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Introduction
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" Pipelining become universal technique in 1985
= Qverlaps execution of instructions
= Exploits “Instruction Level Parallelism”

" Beyond this, there are two main approaches:

®" Hardware-based dynamic approaches
= Used in server and desktop processors
= Not used as extensively in PMP processors

= Compiler-based static approaches
= Not as successful outside of scientific applications




Instruction-Level Parallelism
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" When exploiting instruction-level parallelism,
goal is to maximize CPI

" Pipeline CPI =
= |deal pipeline CPI +
= Structural stalls +
= Data hazard stalls +
= Control stalls

" Parallelism with basic block is limited
= Typical size of basic block = 3-6 instructions
= Must optimize across branches




Data Dependence

" | oop-Level Parallelism
= Unroll loop statically or dynamically
= Use SIMD (vector processors and GPUs)
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= Challenges:

= Data dependency

= |nstruction j is data dependent on instruction i if
= |nstruction / produces a result that may be used by instruction j

= |nstruction j is data dependent on instruction k and instruction k
is data dependent on instruction j

" Dependent instructions cannot be executed
simultaneously




Data Dependence

= Dependencies are a property of programs

" Pipeline organization determines if dependence
is detected and if it causes a stall
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® Data dependence conveys:
= Possibility of a hazard
= Qrder in which results must be calculated

= Upper bound on exploitable instruction level
parallelism

"= Dependencies that flow through memory
locations are difficult to detect




Name Dependence

® Two instructions use the same name but no flow
of information

®" Not a true data dependence, but is a problem when
reordering instructions
= Antidependence: instruction j writes a register or
memory location that instruction i reads
= |nitial ordering (i before j) must be preserved
= Qutput dependence: instruction i and instruction |
write the same register or memory location
= Ordering must be preserved

" To resolve, use renaming techniques
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Other Factors
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" Data Hazards
= Read after write (RAW)
= Write after write (WAW)
= Write after read (WAR)

= Control Dependence

= QOrdering of instruction i with respect to a branch
Instruction

= |nstruction control dependent on a branch cannot be moved
before the branch so that its execution is no longer controller
by the branch

= An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch




Examples
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Example 1: ® OR instruction dependent
DADDU R1,R2,R3 on DADDU and DSUBU
BEQZ R4,L

DSUBU R1,R1,R6

OR R7,R1,R8

Example 2: " Assume R4 isn’'t used after
DADDU R1,R2,R3 skip

BEQZ R12,skip

DSUBU R4,R5,R6

DADDU R5,R4,R9
skip:

OR R7,R8,R9

= Possible to move DSUBU
before the branch




Compiler Techniques for Exposing ILP

" Pipeline scheduling

= Separate dependent instruction from the
source instruction by the pipeline latency of
the source instruction

" Example:
for (i=999; i>=0; i=i-1)
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Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0




Pipeline Stalls

Loop: L.D FO,0(R1)
stall
ADD.D F4,FO,F2
stall
stall
S.D F4,0(R1)
DADDUI R1,R1,#-8
stall (assume integer load latency is 1)
BNE R1,R2,Loop
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Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

Load double Store double 0




Pipeline Scheduling

Scheduled code:

Loop: L.D FO,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,FO,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop
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Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

Load double Store double 0




Loop Unrolling

" Loop unrolling
" Unroll by a factor of 4 (assume # elements is divisible by 4)

= Eliminate unnecessary instructions
Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1) ;drop DADDUI & BNE
L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1) ;drop DADDUI & BNE
L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D F12,-16(R1) ;drop DADDUI & BNE
L.D F14,-24(R1)
ADD.D F16,F14,F2
S.D F16,-24(R1) " note: number
DADDUI R1,R1,#-32 of live registers

BNE R1,R2,Loop vs. original loop
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Loop Unrolling/Pipeline Scheduling

= Pjpeline schedule the unrolled loop:
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Loop: L.D FO,0(R1)
L.D F6,-8(R1)
L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.D F4,F0,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
S.D F4,0(R1)
S.D F8,-8(R1)
DADDUI R1,R1,#-32
S.D F12,16(R1)
S.D F16,8(R1)
BNE R1,R2,Loop




Strip Mining

® Unknown number of loop iterations?
= Number of iterations = n
= Goal: make k copies of the loop body

" Generate pair of loops:
" First executes n mod k times
= Second executes n/ k times
= “Strip mining”
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Branch Prediction

= Basic 2-bit predictor:
= For each branch:
= Predict taken or not taken
= |f the prediction is wrong two consecutive times, change prediction
= Correlating predictor:
= Multiple 2-bit predictors for each branch
= One for each possible combination of outcomes of preceding n
branches
® | ocal predictor:
= Multiple 2-bit predictors for each branch

= One for each possible combination of outcomes for the last n
occurrences of this branch
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" Tournament predictor:
= Combine correlating predictor with local predictor




Branch Prediction Performance
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Dynamic Scheduling

® Rearrange order of instructions to reduce
stalls while maintaining data flow
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" Advantages:

