot of small-scale cluster applications, WAPERS is an
amazingly simple way to get the performance you need.

1. Theory of Operation

Although the concept of using the SPP for communication between machines is
widely accepted (e.g., using “LapLink” cables), few would think of it as a viable approach
for parallel processing... but why not? The traditional views of parallel and distributed
processing rest on a set of basic assumptions that are incompatible with achieving good
performance using such an interface. So, WAPERS does things differently:

» Conventional wisdom suggests that the operating system should manage
synchronization and communication, but even a simple context switch to an interrupt
handler takes more time than WAPERS takes to complete a typical synchronization or
simple communication. All interactions with WAPERS are 1/0O port accesses made
directly from the user program; there are no OS modifications required and no OS call
overhead is incurred.

« Communication operations are characterized primarily by latency (total time to
transmit one object) and bandwidth (the maximum number of objects transmitted per
unit time). The hardware and software complexity of most interaction methods results
in high latency; high latency makes high bandwidth and large parallel grain size
necessary. In contrast, WAPERS is very simple and yields a correspondingly low
latency. Providing low latency allows WAPERS to work well with relatively fine-grain
parallelism, but it also means that relatively low bandwidth can suffice... which is

Page 2 of 17

WAPERS, February 10, 1999

good, because WAPERS normally uses a one bit wide data path that provides very
limited bandwidth.

+ A typical parallel computer is constructed by giving each processor a method of
independently performing synchronization and communication operations with other
processors; in contrast, WAPERS interactions between processors are performed as
aggregate operations based on the global state of the parallel computation, much as in
a SIMD machine. This SIMD-like model for interactions results in much simpler
hardware and a substantial reduction in software overhead for most parallel programs
(as was observed in the PASM prototype). For example, message headers and
dynamically-allocated message buffers are not needed for typical WAPERS
communications. It is also remarkably cheap for the WAPERS hardware to test global
state conditions such as any or al | .

Thus, WAPERS does not perform any magic; it merely uses a parallel computation
model that naturally yields simpler hardware and lower latency... and even though it is
an electrically passive design, WAPERS does implement the most important functions
directly in hardware. The low-latency synchronization and communication WAPERS
provides allow users to take full advantage of the “loosely synchronous” execution
models associated with fine-grain to moderate-grain parallelism.

1.1. WAPERS Vs. PAPERS

For most versions of PAPERS, especially TTL_PAPERS, bitwise NAND plays a key
role in implementing both barrier synchronization and other aggregate functions — but
WAPERS does not contain NAND gates. The TTL_PAPERS barrier logic also depends
on a single bit of state stored in a flip-flop, which WAPERS lacks. In fact, WAPERS
contains no active logic at all.

An SPP actually has three separate /O registers, which are mapped to
consecutive 1/0O addresses starting at 0x278, 0x378, or 0x3bc. The first register is an
8-bit data output port, which WAPERS could use to implement an 8-bit broadcast bus,
but that we generally ignore for electrical reasons. The second register is a 5-bit status
input port that serves no purpose for WAPERS. The last register is a 4-bit control output
port, which WAPERS uses to implement the 4-bit AND.

1.2. Wired-AND

Each bit of the SPP control output was originally an open-collector TTL signal
pulled-up to +5 volts through a 4.7K ohm resistor, and the logic level of each signal can
be read back by reading the feedback register at the same /O address. Three of the
four control outputs are inverted; actually, all four bits were originally driven by 7405
inverting open-collector buffers, but the 0x04 bit was inverted twice on output while the
other three bits were inverted once on output and once on input via the feedback
register. Although the different paths can vyield slightly different characteristics, we can
essentially ignore the differences except in the lowest-level WAPERS software, which
must correct for the fact that three lines have the inverted sense.

The open-collector outputs are only driven low; they slowly drift high through the
pull-up resistance. Normally, reading the value on the feedback port will get you what
you output — however, when a bit is set to the high output value, an external connection

Page 3 of 17

WAPERS, February 10, 1999

could harmlessly pull the signal low by sinking the current provided by the pull-up
resistance. Thus, each of these control lines is simultaneously both an output and an
input. If we connect several of these 1/O lines, the voltage is logic high only if all the
outputs were high, i.e., all the signals will be ANDed together.

Does this wired-AND really work? Well, yes, but there are a few constraints:

+ Assuming a 4.7K ohm resistor is present in the port hardware as a pull-up for each
line, pulling n connected lines to low logic level requires sinking approximately n
miliamps ("1ma per 4.7K resistor to +5 volts). In the worst case, a single driver must
sink the current from all n pull-ups. Fortunately, TTL is relatively good at sinking
current; some TTL parts can sink over 20ma... which would allow quite a few
machines to be connected. Unfortunately, the 7405 may only be able to sink about
8ma, limiting scalability to about 8 machines.

