Implementing

Cordic Algorithms

A single compact routine for computing

transcendental functions

fficiently computing sines, co-

sines, and other transcendental

functions is a process about

which many programmers are

blissfully ignorant. When these
values are called for in a graphics or
CAD program, we usually rely on a call
to the compiler’s run-time library. The
library either derives the necessary val-
ues in some mysterious manner or calls
the floating-point coprocessor to assist
in the task.

The CORDIC (COordinate, Rotation
Digital Computer) family of algorithms
is an elegant, efficient, and compact
way to compute sines, cosines, expo-
nentials, logarithms, and associated
transcendental functions using one core
routine. These truly remarkable algo-
rithms compute these functions with n
bits of accuracy in # iterations — where
each iteration requires only a small num-
ber of shifts and additions. Further-
more, these routines use only fixed-
point arithmetic. Using these algorithms,
you can cast your entire graphics appli-
cation into fixed-point, and thus avoid
the cost of run-time conversion from
fixed- to floating-point representation
and back.

Even if you don't plan on recasting
your application into fixed-point, you
just might be curious how your floating-
point coprocessor works. The Intel nu-

Pitis Jarvis is a senior engineer at 3Com
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merics family (8087, 80287, and 80387)
all use Cordic algorithms, in a form
slightly different than described here,
to compute circular functions. The In-
tel implementations are described by
R. Nave! and A. K. Yuen?,

The implementations may be con-
temporary, but the algorithms are not
new. J. E. Volder? coined the name in
1959. He applied these algorithms to
build a special-purpose digital com-
puter for real-time airborne navigation.
D. S. Cochran® identifies their use in
the HP-35 calculator in 1972 to calcu-
late the transcendental functions.

Mathematical Manipulation

If we have a vector [x, 1, we can rotate
it through an angle a by multiplying it
by the matrix Rg, defined in Example
1(a). Explicitly doing the matrix multi-
plication yields the equation in Exam-
ple 1(b).

If we choose x =1 and y = 0 and
multiply that vector by Rg we are left
with the vector [cos 4, sin al.

Multiplying by two successive rota-
tion matrices, Rg and Rp rotates the
vector through the angle a + b, or more
formally RaRb = Ra+b. If we choose
to represent the angle @ as a sum of
angles a,for i =0 through n (see Exam-
ple 1(c)), then we can rotate the vector
through the angle a by multiplying a
series of rotation matrices Rao,
Raq, . .. Ran

By picking the a, carefully, we can
simplify the arithmetic. Notice that we

can rewrite the rotation matrix by fac-
toring out cos @ as shown in Example
1(d). If we pick a, such that tan a,= 2~
for i= 0 through #, all of the multiplica-
tions by tan &, become right shifts by i
bits.

Now we need to specify an algo-
rithm so that we can represent a as the
sum of the a,. Initialize a variable, z,
to a. This z will be a residue quantity,
which we are trying to drive to zero
by adding or subtracting 4, at the #th
step. At the first step, i = 0. At the #-th
step, if z > 0 then subtract g, from z.
Otherwise add g, to z. At the last step
i =mn, and zis the error in our represen-
tation of 4. Notice that in Example 1(e),
for large 4, each additional step yields
one more bit of accuracy in our repre-
sentation of a.

Figure 1 shows the relative magni-
tudes of the incremental angles, a,. Fig-
ure 2 gives an example of the conver-
gence process with an initial angle of
0.65. Notice that successive iterations
do not necessarily reduce the absolute
error in the representation of the angle.
Also notice that the error does not os-
cillate about zero.

Ateach step as we decompose ainto
the sum or difference of the a5 we
could also multiply our vector [x, )] by
the appropriate Rg, or R-g, depending
on whether we add or subtract a, Re-
member, these multiplications are noth-
ing more than shifts. We must also
multiply in the still embarrassing factor
cos a4, However, cosine is an even
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function and has the property that
cos a, = cos (-a). It does not matter
whether we add or subtract the angle
we always multiply by the same factor!
Because all of the cos a, can be fac-
tored out and grouped together, we
can treat their product as a constant
and compute it only once, along with
all the a, = tan™! 2.

