

Cameras As Computing Systems

Prof. Hank Dietz

Focus

University of Kentucky Electrical & Computer Engineering

What's so tricky about Focus?

- PD: Phase Detection
- CD: Contrast Detection
- PSF (point spread function) Detection
- Autofocus algorithms
- Focus-priority (vs. shutter priority)
- Trap focus (catch in-focus)
- Focus Peaking
- Focus stacking
- Depth from focus / depth from defocus

Spring 2009, EE499

- Jennifer Danhauer, Joe Lanford, Ross Levine project to capture a depthmap inside a Canon PowerShot using depth-from-focus
- CHDK scripting so a single press captures a sequence with different focus distances
- CHDK processing modified with custom C code to measure blur & combine images
- Blur measurement was fairly state-of-the-art

UNIVERSITY OF KENTUCKY

How Good Is The Depthmap?

- Accurate depths at edges
- No depth in featureless fields
- Wrong depths near edges!
- Wrong by a lot
- Wrong both directions
- Seems to "echo" edges...

- Describes the response of an imaging system to a point source (impulse response)
- PSF is the spatial domain representation of the modulation transfer function (MTF)
- An image is essentially the sum of the PSFs of all points of light in the scene
- What does a typical out-of-focus (OOF) PSF
 look like?

Measuring OOF PSF

- Work in stable, dark, unobstructed, area
- Place point light source at 10m (often can use a white LED penlight)
- Manual focus to 1m, 2m, or 3m
- Expose to show detail inside OOF PSF

What Went Wrong?

 Most image processing algorithms model OOF PSF as Gaussian blur:

Out-Of-Focus Isn't Blurry!

• OOF PSF typically has a sharp edge!

Why The Sharp Edge?

Why Should I Care?

- OOF PSF is easy to measure...
 collected and measured 125+ lenses
- OOF PSF is **not the same** for all lenses:
 - Diagnose inherent & acquired lens defects
 - Forensic applications
 - Predict & shape bokeh
 - Recovery of depth & stereo capture

Diagnostic Use

- Ever buy a used lens?
- Two classes of lens defects:
 - Inherent from design or manufacture
 - Acquired from use, storage, and age

Vignetting

Decentering

Axial Chromatic Aberration

UNIVERSITY OF KENTUCKY

Undercorrected / Overcorrected Spherical Aberration

Dust & Dirt

Oily Fingerprint

Fungus Infection

Nicked Element

Element Separation

Forensic Use

- Identify faked images
- Identify the lens used:
 - Defects as lens fingerprints
 - Distinguish most likely type of lens

Compact Camera Lens

Ultrawide Zoom (corner)

Conventional Telephoto

Mirror Lens

Bokeh

- The properties of OOF regions of images
 - Not about quantity or size of OOF things
 - Good bokeh look smooth, bad don't
 - Worst is nisen bokeh double line artifacts
- OOF PSF define most bokeh properties:
 - Bright center \Rightarrow good bokeh
 - Bright outer ring \Rightarrow nisen bokeh
 - Vignette + field curvature \Rightarrow "swirly" bokeh
 - Axial CA \Rightarrow "bokeh CA"

Axial CA After / Before Focus

UNIVERSITY OF KENTUCKY

K UNIVERSITY OF KENTUCKY

Extreme Undercorrected SA, After / Before Focus

Extreme Undercorrected SA in a photo

Minolta's STF Apodization (Smooth Trans Focus)

• The Sony/Minolta 135mm f/2.8 t/4.5 STF incorporates an apodizing element

Dynamic Apodization

- Minolta Maxxum 7 STF mode (Custom 25-2)
- Multiple exposure with varying aperture

Apertures For Soft Focus

Imagon & Fujinon "Sink Strainer" apertures

(photos from mflenses.com and m42.org)

Apertures For Bokeh Effects

E.g., from bokehmasterskit.com

Depth & Stereo Capture

- OOF "blur" is really multiple viewpoints not converging at the film/sensor plane
- Diameter of OOF PSF encodes distance: *Diameter=const1-(const2/ObjectDistance)*
- Sign of *Diameter* encodes before/after focus
- OOF viewpoints encode stereo pair data and can be recovered by computation

Coded Aperture Deconvolution (images from MIT CSAIL)

Why Not Color-Code Aperture?

- Color code views through left and right sides of the lens... to directly capture an anaglyph
- Stereo view with glasses (even live view)
- Computationally extracting the views allows:
 - Full color stereo pairs
 - After-the-fact refocus, depth capture, etc.
- Design for reprocessing, e.g., green/magenta Instead of red/cyan

Anaglyph Capture Aperture

U.K. UNIVERSITY OF KENTUCKY

ULK UNIVERSITY OF KENTUCKY

U.K. UNIVERSITY OF KENTUCKY

UIK UNIVERSITY OF KENTUCKY

UK UNIVERSITY OF KENTUCKY

UNIVERSITY OF KENTUCKY

UIK UNIVERSITY OF KENTUCKY

UNIVERSITY OF KENTUCKY

INIVERSITY OF KENTUCKY

Can We Computationally Create A Full-Color Stereo Pair?

• Theoretically it's impossible...

ULK UNIVERSITY OF KENTUCKY

Computed Left & Right Views

U.K. UNIVERSITY OF KENTUCKY

Computed Left & Right Views

Conclusion

- Out-of-focus really isn't blurry
- The OOF PSF tells you a lot about a lens... and about the scene (e.g., depth & stereo)
- Understanding & manipulating OOF PSF can enable things you couldn't do otherwise