+ Although the open-collector TTL implementation described above was the original de-
facto standard, as time has passed, it has become very unusual for a parallel port to
be implemented with a handful of MSI TTL parts: now, it is typically a single CMOS
chip. The result is that modern implementations of SPPs often have very different
electrical properties, especially for the open-collector outputs. In theory, one could
make a “better” open-collector port using CMOS, but the fact that these ports are
commonly implemented as single chips tends to severely limit heat dissipation, and
thus limits the sink current. In short, it is likely that CMOS open-collector control
output implementations will be roughly compatible with open-collector TTL, but the
pull-up and sink abilities might be quite different.

+ lronically, as the number of machines increases, the signal quality and noise immunity
typically will get better — until things stop working. This is because a weak pull-up will
generally yield a very slow signal rise time; multiple weak pull-ups combine to yield a
stronger pull-up and sharper rise time. The signal fall time generally should not be a
problem, because even a single open-collector TTL output is quite effective at actively
sinking the signal to ground. The catch is that, when n gets too large, the system may
still work for a while, but the driver sink current specifications may be intermittently
exceeded. The expected result would be that, if the same single output is held low
sinking too much current for an extended period of time, the driver is likely to build-up
heat until a thermal failure of the driver occurs. As WAPERS uses the port, this is
most likely to occur on the 0x01 bit of the control port, which serves as the data path
(the three other signals change state with every two barrier synchronizations
performed). Because you really do not know precisely how much current your port
drivers can safely sink, you should avoid using the built-in ports of your computer for
connecting WAPERS clusters, especially clusters with more than about four machines:
it is better to fry an $8 ISA card than a $200 motherboard.

+ Perhaps the most scary aspect of modern parallel port implementations is that there
are now at least four “standard types” of parallel ports: SPP, PS/2 (often called
bidirectional), EPP, and ECP. The good news is that the more advanced ports are
described in a nice, clean, IEEE standard (1284). The bad news is that, although all
the advanced ports are supposed to provide the basic functionality of SPP, some ports
only do so when configured in an SPP-compatible mode. In the higher-speed modes,
it is common for the control output bits to switch from open-collector drivers to regular

Page 4 of 17

WAPERS, February 10, 1999

TTL or CMOS drivers to support faster data transfers with better noise immunity.
Wired-AND of regular drivers may work for a while, but is defi nitely not recommended.
The worst case would be a single CMOS driver pulling high against a group of drivers
pulling low; the CMOS pulling high may try to source more current than it can dissipate
the heat for. The only remedy for this is to check that your ports are confi gured to
support open-collector control output, which may involve setting jumpers or changing
the I/O confi guration information in the power-on setup menu of each computer. Worst
case, we have found one computer in which the motherboard’s parallel port control
output cannot be configured as open-collector... our remedy for this is one of the
aforementioned ISA card ports.

» Do not use parallel port “pass through” devices on a port that is being used for
WAPERS. Electrically, all bets are off if you use one of these. In particular, these
devices may duplicate only a fraction of the properties of the full port, e.g., often they
do not implement the open-collector outputs as such. Worse still, these devices often
suck power from the port outputs (using diodes and a DC-to-DC converter), further
compromising the electrical properties of the signals.

» Be aware that there was a generation of CMOS port hardware that was highly prone to
damage from ESD (electro-static discharge). Some of these ports are still around,
and these are why most parallel port devices still warn that you should not “hot plug”
devices: power should be off on both the device and the port when cable connections
are made or broken. In truth, TTL is not very sensitive to this type of problem, and
modern CMOS tends to have elaborate internal protection against this type of
damage, but.... We mention this because you might think that WAPERS, having no
active components, could not cause such problems to surface —in fact, WAPERS is
actually more likely to expose this type of problem, because the n machines
connected to WAPERS are effectively n active, independently powered, devices on
each parallel port.

Well, maybe it is more than an few constraints.... ;-) The gist of it is that wired-AND of the
control port signals will work fine if your systems are properly confi gured, and using
cheap ISA SPP cards is a pretty good way to hedge the bet.

So, what good is a 4-bit wired-AND anyway? The answer is that these four lowly
signals implement both fast barrier synchronization and bitwise aggregate
communication functions. Here is how.

1.2.1. Fast Hardware Barriers Without Hardware

Before discussing how WAPERS uses the wired-AND signals to implement fast
hardware barriers, it is useful to briefly review a bit of the history of PAPERS-style barrier
hardware.

A barrier synchronization is an n-way synchronization in which each processor:
1. Signals that it has arrived at the batrrier.