Not all angles can be represented as
the sum of a, There is a domain of
convergence outside of which we can-
not reduce the angle to within a,_, of
zero. See Example 1(f). For the algo-
rithm to work, we must start with a
suchthat lal <a = 1.74. This con-
veniently falls just outside the first quad-
rant. If we are given an angle outside
the first quadrant, we can scale it by
dividing by "/, obtaining a quotient Q
and a remainder D where | DI </; <
a_ . Since the algorithm computes both
sine and cosine of D, we pick the ap-
propriate value and sign depending on
the value of Q.

What about angles within the do-
main of convergence? It's not obvious
that the strange set we've picked (see
Example 1(g)) can represent all angles
within the domain of convergence to
within a, ;. But, using mathematical
induction, Walther” proves that the
scheme works.

The Circular Functions
One variation of the Cordic algorithm
computes the circular functions — sin,
cos, tan, and so on. This algorithm is
shown in pseudocode in Example 2(a).
First, start with [x,),2]. The x and y
are as before. z is the quantity that we
drive to zero, with an initial value of
angle a. The first step in the loop de-

cides whether to add or subtract a,
from the residue z. The variable s is
correspondingly positive or negative.
The second step reduces the magni-
tude of z and effects the multiplica-
tions by the tan a, The expression
y=>imeans shift yright by i bits.

When you start the algorithm with
[x,),2] and then drive zto zero as speci-
fied by Example 2(a), we are left with
the quantities in Example 3(a). Where
Kis a constant, it is just the product of
the cos a,, as in Example 3(b).

For the curious, K= 0.607. The value
of K can be precomputed by setting
[x,3,21 to [1, 0, 0] and running the algo-

rithm as before. The result is shown in
Example 3(c). Take the reciprocal of
the final x and we have K. Therefore,
to compute sin a and cos a, set [x,y,2]
to [K, 0, a] and run the algorithm. Ex-
ample 3(d) shows the result. In effect,
we start with a vector [x, ), and rotate
it through a given angle a, by driving
z to zero. Running the algorithm with
the special case where the vector in-
itially lies along the x axis and is of
length K, rotates the vector by angle a
and leaves behind cos @ and sin a. This
relationship is shown in Figure 3.

To compute tan™'a, instead of z, we
could choose to drive yto zero. Driv-

cos a-sin a

@) Rg= |:sin a cos a}

x xcosa-ysina
(b) R, [y}' [xsina+yonsa]
(c) d=ag+ay+ ..+dg

1 -tana

(d) Ry=cosa| ...
(e) a,-=tan'1 2 27 torlarge i
® amax=tan” 20 +tan 2! v start 2”
(g} stan 1 20span T2+ sqant 20

Example 1: Mathematical expressions

(a) for i from 0 to ndo
{

In
(b) for ifrom 0 to ndo
{

1

if (z=0) then s:= 1 else 5= -1;
[%y.2] =[x-5y>=i y+5x>>i2-53)]

it (y20)then s:= 1 else 5:=-1;
[xy.2i=lx+ 8 yo=i, y- s x =2i2+ 54

Example 2: (a) The basic algorithm; (b) the inverse algorithm

0.785

0.464

0.245

0.124

0.062
‘ 0.031 4 515

0.650

0.328

0.083

0.021 0.006

-0.135

o] -0.010

Figure 1: tan' 27 fori=0,1,2,3,4,5,6
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CORDICALGORITHMS

ing yto zero rotates the vector through
the angle a, the angle subtended by the
vector and the x axis, leaving the vec-
tor lying along the xaxis. Start with the
vector anywhere in the first or fourth
quadrant and an initial value of zero
in z. The first or fourth quadrant is used
because almost all vectors in the sec-
ond or third quadrant will not con-
verge. At the #th step, if y 2 0, the
vector lies in the first quadrant, sub-

Interesting special cases
include exponential,
square root, and
logarithm

tract g, from z. Move the vector closer
to the xaxm rotate it by negative a, by
multiplying by the rotation matrix K-g.
If y < 0, the vector lies in the fourth
quadran[, add g, to z and multiply the
vector by Rg. At the end, z has the
negative of the angle of the original
vector [x, ), tan! Wx=tana.

