
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors

 Compiler-based static approaches
 Not as successful outside of scientific applications

Introduc tion

3Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to maximize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduc tion

4Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduc tion

5Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduc tion

6Copyright © 2012, Elsevier Inc. All rights reserved.

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location

 Ordering must be preserved

 To resolve, use renaming techniques

Introduc tion

7Copyright © 2012, Elsevier Inc. All rights reserved.

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controller
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduc tion

8Copyright © 2012, Elsevier Inc. All rights reserved.

Examples
 OR instruction dependent

on DADDU and DSUBU

 Assume R4 isn’t used after
skip
 Possible to move DSUBU

before the branch

Introduc tion• Example 1:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R1,R6

L: …
OR R7,R1,R8

• Example 2:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR R7,R8,R9

9Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Techniques for Exposing ILP

 Pipeline scheduling
 Separate dependent instruction from the

source instruction by the pipeline latency of
the source instruction

 Example:
for (i=999; i>=0; i=i-1)

 x[i] = x[i] + s;

C
om

pile r Techn iques

10Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Stalls

Loop: L.D F0,0(R1)
stall
ADD.D F4,F0,F2
stall
stall
S.D F4,0(R1)
DADDUI R1,R1,#-8
stall (assume integer load latency is 1)
BNE R1,R2,Loop

C
om

pile r Techn iques

11Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Scheduling

Scheduled code:
Loop: L.D F0,0(R1)

 DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop

C
om

pile r Techn iques

12Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling

 Loop unrolling
 Unroll by a factor of 4 (assume # elements is divisible by 4)
 Eliminate unnecessary instructions

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D F4,0(R1) ;drop DADDUI & BNE

L.D F6,-8(R1)

ADD.D F8,F6,F2
S.D F8,-8(R1) ;drop DADDUI & BNE

L.D F10,-16(R1)

ADD.D F12,F10,F2
S.D F12,-16(R1) ;drop DADDUI & BNE

L.D F14,-24(R1)
ADD.D F16,F14,F2

S.D F16,-24(R1)

DADDUI R1,R1,#-32
BNE R1,R2,Loop

C
om

pile r Techn iques

 note: number
of live registers
vs. original loop

13Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling/Pipeline Scheduling

 Pipeline schedule the unrolled loop:

Loop: L.D F0,0(R1)

L.D F6,-8(R1)
L.D F10,-16(R1)

L.D F14,-24(R1)

ADD.D F4,F0,F2
ADD.D F8,F6,F2

ADD.D F12,F10,F2

ADD.D F16,F14,F2
S.D F4,0(R1)

S.D F8,-8(R1)

DADDUI R1,R1,#-32
S.D F12,16(R1)

S.D F16,8(R1)
BNE R1,R2,Loop

C
om

pile r Techn iques

14Copyright © 2012, Elsevier Inc. All rights reserved.

Strip Mining

 Unknown number of loop iterations?
 Number of iterations = n
 Goal: make k copies of the loop body
 Generate pair of loops:

 First executes n mod k times
 Second executes n / k times
 “Strip mining”

C
om

pile r Techn iques

15Copyright © 2012, Elsevier Inc. All rights reserved.

Branch Prediction

 Basic 2-bit predictor:
 For each branch:

 Predict taken or not taken
 If the prediction is wrong two consecutive times, change prediction

 Correlating predictor:
 Multiple 2-bit predictors for each branch
 One for each possible combination of outcomes of preceding n

branches
 Local predictor:

 Multiple 2-bit predictors for each branch
 One for each possible combination of outcomes for the last n

occurrences of this branch
 Tournament predictor:

 Combine correlating predictor with local predictor

B
ranch P

redict ion

16Copyright © 2012, Elsevier Inc. All rights reserved.

Branch Prediction Performance
B

ranch P
redict ion

Branch predictor performance

17Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling

 Rearrange order of instructions to reduce
stalls while maintaining data flow

 Advantages:
 Compiler doesn’t need to have knowledge of

microarchitecture
 Handles cases where dependencies are

unknown at compile time

 Disadvantage:
 Substantial increase in hardware complexity
 Complicates exceptions

B
ranch P

redict ion

18Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling

 Dynamic scheduling implies:
 Out-of-order execution
 Out-of-order completion

 Creates the possibility for WAR and WAW
hazards

 Tomasulo’s Approach
 Tracks when operands are available
 Introduces register renaming in hardware

 Minimizes WAW and WAR hazards

B
ranch P

redict ion

19Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming

 Example:

DIV.D F0,F2,F4

ADD.D F6,F0,F8

S.D F6,0(R1)

SUB.D F8,F10,F14

MUL.D F6,F10,F8

+ name dependence with F6

B
ranch P

redict ion

antidependence

antidependence

20Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming

 Example:

DIV.D F0,F2,F4

ADD.D S,F0,F8

S.D S,0(R1)

SUB.D T,F10,F14

MUL.D F6,F10,T

 Now only RAW hazards remain, which can be strictly
ordered

B
ranch P

redict ion

21Copyright © 2012, Elsevier Inc. All rights reserved.

Register Renaming

 Register renaming is provided by reservation stations
(RS)

 Contains:
 The instruction
 Buffered operand values (when available)
 Reservation station number of instruction providing

the operand values
 RS fetches and buffers an operand as soon as it becomes

available (not necessarily involving register file)
 Pending instructions designate the RS to which they will send

their output
 Result values broadcast on a result bus, called the common data bus (CDB)

 Only the last output updates the register file
 As instructions are issued, the register specifiers are renamed

with the reservation station
 May be more reservation stations than registers

B
ranch P

redict ion

22Copyright © 2012, Elsevier Inc. All rights reserved.