2. Waits for a signal from the barrier logic indicating that all processors have signaled
their arrival.

3. Resumes execution after the barrier.

Page 5 of 17

WAPERS, February 10, 1999

It doesn’t take a flash of inspiration to realize that the signal in step 2 is essentially the
logical AND of signals sent by each of the processors. Way back in 1987 we fi gured that
out, and further realized that by selecting between a constant 1 and the signal out of
each processor, the inputs to the AND could be controlled to allow any arbitrary set of
processors to participate.

The thing we did not realize back then is that, using computers that can receive
interrupts from other devices, a second barrier synchronization mechanism is needed to
confi rm that the barrier logic has been reset by all processors before any processor can
attempt another barrier synchronization on the primary unit. The result was that our fi rst
barrier logic implemented four-cycle barriers:

1. Output “waiting at barrier” signal
2. Input “all are at the barrier” signal
3. Output “waiting for reset” signal
4. Input “all are reset” signal

We then had the insight that, by using a set/reset fip-flbp, we could combine steps 1 and
3, and also steps 2 and 4, to create a two-cycle barrier system. In this scheme, two
barrier AND (actually NAND) trees are used such that when waiting at one, we are
resetting the other. This is the two-cycle design used in most PAPERS units, including
the widely disseminated November 1994 TTL_PAPERS design.

Without the fip-fop, it is not possible for WAPERS to perform two-cycle barriers
using just two AND trees. The problem lies in the fact that the previous barrier signal
must still be available for other processors to read while some processors are initiating
the next barrier. Thus, the previous barrier cannot be reset until after the next barrier
has completed —and some processors may be starting a third barrier. The somewhat
strange conclusion is that by cycling through three separate barrier AND trees, WAPERS
can implement two-cycle barriers. At any barrier, WAPERS is essentially preserving the
state of the previous barrier signal while checking-in at the next barrier and resetting the
third barrier.

Bits 0x08, 0x04, and 0x02 of the control register are used as the three barrier
signals. The slight additional complication in this assignment is that the sense of bit
0x04 is not inverted, while the other two bits are inverted. This is compensated for by
the lowest-level WAPERS port I/O software.

1.2.2. Bitwise Aggregate Function Communication

Given a 4-bit control output in which three lines are used to implement barrier
synchronization, only a single line (corresponding to the 0x01 bit) is available to
implement data communication.

The bad news is that transmitting data using a single bit path is essentially
software-intensive serial communication, and the raw data rates are not much better
than high-speed RS232C serial ports — typically between 100k and 200k baud.
However, there are a few important differences that make this much more capable than
just a multi-tap serial line:

Page 6 of 17

WAPERS, February 10, 1999

» Although the bits sent can be broadcast from a single processor (by having all other
processors output a logic high level), it is also possible to directly use AND of one bit
from each processor. For example, this makes it possible to determine if any
processor meets some condition (p_any(f)) using a single communication operation.

» While multi-tap serial lines use collision detection and start and stop bits to acquire the
channel and delimit transmissions, there is no need for such mechanisms here. The
barrier logic ensures that all processors act in a synchronously orchestrated fashion
without any conficts or ambiguity. Each bit transmission is associated with two barrier
synchronizations: one to ensure that all processors have read the previous bit value,
and a second to ensure that no processor reads the new value until all have
contributed their new bit value. The two barriers take four cycles; a fi fth cycle is added
to separately sample the data. This makes the transmission reliable by giving more
time for the data value to settle, thus avoiding a possible race between the data value
and the barrier signal which is sent simultaneously out the same port. It is essentially
the same fi ve-cycle transmission logic used by TTL_PAPERS.

» Unlike serial lines fed by parallel-to-serial converters, the WAPERS software does not
need to determine a-priori what bit sequence it will send; the next bit to send can be
determined as a function of the AND data obtained thus far. This is not a minor
improvement, but a major mechanism for compressing and optimizing transmissions
based on incrementally-updated global state. For example, one would expect an n-
processor p_put Get 32(d, s) to transmit 32*n bits. However, by simply using a one-
bit AND (p_any(f)) to determine if any processor wants to read each datum before
we send it, we can detect which 32-bit data transmissions are not needed, and can
skip them. Another example is that WAPERS can obtain the maximum or minimum k-
bit value from n processors in just k bit transmissions, even for fbating point values,
entirely independent of n! The WAPERS AFAPI implementation uses such techniques
extensively, typically yielding effective bandwidth far greater than the hardware directly
provides... for example, broadcast bandwidth often appears to be between 2 and 9
times better than it actually is.