Changing the sign of a, has no effect
on the computed values of xand yand
leaves the original angle a in z rather
than its negative. With this change, the
inverse algorithm to drive y to zero
becomes the expression shown as in
the algorithm in Example 2(b).

Starting with [x,3,2] and then driving
¥ to zero using the inverse algorithm
leaves behind the quantities in Exam-
ple 3(e).

Hyperbolic Functions

The hyperbolic functions (sinh, cosh,
and so on) are similar to the circular
functions. The correspondences be-
tween these two types of functions are
shown in Table 1.

By analogy, use H_ as the rotation
matrix and represent a using the set 4,

= tanh! 27 for i = 1to n. Notice that for
hyperbolics, a, is 1nf|nlly

Given the change in the a, can we
still represent any angle a within the
domain of convergence the same way
we did for the circular functions? Un-
fortunately, the answer is no! Walther
points out that repeating an occasional
term makes the representation converge
in the hyperbolic case. Repeating the
terms as shown in Example 4(a) does
the trick.

Except for the repeated terms and
some changes of sign, the algorithms
for hyperbolic functions are identical
to the circular functions. Listing One,
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(a)
(b)
(c)
@
(e)

1 : 1 ]
[xy.2 = [E(xms z-ysin z). K(yccsz+xsmz g0]
K=cosap-cosay-...-cosag
[1.0,0] -9[:_(‘ 0,0]

[K.0.a] — [cos a, sin a, 0]

[EAT| —»[:—(\J 2 +)2,0. i lang

Example 3: Circular function quantities

(@)

RN (RN A
4 “13' “40' “121 K "3k

1 A 1 ;
[x,y.z]—)[g(xcush z+ysinh z).K( cosh z + xsinh z),o]

[xyd] = 1:—(\1 220,24 mm‘j
[K.K.a] - [é7, &2, n]
© e }—;['\'r;. . Sina)

la+ 4'542 4

Example 4: Hyperbolic function quantities

(a)
(b)
(c)

(d
(e)

U]

-4

it _‘11 “I' l
{tan”" 1, tan z‘tan e .}
41,1
{tanh 2.1anh e |
RINNE I A s
tan X-X-a 5 7%g ™" forx2£1
£ @
tanh x-x+3 T forx2<1

&, + 4 Kn' + & fI-Z 4.+ 39X+
n1 n-2 1¥+ 389

(- -((anx+ apqlx+apoix+...+ay)x+3ag

Example 5: Quantities for calculating constants

HyperbolicFunction  Circular Function
e*ia¥ ey
cosh x= T COS X= 2
s S (x,y)
' x X ix ix
E sinh x= = sin x = ;
E cosh a sinh a cos a-sin &
: Ha = | sinh a cosh a Ay = |:sinamea]
a i HgHp=Hgz . Rfy=Ra,p
X i e = cosh x + sinh x
4 %1
Inx=2tanh ™ —
x+1
Figure 3: The basic elements Table 1: Hyperbolic functions
31 30 29 28

T— Fractional part (29 bits)

Integer part (2 bits)

Sign bit

Figure 4: Fixed point format
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CORDICALGORITHMS

(continued from page 154)
page 157, shows this in detail.

For hyperbolic functions, we start
with [x,),2] and then drive z to zero.
This yields the quantities in Example
4(b). Starting with [, ,2] and then driv-
ing yto zero gives the quantity shown
in Example 4(c). For hyperbolics, K
= 1.21.

Some interesting special cases include
the exponential, square root, and natu-
ral logarithm. The exponential case is in
Example 4(d) while the square root and
logarithm cases are in Example 4(e).

Calculating the Constants

The algorithm to compute the circular
and hyperbolic functions requires sev-
eral precomputed constants. These in-
clude the scaling constant, K, for both

156

circular and hyperbolic functions, and
the sets shown in Example S(a) and
5(b), respectively. Listing One illustrates
this.

