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Introduction
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= SIMD architectures can exploit significant data-
level parallelism for:
" matrix-oriented scientific computing
®" media-oriented image and sound processors

= SIMD is more energy efficient than MIMD
= Only needs to fetch one instruction per data operation
= Makes SIMD attractive for personal mobile devices

= SIMD allows programmer to continue to think
sequentially




SIMD Parallelism
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" \Vector architectures
= SIMD extensions
® Graphics Processor Units (GPUSs)

" For x86 processors:
= Expect two additional cores per chip per year
= SIMD width to double every four years

= Potential speedup from SIMD to be twice that from
MIMD!




Vector Architectures

" Basic idea:
= Read sets of data elements into “vector registers”
= Operate on those registers
= Disperse the results back into memory
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" Registers are controlled by compiler
= Used to hide memory latency
= | everage memory bandwidth




VMIPS

= Example architecture: VMIPS
" | oosely based on Cray-1

= Vector registers
= Each register holds a 64-element, 64 bits/element vector
= Register file has 16 read ports and 8 write ports
= Vector functional units
= Fully pipelined
= Data and control hazards are detected
= Vector load-store unit
= Fully pipelined
= One word per clock cycle after initial latency
= Scalar registers

= 32 general-purpose registers
= 32 floating-point registers

S81N}08HYDIY JOJOB/




VMIPS Instructions

= ADDVV.D: add two vectors
= ADDVS.D: add vector to a scalar
" |LV/SV: vector load and vector store from address
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= Example: DAXPY

L.D FO,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,FO ; vector-scalar multiply
LV V3,Ry - load vector Y

ADDVV V4,\VV2,V3 ; add

SV Ry,V4 ; store the result

= Requires 6 instructions vs. almost 600 for MIPS




Vector Execution Time

= Execution time depends on three factors:
= | ength of operand vectors
= Structural hazards
= Data dependencies
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" VMIPS functional units consume one element
per clock cycle

= Execution time is approximately the vector length

= Convey

= Set of vector instructions that could potentially
execute together




Chimes

= Sequences with read-after-write dependency
hazards can be in the same convey via chaining
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® Chaining
= Allows a vector operation to start as soon as the

individual elements of its vector source operand
become available

= Chime
= Unit of time to execute one convey
" m conveys executes in m chimes
= For vector length of n, requires m x n clock cycles




Example
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LV V1,Rx ;load vector X
MULVS.D V2,V1,FO ;vector-scalar multiply
LV V3,Ry ‘load vector Y
ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum
Convoys:

1 LV MULVS.D

2 LV ADDVV.D

3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles




= Assume the same as Cray-1

Challenges

= Start up time

Latency of vector functional unit
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* Floating-point add => 6 clock cycles

* Floating-point multiply => 7 clock cycles
* Floating-point divide => 20 clock cycles
" Vector load => 12 clock cycles

" Improvements:

> 1 element per clock cycle

Non-64 wide vectors

IF statements in vector code

Memory system optimizations to support vector processors
Multiple dimensional matrices

Sparse matrices

Programming a vector computer




Multiple Lanes

= Element n of vector register A is “hardwired” to element

n of vector register B
= Allows for multiple hardware lanes
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Vector Length Register

= Vector length not known at compile time?
= Use Vector Length Register (VLR)

= Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { I"outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a * X][i] + Y[i] ; /*main operation*/
low = low + VL, /*start of next vector*/
VL = MVL,; /*reset the length to maximum vector length*/

Valueof] 0 1 2 3 . ML
Range of i ] i (e MWL) (m+ 2 MVL) ... (1= MWL)
(m-1) (m-1)  (m-1)  (m-1) (n-1)

+MVL  +2xMVL  +3xMVL
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Vector Mask Registers
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= Consider:
for (i=0;i<64; i=i+1)
if (X[i] != 0)
X[i] = X[i] = Y[i];
= Use vector mask register to “disable” elements:
LV V1,Rx ‘load vector X into V1
LV V2,Ry ‘load vector Y
L.D FO,#0 ‘load FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1,V1,V2 'subtract under vector mask
SV Rx,V1 ‘store the result in X

" GFLOPS rate decreases!