Thus, although one would expect WAPERS to yield about 1/4 the aggregate function
performance of TTL_PAPERS (which has a 4-bit data path), actual performance using
the 1-bit AND is often much closer to that of TTL_PAPERS. In fact, trying to take
advantage of the 4-bit pathway of TTL_PAPERS makes it diffi cult to implement some
optimizations, so WAPERS will occasionally outperform TTL_PAPERS.

Notice that here we have only hinted at the complexity of some of the WAPERS
AFAPI routines... remember that the full source code is freely available, and it provides
the most detailed and up-to-date reference for the algorithms used.

1.3. 8-bit Broadcast Bus

The standard WAPERS AFAPI requires the 4-bit AND described above, but it is
also possible to implement an 8-bit shared broadcast bus without arbitration hardware...
if your port hardware can support it.

The 8-bit data output register is accompanied by an 8-bit feedback register than
can be used to read the state of the output signals. Originally, the 8-bit output was
driven by a 74LS374, which is an octal TTL driver with tri-state outputs... so it is natural

Page 7 of 17

WAPERS, February 10, 1999

to think of placing the 74LS374 in the high-impedance output state and using the
feedback register as an 8-bit input register. The catch is that the SPP simply hardwired
the tri-state control to always enable output, so the input trick did not work unless you
literally cut a board trace and installed a jumper (of course, cutting a trace and installing
a jumper within a single-chip CMOS implementation of SPP is a bit diffi cult ;-). Besides,
if you did that, you had an input-only register; to implement an 8-bit broadcast bus, we
need software control over the tri-state signal.

Before we discuss the port confi gurations that do allow us to have an 8-bit bus, it is
useful to ponder what will happen if we use cabling that connects these 8-bit SPP
outputs anyway. Why? Well, it is nice to have just one cable wiring specifi cation,
WAPERS can detect and avoid using the faulty 8-bit bus, and full WAPERS functionality
on appropriate ports can actually be implemented by simply connecting the
corresponding pins across all the ports, which is particularly easy (discussed in section
2.2 as Design 2). So, what happens when actively driven, supposedly “TTL-compatible,”
outputs are tied together?

We engineers always have been taught not to tie actively driven outputs together,
and port hardware varies quite a lot, so surprisingly few people really have a feel for
what will happen if you do this. After surveying many of my colleagues, I've formulated
the following answer. First, things will probably slowly (compared to microsecond port
access times) overheat and die if two drivers on a single line disagree; this is probably a
larger problem with CMOS than with TTL. We would expect the worst case to be a
single CMOS driver pulling high against a group of drivers pulling low; the CMOS pulling
high may try to source more current than it can dissipate the heat for. So, let's assume
that all the drivers will be in the same state... which state: logic high or low? Most
people fi gured low was safer, because the drivers all agree on ground (the grounds are
connected) and both TTL and CMOS are generally good at sinking whatever differences
might exist. In contrast, the logic high may differ quite a bit: from just over 2 volts for
TTL drivers to 5 volts (or even sightly higher, depending on power supplies) for CMOS.
However, if every line is low and one CMOS driver is set high, that driver will fry quickly,
so a couple of people felt all high is safer. The bottom line is that things will only be
damaged by thermal problems which take a little while to develop, so having software set
all the lines in the same state should be ok, and WAPERS AFAPI versions that use the
8-bit broadcast bus take precautions to ensure that things stay ok (forcing all lines low
when in doubt). Basically, if AFAPI outputs a value on the 8-bit bus and sees something
else in the feedback register, it assumes that somebody else is not in the high
impedance state. Still, software errors could fry hardware, so seriously consider using
just a fi ve-wire connection (Design 1) if you have SPP port hardware.

Ok, we now know how to keep an unusable port from frying despite an
inappropriate cable, but what ports are usable? At least in theory, the PS/2
(bidirectional) port is ideal, and EPP and ECP can emulate that. The catch is that some
ports will only allow software to tri-state disable the 8-bit output in modes where the
control register lines are not open-collector. If you have one of those ports, forget about
the 8-bit stuff —no version of WAPERS can work without open-collector control lines.

The tri-state control for the 8-bit output is bit 0x20 of the control register. If this bit
is on, the 8-bit output is disabled (you cannot disable individual output lines, but only the
entire chip). Thus, it is up to the WAPERS AFAPI to ensure that, at any given time, at

Page 8 of 17

WAPERS, February 10, 1999

most one processor has its 8-bit output enabled. How do we do that? The answer is
that we use barriers around each 8-bit bus action... not really very different from how we
do 1-bit AND transmissions. If there is ever any ambiguity about which processor should
have access to the 8-bit bus, the ambiguity is resolved using the 1-bit AND facility and the
resulting confict-free bus write order is enforced by barriers.