The program, written in C, uses fixed
point arithmetic for all calculations. All
constants and variables used to calcu-
late functions are declared as the type
long. The code assumes that a long is
at least 32 bits. I have decided to repre-
sent numbers in the range — 4 <x < 4;
this lets me represent eas a fixed point
number. The high order bit is for the
sign. The low order fractionBiis (a con-
stant defined as 29) bits hold the frac-
tional part of the number. The remain-
der of the bits between the sign bit and
the fractional part hold the integer part
of the number. Figure 4 shows the fixed
point format in graphic form.

I use power series to calculate the
incremental angles a, as shown in Ex-
ample 5(c) and 5(d), respectively. How
do we know the number of terms nec-
essary to evaluate tan” and tanh to
32 bits of precision? First consider the
value of x for which tan! x = xto 32
bits of precision. A theorem of numeri-
cal analysis states that for an alternat-
ing sum where the absolute values of
the terms decrease monotonically, the
error is less than the absolute value of
the first neglected term. Solving the
equation 2/3 = 232 for x yields x =
3\(.’6 . 2711 therefore for i= 11, tan™ 27 =
2""with 32 bits of precision.

For the higher powers of two, we
need to solve the relation 27/ = 23
for n for each of the cases =1 to 10.
We do not even attempt the calculation
for i = 0. The series for tan'! 1 con-
verges very slowly, even after 500 terms
the third digit is still changing. Fortu-
nately, we know that the answer is /4.
Computing the rest is not as much work.
The array terms has the gory details.

As usual, tanh™! is more perverse. It
is not an alternating sum and does not
meet the conditions of the theorem
used above. Consider the second ne-
glected term of tanh™ /2. Tt is less than
/4 of the first neglected term because
the series includes only every other
power of two. All of the other neglected
terms can have no effect on the 33rd
bit. The series for the other arguments,
4, /s, . . . converges even faster. There-
fore, the number of terms calculated
for tan’! works just as well for tanh™! for
32-bit accuracy.

Before computing the power series,
we still need to compute the coeffi-
cients, 1/k, for each term kb = 1, 3,
5,...27. We fill the coefficient array
long a/28] with odd indices by calling
the routine Reciprocal, which takes two
arguments and returns a long. The first
argument is the integer for the desired

reciprocal. The second specifies the
desired precision for the fractional part
of the result. Reciprocal uses a simple
as can be restoring division; it is the
algorithm we all learned in grade school
for long division. The elements of the
array a with even indices get 0L be-
cause there are no terms in the power
series with even exponents.

Everything is ready to fill the arrays
atan{fractionBits+ 1] and atanblfraction
Bits+1].

The routine Poly2 evaluates the power
series for the specified number of terms
for the specified power of two using
Horner's rule. The coefficients come from
the array a, which we just carefully
filled. Horner's rule is the recommended
method for evaluating polynomials. A
polynomial as in Example 5(e) can be
rewritten as in Example 5(f). This sim-
ple recursive formula evaluates the poly-
nomial with » multiplications and n
additions. We compute the prescaling
constants K by using the method ex-
plained above; in the program we call
these XOC and XOH, for the circular
and hyperbolic constants, respectively.
Program output to this point is shown
in Listing Two, page 158.

The routines Circular, InvertCircii-
lar, Hyperbolic, and InvertHyperbolic
are the C implementations of the algo-
rithms described above, They all take
as arguments the initial values for [x,,2};
they leave their results in the global
variables X, Y, and Z Considering their
versatility and the wide range of func-
tions they compute, these routines are
compact and elegant!
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CORDICALGORITHMS

Listing One (Text begins on page 152.)