= Compiler doesn’t need to have knowledge of
microarchitecture

= Handles cases where dependencies are
unknown at compile time

" Disadvantage:




Dynamic Scheduling

" Dynamic scheduling implies:
= Qut-of-order execution
= QOut-of-order completion

" Creates the possibility for WAR and WAW
hazards

®" Tomasulo’'s Approach
" Tracks when operands are available
" |Introduces register renaming in hardware

N/ /\ \ /) ~N \NA//A LD I
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_|_Register Renaming
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= Example:
DIV.D FO,F2,F4
ADD.D F6,F0,F8 antidependence
S.D F6,0(R1)
SUB.D F8SF10.F14 antidependence

MUL.D F6,F10,F8

+ name dependence with F6




Register Renaming

" Example:
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DIV.D FO,F2,F4
ADD.D S,FO,F8
S.D S,0(R1)
SUB.D T,F10,F14
MUL.D F6,F10,T

" Now only RAW hazards remain, which can be strictly
ordered




Register Renaming

" Register renaming is provided by reservation stations
(RS)
= Contains:
" The instruction
= Buffered operand values (when available)

= Reservation station number of instruction providing
the operand values

= RS fetches and buffers an operand as soon as it becomes
available (not necessarily involving register file)
= Pending instructions designate the RS to which they will send
their output
= Result values broadcast on a result bus, called the common data bus (CDB)

= Only the last output updates the register file

= As instructions are issued, the register specifiers are renamed
with the reservation station
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Tomasulo’s Algorithm

" | oad and store buffers

" Contain data and addresses, act like
reservation stations
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Instruction
quele

" Top-level design: e

operations

Floating-point Operand
operations buses
Store buffers
[ R ¥ Load buffers

Y
Operaticn bus
¥ r L - - ¥
2 - I 2
2 Reservation 1
1 stations
Data y Address .
Memory unit FP multipliers
Common data bus (CDE)

FF registers |




Tomasulo’s Algorithm

" Three Steps:

= |ssue
= Get next instruction from FIFO queue

= |f available RS, issue the instruction to the RS with operand values if
available

= |If operand values not available, stall the instruction
= Execute

= When operand becomes available, store it in any reservation
stations waiting for it

= When all operands are ready, issue the instruction

= Loads and store maintained in program order through effective
address

= No instruction allowed to initiate execution until all branches that
proceed it in program order have completed

= Write result
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= Write result on CDB into reservation stations and store buffers
= (Stores must wait until address and value are received)




Example

Instruction status
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Instruction Issue Execute Write Result
L.D F6,32(R2) N N y
L.D F2,44(R3) N] N
MUL.D  FO,F2,F4 N
SUB.D  F8,F2,F6 N
DIV.D  F10,F0,F6 Y
ADD.D  F6,F8,F2 y

Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl No
Load2 Yes Load 44 + Regs[R3]
Add1 Yes SUB Mem[32 + Regs[R2]]  Load2
Add2 Yes ADD Addl Load?2
Add3 No
Mult1 Yes MUL Regs [F4] Load2
Mult2 Yes DIV Mem[32 + Regs[R2]]  Multl

Register status

Field FO F2 F4 F6 F8 F10 F12 ... F30
Qi Mult1 Load2 Add2 Addl Muli2

MK
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Hardware-Based Speculation

" Execute instructions along predicted
execution paths but only commit the
results if prediction was correct

" Instruction commit: allowing an instruction
to update the register file when instruction
IS no longer speculative

® Need an additional piece of hardware to
prevent any irrevocable action until an
instruction commits
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= |.e. updating state or taking an execution




Reorder Buffer

" Reorder buffer — holds the result of
instruction between completion and
commit
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® Four fields:
" |nstruction type: branch/store/register
= Destination field: register number
= Value field: output value
= Ready field: completed execution?




Reorder Buffer

" Register values and memory values are
not written until an instruction commits

= On misprediction:
= Speculated entries in ROB are cleared
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" EXxceptions:
= Not recognized until it is ready to commit




Multiple Issue and Static Scheduling

® To achieve CPI < 1, need to complete
multiple instructions per clock

® Solutions:
= Statically scheduled superscalar processors
= VLIW (very long instruction word) processors

= dynamically scheduled superscalar
processors
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=
" c
=
Multiple Issue g
®
n
2
Issue Hazard Distinguishing %
Common name structure detection  Scheduling characteristic Examples m
Superscalar Dynamic Hardware Static In-order execution Mostly in the 8_
(static) embedded space: wn
MIPS and ARM, o
including the ARM =
Coretex A8 &
2
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present o
(dynamic) execution, but no C:l;-
speculation 8'
Superscalar Dynamic Hardware Dynamic with  Out-of-order execution Intel Core 13, 15.17; g
(speculative) speculation with speculation AMD Phenom: IBM Q
Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in
software and indicated by compiler  signal processing.
(often implicitly) such as the TT Céx
EPIC Primarilystatic Primarily Mostly static ~ All hazards determined [tanium
software and indicated explicitly
by the compiler
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VLIW Processors