The result is raw bandwidth typically somewhat over 1Mb/s... still slow, but quite
usable given that the latency is on the order of a few microseconds. You should notice
two things about this bandwidth. First, it is 8x the raw WAPERS AND bandwidth and 2x
the TTL_PAPERS bandwidth, but, unlike those, implements only broadcast. Second,
because it is an 8-bit wide path, it is not as easy to optimize the transmissions, so the
optimized WAPERS AND bandwidth can actually be better under certain circumstances.
In summary, the 8-bit bus is a nice facility, but it is probably best to view it as providing
more consistently good bandwidth rather than improving the best case.

As suggested earlier, some versions of the WAPERS AFAPI actually check for
availability and proper operation of the 8-bit bus at runtime. This adds a little overhead
to some library functions, but is the safest approach that allows the 8-bit bus to be used
wherever possible. In general, we do not recommend using 8-bit WAPERS cables
unless you are absolutely sure that these connections will be harmless.

1.4. Interrupts

To facilitate some level of asynchronous operation, some versions of PAPERS
provide a separate interrupt broadcast facility so that any processor can signal the
others. Such an interrupt does not really generate a hardware interrupt on each
processor, rather, it sets a flag that each processor can read at an appropriate time.
Generally, this facility is used primarily by the parallel meta-OS to enforce gang-
scheduling, etc.

Unfortunately, WAPERS does not provide any such mechanism. The user-level
AFAPI signals are fully supported, but WAPERS does not provide an “out-of-band”
parallel interrupt facility for meta-OS use. We feel this is a minor issue because
WAPERS is intended for experimentation with dedicated applications; it is not
recommended as the interconnection network for clusters to serve multiple users
running/developing multiple parallel applications.

1.5. Purpose

Unlike most research prototype supercomputers, WAPERS is a fully public domain
hardware design and software intended to be widely replicated. It is hoped that the fi ne-
grain capabilities of WAPERS, and the various more sophisticated PAPERS units, in
linking conventional computers will bring a qualitative change to the fields of cluster,
network, and heterogeneous supercomputing.

2. WAPERS “Hardware”

As discussed above, WAPERS is not really hardware, but a wiring pattern. In this
section, we detail two different ways to implement an appropriate wiring pattern. The
first method implements only the bare minimum wiring, but yields a box that can be
safely used with any parallel ports implementing the open-collector control outputs. The

Page 9 of 17

WAPERS, February 10, 1999

second method creates a version that is even easier to build and also implements the
8-bit broadcast bus, but doesn't look as nice and is potentially a bit risky to use with
ports not supporting tri-state disable of the 8-bit data output.

2.1. Design 1: The WAPERS Box

It is a quirk of our society that it is often cheaper and easier to modify a more
complex, but standard, thing than to build something simple from scratch. This design
takes full advantage of that fact by modifying a mechanical parallel printer switch to
construct a WAPERS unit. A photo of the completed version appears on the cover of
this document.

Although you could easily enough buy DB25 connectors, a box, and wires as
individual components, for less than $10 you can buy a 4-to-1 mechanical parallel printer
switch that contains all of the above, complete with mounting hardware. Do not get a
smart all-electronic switch box; you want one that has a dial that you have to turn to
select what is connected. When you open the box (probably removing four screws) and
look inside, you'll fi nd something like:

Basically, it is 5 DB25 connectors (yielding a 5-machine WAPERS unit) wired to a big,
fat, switch. The next few steps may be easier to do if you fi rst remove the switch and
connectors from their mountings in the box.

Disconnect the switch by desoldering the wires from the DB25 connectors. A
useful suggestion is to always plug a mating DB25 connector to the connector whose
pins you will be soldering/desoldering on —this way, even if you get the pins a little too
hot, they will not become misaligned when the plastic around them gets soft.

Once you have disconnected all the wires from the DB25 connectors, you have just
a few connections to make. The pin/contact assignment for each of the lines is given in
Table 1. WAPERS connections are completely symmetric; all PEs are connected
identically to fi ve “posts”. Table 1 lists the pin numbers in the order they appear on each
DB25 connector. Notice that most pins (those not listed) are unconnected.

Page 10 of 17

WAPERS, February 10, 1999

Table 1: DB25 Pin Connections, Design 1
PE Standard
Pin# Post Name Use In WAPERS Box
1 Data | Strobe AND Data, 0x01
14 Bar2 | AutoFD Barrier, 0x02
16 Bar4 | Init Barrier, 0x04
17 Bar8 | Slct Barrier, Ox08
18 Gnd | Gnd Signal ground
19 Gnd | Gnd Signal ground
20 Gnd | Gnd Signal ground
21 Gnd | Gnd Signal ground
22 Gnd | Gnd Signal ground
23 Gnd | Gnd Signal ground
24 Gnd | Gnd Signal ground
25 Gnd | Gnd Signal ground

How do you make these connections? Odds are that you have a bundle of appropriate-
length wires connected to the switch that you just removed, so you can desolder and
reuse those wires.