/* cordieC.e == J. Pitks Jarvis, III

* cordicC.c computes CORDIC constants and exercises the basic algorithms

* Represents all numbers in fixed point notatien. 1 bit sign,

* longBits-1-n bit integral part, and n bit fractiocnal part. mn=i9 lets us
* represent numbers in the interval [-4, 4) in 32 bit long. Two's

* complement arithmetic is operative here.

e

#define fractionBits 29

#define longBits 32

#define One {010000000000=>1)
#define HalfP1 (014441766521%>1)

/* cordic algorithm identities for circular functions, starting with [x, y. z]
* and then
driving z to 0 gives: [B*(x*cosiz)-y*sinlz)), P*{y*cos(z)+x*sin(z}), 0]
driving y te 0 gives: [Prsqrt(x*24y*2), 0, z+atanly/x)]
where K = 1/P = sqrt(l+l)* . . . *sgrt(1+(2"(-2*%i}))
special cases which compute interesting functions
sin, cos [, O, a] -» [costal, sinda), @]
atan {1, a, 0] -» [sqgrt{il+a2)}/K, 0, atania)]
[%: ¥, @) => [sqre(x"24y"2)/K, 0, atan(y/x)]
for hyperbolic functions, starting with [x, y, 2] and then
driving z to 0 gives: [P*(x*cosh{z)+y*sinh{z}), B*(y*cosh(z)+x*sinh{z)), 0]
driving y to 0 gives: [P*sgrt(x”Z-y"2), 0, z+atanh(y/x)]
where K = 1/P = sqrt{1-(1/2)°2)* . . . *sqret(l-(2"(-2%i}))

sinh, cosh [K, 0O, a] =» [cosh{a), sinhi{a}, O]
exponential (K, K, a] -» [e"a, e"a, 0]
atanh [1, a, 0] -> [sqrt{l-a*2)/K, 0, atanh{a)]
[x, y; 0] -> [sqreix*2-y*2) /K, 0, atanhiy/x}]
1n [a+l, a=-1, O] =-> [2*sqgrt(a)/K, 0, lnia)/2]
sqrt [a+(K/2)%2, a-(K/2)°2, 0] -> [=qreia), 0, Ln{a*(2/K)"2}/2]
sqrt, 1n [a+(K/2)2, a-(K/2)"2, -1n(K/2)] -> [sgrtia}, O, ln(a)/ 2]

for linear functions, starting with [x, ¥, 2] and then
driving z to 0 gives: [x, y#x*z, 0]
driving y to 0 gives: [x, 0, z+y/x]

/

long XOC, ¥OH, XOR; /* seed for circular, hyperbolic, and sguare root */
long OneOverE, E; (* the base of natural logarithms */
long HalfLnXOR; /* constant used in simultanous sqrt, ln computation */

ok R K OE R B R OE N OEE E R E R OE R E AW

/* compute atan{x) and atanh(x) using infinite series

¥ atan{xy = K- /I XS - N+ oL For xt2R 1

* atenhix} =% + x"3/3 + X*5/5 + "WV + ;. .., for x2 <1

* To calcuate these functions te 32 bits of precision, pick

* terms{i] s.t. (42°-i)*(terms[i])}/ (temms[i]) < 2*%-32

* For ®x <= 2"|-11), atan{x) = atanhix) = % with 32 bits of accuracy */
unsigned terms[11]= |0, 27, 14, 9, 7, 5, 4, 4, 3, 3, 3}):
static long a|28], atan[fractionBits+l], atanh[fractionBits+l], X, ¥, Z;
#include <stdio.h> /* putchar iz a marco for some */

f/* Delta is inefficient but pedagogical */
tdefine Delta(n, Z) (Z>=0) 7 (n) : -(n}
bdefine abs(n) (n>=0) 2 (n) : -in)

/* Reciprocal, calculate reciprocol of n to k bits of precision

* @ and r form integer and fractional parts of the dividend respectively */
long
Reciprocal(n, k} unsigned n, ki

unsigned i, &= 1; long = 0;
for {i= 0; ic<=k; +#i) [r += r; if (a>=n} lr +=1; a == n{}; a += a; |
return({a>=n? r+l : r); /* round result */

I

/* ScaledReciprocal, n comes in funny fixed point fraction representation */
long
ScaledReciprocal (n, k) long n; unsigned k;

long a, r=0; unsigned i;
a= 1L=<k;
for (i=0; i<=k; ++i} {r += £; if (a*>=n) {r += 1; a —= n;}; a += a; )¢
return{a>=n? r+l : r}; /* round result */
1

/* Poly? calculates polynomial where the variable is an integral power of 2,
log is the power of 2 of the variable