" Package multiple operations into one
instruction

" Example VLIW processor:
" One integer instruction (or branch)
= Two independent floating-point operations
" Two independent memory references
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" Must be enough parallelism in code to fill
the available slots




VLIW Processors

" Disadvantages.:
= Statically finding parallelism
= Code size
" No hazard detection hardware
" Binary code compatibility
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Dynamic Scheduling, Multiple Issue, and Speculation

® Modern microarchitectures:

*= Dynamic scheduling + multiple issue +
speculation

" Two approaches:

= Assign reservation stations and update
pipeline control table in half clock cycles
= Only supports 2 instructions/clock

= Design logic to handle any possible
dependencies between the instructions

= Hybrid approaches
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Overview of Design

Rearder buffer
From instruction unit

Y
) Reg # 4 L Data
Instruction 1
queus

Integer and FP registers
Load/store
operations

i _ _ Operand
Address unit Floating-point buses
operations ]
L Load buffers ] ¥

L 3

Operation bus

Store 3 I
address 2 Reservation
Store 1 stations
data § Address
Memory unit
Load
data Common data bus (CDB)
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Multiple Issue

® | imit the number of instructions of a given
class that can be issued in a “bundle”

" |.e. on FP, one integer, one load, one store

® Examine all the dependencies amoung the
instructions in the bundle

® |f dependencies exist in bundle, encode
them in reservation stations
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Example

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 :increment R2
SD R2,0(R1) ;store result
DADDIU R1,R1,#8 ;increment pointer
BNE R2,R3,LOOP ;branch if not last element
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Example (No Speculation)

Memory

Issues at Executesat  access at Write CDB at
Iteration clock cycle clock cycle clock cycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU R2,R2,#1 1 5 6 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2,R3,L00P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11 12 Wait for LW
2 SD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE RZ,R3,L00P 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2,R2,#1 7 17 18 Wait for LW
3 SD Rz,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE
3 BNE RZ,R3,L00P 9 19 Wait for DADDIU

MK
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Example

Write

Issues Executes Readaccess CDB at Commits
Iteration atclock atclock at clock clock at clock
number Instructions number number number number number Comment
1 LD R2,0(R1) 1 2 3 4 5 First issue
1 DADDIU R2,RZ2,#1 1 5 6 7 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 5 Commit in order
1 BNE R2,R3,LO0P 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 9 No execute delay
2 DADDIU R2,R2,#1 4 8 10 Wait for LW
2 SD R2,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE R2,R3,LO0P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW
3 SD R2,0(R1) 8 9 13 Wait for DADDIU
3 DADDIU R1,R1,#8 B 0 10 14 Executes earlier
3 BNE R2,R3,LO0P 9 13 14 Wait for DADDIU

MK
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Branch-Target Buffer

" Need high instruction bandwidth!

= Branch-Target buffers
= Next PC prediction buffer, indexed by current PC
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Branch Folding

® Optimization:
" Larger branch-target buffer

= Add target instruction into buffer to deal with
longer decoding time required by larger buffer

" “Branch folding”
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Return Address Predictor

® Most unconditional branches come from
function returns

®" The same procedure can be called from
multiple sites

= Causes the buffer to potentially forget about
the return address from previous calls

= Create return address buffer organized
as a stack
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Integrated Instruction Fetch Unit

® Design monolithic unit that performs:
= Branch prediction

" |nstruction prefetch
* Fetch ahead

" |nstruction memory access and buffering
* Deal with crossing cache lines
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Register Renaming

= Register renaming vs. reorder buffers

Instead of virtual registers from reservation stations and
reorder buffer, create a single register pool

= Contains visible registers and virtual registers
Use hardware-based map to rename registers during issue
WAW and WAR hazards are avoided
Speculation recovery occurs by copying during commit
Still need a ROB-like queue to update table in order
Simplifies commit:

= Record that mapping between architectural register and physical register
is no longer speculative

" Free up physical register used to hold older value
* In other words: SWAP physical registers on commit

Physical register de-allocation is more difficult
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Integrated Issue and Renaming

® Combining instruction issue with register
renaming:
" |ssue logic pre-reserves enough physical
registers for the bundle (fixed number?)

" |ssue logic finds dependencies within
bundle, maps registers as necessary

" |ssue logic finds dependencies between
current bundle and already in-flight bundles,
maps registers as necessary
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How Much?

®" How much to speculate

" Mis-speculation degrades performance and
power relative to no speculation
* May cause additional misses (cache, TLB)

" Prevent speculative code from causing
higher costing misses (e.g. L2)

= Speculating through multiple branches
= Complicates speculation recovery
= No processor can resolve multiple branches
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Energy Efficiency

® Speculation and energy efficiency

" Note: speculation is only energy efficient
when it significantly improves performance

® \alue prediction

= Uses:
* Loads that load from a constant pool

* |[nstruction that produces a value from a small set
of values
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= Not been incorporated into modern