Pins 18 through 25 are all ground and are all next to each other... so start by
soldering a wire to pin 25 and then solder-bridging across pins 18 through 25. Then
connect a wire to each of pins 1, 14, 16, and 17. Do this for each of the DB25
connectors, and then remount them in the box, twist and solder the corresponding wires
together, wrap the soldered-wire connections with electrical tape, and you're done inside.
It should look something like this:

Page 11 of 17

WAPERS, February 10, 1999

The only thing remaining is to finish the box. Closing the box is easy enough
(probably replacing four screws), but the front panel probably now has a hole in it where
the switch used to be. We recommend covering the front panel, hole and all, with an
appropriate label. Here’s the one we used:

WAPERS

Wired-AND Adapter for Parallel Execution and Rapid Synchronization

July 1997

That's it. You now have a neat little WAPERS unit suitable for connecting up to fi ve
machines. Each machine simply gets connected to the WAPERS box via a straight-
through DB25-t0-DB25 cable.

If your open-collector ports can sink enough current, you can also use this same
WAPERS unit as a scalable module. For example, to connect eight machines, you
would simply connect four machines to the DB25 connectors of each of two such
WAPERS units, and then connect the fi fth DB25 connectors of the two units to each
other using a straight-through DB25-to-DB25 cable. If you are lucky enough to have
parallel port hardware and cables with the right electrical characteristics, you can
connect up to 11 machines with 3 units, 14 with 4 units, etc. In general, up to 2 + 3x
machines could be connected using x WAPERS units, where x>=0. Note that two
machines can be connected to each other using a cable without any WAPERS unit... but
that cable is essentially Design 2.

2.2. Design 2: The WAPERS Cable

Although Design 1, the WAPERS box, quickly yields a functional and fairly serious-
looking unit, there are a few advantages to instead constructing a single, multi-
connector, WAPERS cable (Design 2):

1. The box-and-cables packaging of the design may look and feel like a real aggregate
function unit, but it also requires a bunch of components: cables and WAPERS unit
boxes. Design 2, the WAPERS cable, is literally a single thing no matter how many
machines are connected.

2. Although there is soldering and point-to-point wiring involved in making the Design 1
WAPERS unit, the Design 2 WAPERS cable requires neither soldering nor wire
routing. It is easier and faster to build.

3. The WAPERS cable naturally includes the ability to use the 8-bit broadcast bus, if
your port hardware can support it. Although it could be done, it would take hand
routing and soldering eight more wires for the WAPERS box to have this ability.

Page 12 of 17

WAPERS, February 10, 1999

Of course, the WAPERS cable has some disadvantages too. Perhaps the most
important disadvantage is that there is the potential for the 8-bit bus line drivers to fry
due to software errors, which cannot happen with the WAPERS box wired as described
above. Another disadvantage is that the cable is not modularly scalable; heck, you
cannot even change the set-at-cable-assembly-time distance between machines. Also,
WAPERS is a custom cable, and thus might be slightly more expensive. Finally, the
recommended construction uses unshielded ribbon cable that connects the signal
ground lines pin-to-pin rather than grouping them as a single high-quality ground; the
expected result is poorer noise immunity.

The wiring pattern for a WAPERS cable is incredibly simple: each pin on every
connector is tied to the corresponding pin on every other connector. The resulting signal
assignments are:

Table 2: DB25 Wire Use, Design 2
PE Standard
Pin# Name Use In WAPERS Cable
1 Strobe AND Data, 0x01
2 DO Bus Data, 0x01
3 D1 Bus Data, 0x02
4 D2 Bus Data, 0x04
5 D3 Bus Data, 0x08
6 D4 Bus Data, 0x10
7 D5 Bus Data, 0x20
8 D6 Bus Data, 0x40
9 D7 Bus Data, 0x80
10 Ack Ignored (unused input)
11 Busy Ignored (unused input)
12 PE Ignored (unused input)
13 Slctin Ignored (unused input)
14 AutoFD Barrier, 0x02
15 Error Ignored (unused input)
16 Init Barrier, 0x04
17 Slct Barrier, 0x08
18 Gnd Signal ground
19 Gnd Signal ground
20 Gnd Signal ground
21 Gnd Signal ground
22 Gnd Signal ground
23 Gnd Signal ground
24 Gnd Signal ground
25 Gnd Signal ground

Page 13 of 17

WAPERS, February 10, 1999

For the special case of a two-machine WAPERS cable, simply purchase a DB25-to-
DB25 straight through cable... that's all you need.