" n is the order of the polynomial
¥ coefficients are in the array a[l */
long

PolyZ(log, n) int log; unsigned n;

{
long r=0; int i:
for (i=n; i>=0; --i}) r= (log<0? r>>-log : r<<log)+alil;
return(r};

WriteFraction(n) long n;
{

unsigned short i, low, digit; unsigned lonmg k;
putcharin < 0 2 '=* + ' *}); n= gbs(n);
putchar | (n>>fractionBits] + '0'); putchar{’.');
low = k = n << (longBits-fractionBits); /* aligpn octal point at left */
k > 4 /* shift to make room for a decimal digit */
for (i=1; i<=8; ++i)
[
digit = {k *= 10L) »>> {longBits-4];
low = (low & OxE) * 10;
k += ((unsigned long) (low>>4)} - ((unsigned long} digit << (longBits-4});
putchar{digit+'0’};
|
|
WriteRegisters()

printf{™ X: "); WriteVarious(X);
printE (" ¥: "}; WriteVarious(Y);
printf{™ Z: "); WriteVarious(Z);
|
WriteVarious(n] long n:

WriteFraction{n); printE("

Circular{x, ¥, 2z} long x, ¥y, 2;

ine i

X

=& X =5 I=%

far (i=0; i<=fractionBirs; ++i}

L

1
1

¥= A>»i; y= ¥2>1; z= atan[i];
¥ == Delta(y, 2);
¥ += Deltalx, Z);
i -= Delta(z, Zj;

InvertCircular(x, ¥, z) long %, ¥, Z;
{

int i;

X

=% ¥ =4 B=g5

for (i=0; i<=fractionBits; ++i)

{

= X>>i; y= ¥Y>>i; z= atan[i];
X -= Deltaly, -¥)i
i -= Deltaiz, -¥);
Y += Deltafx, -¥);

0x%081x 0%011le’n®, n, n);

(continued on page 158)
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Listing One (Listing continued, text begins on page 152.)

'
Hyperbolicix, y, 2z} long x, y, 2
(

int iy
X=x; Y=y E=2;
for {i=l; i<=fractionBits; ++i)
[
x= X>>i; y= Y>>i; z= atanh[i];
X += Deltaly, Z);
Y += Delta(x, Z);
Z -= Delta(z, 2Z);
if ((i==d)}](i==13))
i

x= X»>>i; y= Y>>i; z= atanh|i];

X += Deltaly, 2]
Y += Deltaix, 2):
i -= Delta(z, 2);

}
!
1
InvertHyperbolic(x, y, 2) lorg %, ¥y, z7
{

int i;
Xmxy Ymy; 3=g;
for (i=1; i<=fractionBits; ++i}

®= X>>i; y= ¥Y>>i; z= atanh[i];

X += Delta(y, -¥);
I -= Delta(z, -Y);
Y += Delta(x, -Y):

if ((im=4) i) (1==13})
[

¥= X>>i; y= Y>»i; z= atanh(il;
X #= Delta(y, -¥);
Z -= Delta(z, -Y){
T += Delta(x, -Y);
t

4

)
Linear(x, y, 2} long %, y, 2

int i;
=2 ¥Y=y; 2= z; z= One;
for (i=1; i<=fractionBits; ++i})
{
x = 1; z = 1; T += Delta(x, Z); I -= Deltalz, Z};
i
i

Invertlinear{x, y, z) long %, y, 2i

int i

Xmyg; ¥Ymy; £=2; 1= One;

for (i=1; i<=fractionBits; ++i)
2 -= Deltalz »>= 1, -¥); ¥ += Deltaix >>= 1, -Y¥);