Tomasulo’s Algorithm

 Load and store buffers
 Contain data and addresses, act like

reservation stations

 Top-level design:

B
ranch P

redict ion

23Copyright © 2012, Elsevier Inc. All rights reserved.

Tomasulo’s Algorithm

 Three Steps:
 Issue

 Get next instruction from FIFO queue
 If available RS, issue the instruction to the RS with operand values if

available
 If operand values not available, stall the instruction

 Execute
 When operand becomes available, store it in any reservation

stations waiting for it
 When all operands are ready, issue the instruction
 Loads and store maintained in program order through effective

address
 No instruction allowed to initiate execution until all branches that

proceed it in program order have completed
 Write result

 Write result on CDB into reservation stations and store buffers
 (Stores must wait until address and value are received)

B
ranch P

redict ion

24Copyright © 2012, Elsevier Inc. All rights reserved.

Example
B

ranch P
redict ion

25Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware-Based Speculation

 Execute instructions along predicted
execution paths but only commit the
results if prediction was correct

 Instruction commit: allowing an instruction
to update the register file when instruction
is no longer speculative

 Need an additional piece of hardware to
prevent any irrevocable action until an
instruction commits
 I.e. updating state or taking an execution

B
ranch P

redict ion

26Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Reorder buffer – holds the result of
instruction between completion and
commit

 Four fields:
 Instruction type: branch/store/register
 Destination field: register number
 Value field: output value
 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead

of functional unit

B
ranch P

redict ion

27Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Register values and memory values are
not written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

B
ranch P

redict ion

28Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete
multiple instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 dynamically scheduled superscalar

processors

M
ultiple Issue and S

ta tic S
ch eduling

29Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue
M

ultiple Issue and S
ta tic S

ch eduling

30Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one
instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in code to fill
the available slots

M
ultiple Issue and S

ta tic S
ch eduling

31Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

ta tic S
ch eduling

32Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue +

speculation

 Two approaches:
 Assign reservation stations and update

pipeline control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible
dependencies between the instructions

 Hybrid approaches

 Issue logic can become bottleneck

D
ynam

i c S
che duling, M

ultiple Issue, and S
p eculati on

33Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

i c S
che duling, M

ultiple Issue, and S
p eculati on

Overview of Design

34Copyright © 2012, Elsevier Inc. All rights reserved.

 Limit the number of instructions of a given
class that can be issued in a “bundle”
 I.e. on FP, one integer, one load, one store

 Examine all the dependencies amoung the
instructions in the bundle

 If dependencies exist in bundle, encode
them in reservation stations

 Also need multiple completion/commit

D
ynam

i c S
che duling, M

ultiple Issue, and S
p eculati on

Multiple Issue

35Copyright © 2012, Elsevier Inc. All rights reserved.

Loop:LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element

D
ynam

i c S
che duling, M

ultiple Issue, and S
p eculati on

Example

36Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

i c S
che duling, M

ultiple Issue, and S
p eculati on

Example (No Speculation)

37Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

i c S
che duling, M

ultiple Issue, and S
p eculati on

Example

38Copyright © 2012, Elsevier Inc. All rights reserved.

 Need high instruction bandwidth!
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

Branch-Target Buffer

39Copyright © 2012, Elsevier Inc. All rights reserved.

 Optimization:
 Larger branch-target buffer
 Add target instruction into buffer to deal with

longer decoding time required by larger buffer
 “Branch folding”

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

Branch Folding

40Copyright © 2012, Elsevier Inc. All rights reserved.

 Most unconditional branches come from
function returns

 The same procedure can be called from
multiple sites
 Causes the buffer to potentially forget about

the return address from previous calls
 Create return address buffer organized

as a stack

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

Return Address Predictor

41Copyright © 2012, Elsevier Inc. All rights reserved.

 Design monolithic unit that performs:
 Branch prediction
 Instruction prefetch

 Fetch ahead
 Instruction memory access and buffering

 Deal with crossing cache lines

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

Integrated Instruction Fetch Unit

42Copyright © 2012, Elsevier Inc. All rights reserved.

 Register renaming vs. reorder buffers
 Instead of virtual registers from reservation stations and

reorder buffer, create a single register pool
 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue
 WAW and WAR hazards are avoided
 Speculation recovery occurs by copying during commit
 Still need a ROB-like queue to update table in order
 Simplifies commit:

 Record that mapping between architectural register and physical register
is no longer speculative

 Free up physical register used to hold older value
 In other words: SWAP physical registers on commit

 Physical register de-allocation is more difficult

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

Register Renaming

43Copyright © 2012, Elsevier Inc. All rights reserved.

 Combining instruction issue with register
renaming:
 Issue logic pre-reserves enough physical

registers for the bundle (fixed number?)
 Issue logic finds dependencies within

bundle, maps registers as necessary
 Issue logic finds dependencies between

current bundle and already in-flight bundles,
maps registers as necessary

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

Integrated Issue and Renaming

44Copyright © 2012, Elsevier Inc. All rights reserved.

 How much to speculate
 Mis-speculation degrades performance and

power relative to no speculation
 May cause additional misses (cache, TLB)

 Prevent speculative code from causing
higher costing misses (e.g. L2)

 Speculating through multiple branches
 Complicates speculation recovery
 No processor can resolve multiple branches

per cycle

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

How Much?

45Copyright © 2012, Elsevier Inc. All rights reserved.

 Speculation and energy efficiency
 Note: speculation is only energy efficient

when it significantly improves performance

 Value prediction
 Uses:

 Loads that load from a constant pool
 Instruction that produces a value from a small set

of values
 Not been incorporated into modern

processors
 Similar idea--address aliasing prediction--is

used on some processors

A
dv. Te chnique s for In structio n D

eliv ery and S
pecu lation

Energy Efficiency