However, to make a WAPERS cable for n machines, things are a bit more complex:

1. Determine the minimum necessary cable length between machines as you will have
them physically arranged for the cluster. If the machines are literally stacked, this is
probably a little less than one foot. Unless the DB25 connectors on the machines are
oriented perpendicular to the desired cable path between machines, allow a few extra
inches for each so that the DB25 connector can be turned to plug-into the machine.
If the sum of all the spacings (total cable length) is much more than ten feet, you
should be aware that the ribbon cable will not offer very good noise immunity.

2. Purchase one 25-wire ribbon cable and a DB25 “25-pin D-Subminiature Connector”
for each machine. The cable should be as long as the sum of the spacing between
the machines; the DB25 connectors should be the type designed to connect to a
ribbon cable by simply being pressed into the cable, puncturing the cable to connect
to each wire.

3. Arrange the DB25 connectors at the appropriate positions along the ribbon cable,
and press them in (working from one end of the cable to the other).

4. Although no termination is needed at the cable ends, you should be careful to ensure
that the wires are not exposed in a way that could allow them to short to other wires
or the chassis of any of the machines in the cluster. An easy solution is to simply trim
the cable close to the last DB25 connector on each end.

The result is a very unobtrusive custom cable that simply chains from the port of each
machine to the next. Better still, if you do not want to make this cable yourself, most
local computer stores and cable suppliers will make it for you at a reasonable cost.

3. The Soft Side Of WAPERS

When all the network hardware that you have is a bunch of wires, which is all
WAPERS provides, it is clearly necessary that a bit of cleverness be employed in the
support software. There are actually three major problems that the software must attack:
determining the port confi guration, avoiding illegal hardware states, and effi ciently
implementing the AFAPI.

3.1. Determining Port Configuration

The WAPERS software must determine, or at least attempt to confi rm the user’s
specifi cation of, the port hardware configuration being used. TTL_PAPERS and
CAPERS use only the minimum port functionality that is common to all types of parallel
ports, but WAPERS needs the ports to do more. WAPERS requires open-collector
control output, and might additionally use tri-state data output if that ability is present on
all machines within a cluster. It is entirely the user’s responsibility to determine the
appropriateness of using their port hardware for WAPERS before attempting to
use WAPERS, and hardware damage may result from an attempt to use an
incorrectly configured port.

Although we do not know of any test procedure which is 100% safe and effective in
determining the port characteristics, the porti nf o program provided with WAPERS

Page 14 of 17

WAPERS, February 10, 1999

AFAPI attempts to determine this information. It also attempts to guide you to the

highest-performance port and port confi guration. Inside WAPERS AFAPI itself, there are
only simplifi ed, occasionally executed, checks to confirm that the port confi guration
matches that specifi ed by the user.

Finding a parallel port consists of looking for something that responds like a
parallel port at one of the base I/O addresses where ports are generally found: 0x278,
0x378, and 0x3bc. Typically, one outputs a non-Oxff value to the data output port (the
base address) and then reads it back —if you get the same value you wrote, it is likely
that a port is present. The catch is that this test does not work if the data output is tri-
state disabled, so you really want to enable the tri-state output fi rst (turn off bit 0x20 on
base + 2).

Ok, so it is a port. Is it an ECP port? If so, address base + 0x402 should be the
ECP extended control register (ECR). Because 0x3bc + 0x402 yields an address that is
generally used by other PC hardware, ports at 0x3bc cannot be used as ECP. If reading
the ECR yields a value whose low two bits have the value (value & 0x03 is 0x01), then
we have an ECP (whose FIFO is empty and not full).

If it wasn't an ECP, perhaps it is an EPP? The EPP uses the low bit of port
address base + 1 as the EPP status; first we must clear that, then write to an EPP
extended port address (base + 3, 4, 5, or 6), and then read the value back. The reset
generally happens when base + 1 is touched or 0x01 is written there (wouldn’t it be nice
if such things were truly standardized?). If data output to base + 3 is then seen at base
+ 3, you have an EPP.

Suppose it was neither ECP nor EPP, is it a simple bidirectional port (also called a
PS/2 port)? The way to test this is to tri-state disable the data output port (output 0x20
to base + 2), output some non-0xff data value to base, and then read from base. If what
you output is what you read back, your port probably is not tri-state disabled, so it must
be an ordinary SPP (Standard Parallel Port).

Ok, hopefully we now know what type of port we have. Ah, but we really do not
know enough about it yet —some ports, of whatever type, do not implement the control
output lines using the open-collector drivers that WAPERS depends on. So we have to
test that the open-collector outputs are indeed implemented as open-collector outputs.