1

1

FERRE AR AR AR R AT AR RRESRRNERRNRINOAN RN R AR R RN

main ()
|
int i; long £
/*system("date");*//* time stamp the log for UNIX systems */
for (im0; ic=13; ++i)
|
a[2*i]= 0; al2*i+1]= Reciprocal (2*i+l, fractionBits);

i

for (i=0; i<=10; ++i}) atanh[i]= Poly2(-i, terms[i]};

atan[0]= HalfPi/2; /* atan(2"0)= pi/4 */

For (i=1; i<=7; ++i) a(4*i-1]= -a[d*i-1];

for (i=1; i<=10; ++i) atan[i]= Pely2(-i, temms[i]};

for (i=11; i<=fractionBits; ++i) atan|i]= atanh[i]= 1L<<{fractionBits-i);

printf("\natanh{2"-n)\n");

for (i=1; i<el0; ++i) [printf{"%2d ", i); WriteVarious(atanh[i}};}

= 0;

for (i=1; i<miractionBits
r += atanh[i];

r += atanh[4]+atanhil3];

printf{"radius of convergence"); WriteFractien(r);

printf {"\n\natan{2*-n} \n");

for (i=0; i<=10; ++i}{printf("%2d ", i); WriteVariousiatan[i]);]

r= 0; for (i=0; i<=fractionBits; ++i) ¢ 4= atan[il;

printf("radius of convergence"); WriteFractiom(r);

++)

/* all the results reported in the printfs are calculated with my HP-41C */
printf (" \nAn-—mmmmore s em - circular functiong==--—--—-——=cs====== "}
printf ("Grinding on [1, O, 0]\n");
Circular{One, 0L, 0L); WriteRegisters();
print£("\n K: "); WriteVarious(X0C= ScaledReciprocal(X, fractienBits));
print£("\nGrinding on (K, 0, 0]\n"):
Circular(X0C, 0L, OL}; WriteRegisters():
printf ("\nGrinding on [K, 0, pi/6] -» [0.B6602540, 0.50000000, 0}ia%};
Circular (X0C, 0L, HalfPi/3L); WriteRegisters();
printf("\nGrinding on (K, 0, pif4] -> (0.70710678, 0.70710678, 0)\n");
Circular (X0C, 0L, HalfPi/2L}; WriteRegisters{);
printf ("\nGrinding en [K, 0, pi/3] -»> [0.50000000, 0.86602540, 01%n");
Circular (X0C, 0L, 2L*{HalfPi/f3L)); WriteRegisters();
printf{"\n------Inverse functiong------ \n"};
printf ("Grinding on [1, 0, 0]\n"};
InvertCirculari{One, 0L, 0L); WriteRegisters();
printf {"\nGrinding on (1, 1/Z, 0] -» [1.841133%4, 0, 0.46364761]\n");
InvertCircular(One, One/2L, 0L); WriteRegisters({);
printf("\nGrinding on [2, 1, 0] -> [3.68226788, 0, 0.463647611%n");
InvertCircular{One*2L, One, 0L); WriteRegisters();
printf{"\nGrinding on [1, 5/8, 0] -» [1.94193815, 0, 0.53859932]\n");
InvertCircular{One, 5L*[One/8L), OL); WriteRegisters(};
printf {"\nGrinding on [1, 1, 0] -> [2.32887069, 0, 0.78539816]\n") ;
InvertCircular{One, Gne, OL); WriteRegisters(j;
printf ("\n-- -—-hyperbolic functions----=== mmmmmm——————— \n"};

printf("Grinding on [1, 0, O]\n"):
Hyperbolic{One, 0L, OL); WriteRegisters();
printf("\n K: "); WriteVarious(X0H= ScaledReciprocal (¥, fractionBits)}:
printf(" R: "}; XOR= XOH>>1; Linear(X0R, 0L, XO0R); WriteVarious(XOR= Y);f
printf ("\nGrinding on [K, 0, 0]\n");
Hyperbolic (XOH, OL, 0L); WriteRegisters();
printf{"\nGrinding on [K, 0, 1] -> [1.54308064, 1.1752011%, 0]\n"):
Hyperbolic (XOH, 0L, One); WriteRegisters():
printf{"\nGrinding on [K, K, -1] -> [0.36787944, 0.36787944, 0]\n");
Hyperbolic (X0H, X0H, -One); WriteRegisters();
OneOverE = X; /* save value In{lfe} = -1 */
printf(™\nGrinding on [K, K, 1] -> [2.71828183, 2.71828183,
Hyperbolic{X0H, XOH, One}; WriteRegisters():
E = X; /* save value lnfe} = 1 %/
printf("\n=-=--= Inverse functions------ \a")
printf("Grinding on [1, 0, 0]\n");
InvertHyperbolic (One, 0L, 0L); WriteRegisters():
printf("\aGrinding on [1/e + 1, i/e - 1, 0] -> [1.00460806, 0,
-0.50000000]%n") ;
InvertHyperbolic (OneOverE+One, OneOverE-One, 0L); WriteRegisters();
printf("\nGrinding on [e + 1, e - 1, 0] -> [2.73080784, 0, 0.50000000]%n");
InvertHyperbolic {(E+One, E-One, OL); WriteRegisters();:
printf("\nGrinding on {1/2)*1n(3) -> [0.71720703, 0, 0.54930614)\n");
InvertHyperbolic (One, One/2L, OL); WriteRegisters():
printf {"\nGrinding on [3/2, -1/2, 0] =-> [1.17119417, 0, -0.34657359]%n"};
InvertHyperbolic (One+{One/2L}, -{One/2L), OL); WriteRegisters();
printf{"\nGrinding on sqrt(1/2) -> [0.70710678, 0, 0.15802389)\n");
InvertHyperbolic {One/2L+X0R, One/2L-XO0R, OL); WriteRegisters();
printf{"\nGrinding on sqrt (1} -> [1.00000000, 0, 0.50449748]\n");
InvertHyperbolic (One+X0R, One-XOR, OL); WriteRegisters();
HalflnX0R = Z;
printf{"\nGrinding on sqrt(2) —> [1.41421356, 0, 0.85117107)\n"):
InvertHyperbolic (One*2L+X0R, One*ZL-XOR, OL}; WriteRegisters():
printf{"\nGrinding on sqrt{1/2), In{i/2)/2 -> [0.7T0710678, O,
=-0.34657359])\n"} ¢
InvertHyperbolic (One/2L+X0R, One/2L-X0R, -HalfLnXOR); WriteRegisters({);:
printf("\nGrinding on sgrt(3)/2, 1ln(3/4)/2 -> [0.86602540, 0,
~0.14384104]\n");
[3L*0ne/4L)-X0R, -HalfLnXOR);

R

InvertHyperbolic [ {3L*One/4L) +X0R,
WriteRegisters();

printf ("\nGrinding on sgrti{2), 1ni{2)/2 -> [1.41421356, 0, 0.34657353]\n"};
InvertHyperbolic [One*2L+X0R, One*2L-X0R, -HalfLnXOR);

WriteRegisters();

exit (D)

!
End Listing One
Listing Two
atanh {2*-n})
1 0.54930614 Ox119%3ea7a 002144765172
2 0.25541281  0x082c377d 001013053575
3 0.12565721  0x04056247 000401261107
4 0.06258157  0x0200abll 000200125421
5 0.03126017  0x01001558 000100012530
6 0.01562627 0x00&002aa 000040001252
T 0.00781265  0x00400035 000020000125
8  0.00390626 0x0020000a 000010000012
5 0.00185312  0x00100001 000004000001
10 0.00097656  0x00080000 000002000000
radius of convergence 1.11817300
atan {26-n)
0 0.78539816 0x1921fb54 003110375524
1 0.46364760 Ox0ed63382 001665431502
2 0.24497866 0x07déddle 000765556576
3 0.12435499  O0x03fab?53 000376533523
4 0.06241880 O0x01f£55bb 000177652673
5 0.03123983  Ox00ffeasd 000077765255
6 0.01562372  Ox007££455 000037776325
7 0.00781233  O0x003fffaa 000017777652
8 0.00390622 OxQ01££££5 000007777765
9 0.00195312 0x000ffffe 000003777776
10 0.00097656  0xQ007LELf 00000LITITIT
radius of convergence 1.74328660
mewmm=s gircular functiong -—--ss-=-msmmmmmees
K: 0.60725293 Ox136e3db3 (102333516663
——————— hyperbolic functiopg —-==———==—<===c==
K: 1.20749708 Ox26a3d0ed 004650750355
R: 0.36451229 Oxbaalibl 001352412661
End Listings
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