The traditional open collector output confi guration in a parallel port uses a 4.7K
ohm pull-up to +5V. When the open-collector output is high, the resistance to ground is
very large (essentially an open circuit). Thus, if you happen to have a DC volt meter, you
can confi rm the port construction fairly safely and easily by using the fact that connecting
two identical resistors in series between +5V and ground (0V) should yield +2.5V at the
point between the resistors. If the port is not open collector, the odds are that the
resistance between +5V and the reference point is a lot less than 4.7K ohms, and
consequently you will read a value signifi cantly more than +2.5V. The circuit needed to
make this measurement is:

Page 15 of 17

WAPERS, February 10, 1999

~ VCC (+5V, no pin) Inside

. port...
4.7K ohm

' Testvoltage here...
4.7K ohm | should see < +2.5V;,

1 greater for ordinary driver
|

Ground (0V, pin 25)

No harm should come to the port hardware in either case, since the 4.7K ohm resistance
is large enough to keep source current within bounds for an ordinary driver. If your port
is not open collector and had an effective resistance of zero ohms to +5V, it would still
source only about 1ma (5V divided by the 4.7K ohm resistor you used).

You don't have a voltage meter and/or do not want to deal with connecting a 4.7K
ohm resistor? Well, if your parallel port came with a manual, perhaps it is time to do
some reading....

In any case, remember: it is not our fault if you see a little puff of smoke appear
where the driver chips used to be. WAPERS is electrically marginal; we know it, we
have warned you, and now you know it. Also, our portinfo program is not fully
trustworthy. In summary, neither the PAPERS group nor Purdue University can be held
responsible for any problems that attempts to use WAPERS may cause.

3.2. Avoiding lllegal Hardware States

The software must ensure that the port hardware settings of all machines always
yields a safe global state. This is important because, unlike the TTL_PAPERS interface
protocols, if the WAPERS protocols are applied incorrectly, the port hardware of one or
more machines can be damaged.

The level of software protection against the occurrence of illegal hardware states
varies widely across WAPERS library releases — check the source code for your
WAPERS AFAPI version to see how it handles such things. In any case, we are fi ghting
a losing battle in the sense that there always will be some ways in which an undetected
hardware error (i.e., noise, short, or other cable problem) or software error could cause
port hardware to fry. You can minimize the probability of serious problems by:

» Not using the 8-bit broadcast wiring pattern. The broadcast wiring makes Design 2
inherently more likely to damage port hardware than Design 1.

Page 16 of 17

WAPERS, February 10, 1999

» Making very sure that your ports support SPP open-collector output and are in an
appropriate mode.

» Using cheap add-on parallel port interface cards (EPP/ECP-capable cards will not
help performance, and cheap cards minimize your loss if things do fry).

Keep in mind that even the best software protection against illegal hardware states is
effective only when that software is running. For example, the port probes done during
boot are very likely to cause illegal states at least temporarily, so you might want to
phsyically disconnect the machines during boot or to run the WAPERS software to
initialize the port within the boot process.

Like the old Saturday Night Live skits about harmless little toys like “Bag O’ Glass”
used to say: Kid, be careful!

3.3. WAPERS AFAPI Implementation

The whole point of WAPERS is to provide a network supporting low-latency AFAPI
communications across two or more machines. Any software that works with the user-
level AFAPI will work with WAPERS AFAPI.

Although we now have a unifi ed AFAPI release, the WAPERS AFAPI is customized
for the WAPERS “hardware” and what it can do. Thus, WAPERS AFAPI provides the
same library interface, but it is not just a minor variation on the TTL_PAPERS AFAPI; it is
a re-implementation optimized to yield good performance using WAPERS' dumb,
passive, hardware. To see how the implementations differ, look at the AFAPI sources:

http://garage.ecn.purdue.edu/ papers/AFAP1/

4. Conclusion

In this paper, we have presented the complete public domain design of the
WAPERS hardware. This design represents the simplest possible mechanism to
effi ciently support barrier synchronization, aggregate communication, and group
interrupt capabilities — using unmodified conventional workstations or personal
computers as the processing elements of a fi ne-grain parallel machine.

WAPERS is electrically marginal, and does not scale to very large clusters, but it
makes for a very low cost first experience in using tightly-coupled cluster parallel
processing. In fact, the ultra-low cost can make WAPERS very appropriate for linking
together those wimpy old 386 machines that were in dead storage taking-up valuable
offi ce or lab space; even a 386 WAPERS cluster can implement a decent video wall.

If you like WAPERS, but want something better and are willing to deal with more
complex hardware, take a look at the various PAPERS designs at:

http://garage.ecn.purdue.edu/ papers/

Most importantly, let us know what you think about WAPERS and how you use it. Also
tell us if you tried and failed. Send comments to hankd@ecn . purdue .edu

Page 17 of 17