Memory Banks

" Memory system must be designed to support high
bandwidth for vector loads and stores

= Spread accesses across multiple banks
= Control bank addresses independently
= | oad or store non sequential words
= Support multiple vector processors sharing the same memory
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" Example:
= 32 processors, each generating 4 loads and 2 stores/cycle
= Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
= How many memory banks needed?




Stride

= Consider:
for (i=0;i<100; i=i+1)
for (j = 0;j < 100; j=j+1) {
Alilf] = 0.0;
for (k = 0; k < 100; k=k+1)
Alill] = Alil0] + Blilk] * DIK]LI;
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=  Must vectorize multiplication of rows of B with columns of D
= Use non-unit stride

=  Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
= #banks / LCM(stride,#banks) < bank busy time




for (i=0;i<n;i=i+1)
A[KIi]] = AIKi]] + C[MIi]};

<

_|_Scatter-Gather
>

= Consider: %

= Use index vector:

LV VK, Rk load K
LVI  Va, (Ra+Vk) load A[K]]]
LV Vm, Rm ‘load M

LVI V¢, (Re+Vm)  :load C[M[]]
ADDVV.D Va, Va, Vc ‘add them

SVI (Ra+Vk), Va  ;store AIK[]]




Programming Vec. Architectures

= Compilers can provide feedback to programmers
" Programmers can provide hints to compiler
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Operations executed  Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized  with programmer aid hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 95.1% 94.5% 1.00
FLO52 01.5% 88.7% N/A
ARC3D 01.1% 92.0% 1.01
SPEC77 90.3% 90.4% 1.07
MDG 87.7% 04.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 91.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06
QCD 4.2% 75.1% 2.15

MK
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SIMD Extensions

" Media applications operate on data types narrower than
the native word size

= Example: disconnect carry chains to “partition” adder

® | imitations, compared to vector instructions:
= Number of data operands encoded into op code

®= No sophisticated addressing modes (strided, scatter-
gather)

= No mask registers
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SIMD Implementations

" |mplementations:
" Intel MMX (1996)
= Eight 8-bit integer ops or four 16-bit integer ops
= Streaming SIMD Extensions (SSE) (1999)
= Eight 16-bit integer ops
= Four 32-bit integer/fp ops or two 64-bit integer/fp ops

= Advanced Vector Extensions (2010)
= Four 64-bit integer/fp ops
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= Operands must be consecutive and aligned memory
locations




w

Example SIMD Code 5
2l

= Example DXPY: S
L.D FO,a ‘load scalar a .
MOV F1, FO ;copy a into F1 for SIMD MUL g
MOV F2, FO ;copy a into F2 for SIMD MUL U
MOV F3, FO ;copy a into F3 for SIMD MUL i
DADDIU R4,Rx,#512 ;last address to load =
Loop: L.4D F4,0[Rx] Jload X[i], X[i+1], X[i+2], X[i+3] ‘i
MUL.4D F4,F4,FO axX[i],axX[i+1],axX[i+2],axX[i+3] e
L.4D F8,0[Ry] Jload Y[i], Y[i+1], Y[i+2], Y[i+3] E
ADD.4D F8,F8,F4 axX[i]+Y[il, ..., axX[i+3]+Y[i+3] §
S.4D O[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] ;é:__

DADDIU Rx,Rx,#32 :increment index to X
DADDIURy,Ry#32 ;incrementindextoY
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ‘check if done




Roofline Performance Model

" Basic idea:

" Plot peak floating-point throughput as a function of
arithmetic intensity

" Ties together floating-point performance and memory
performance for a target machine

" Arithmetic intensity
* Floating-point operations per byte read
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Examples

= Attainable GFLOPs/sec Min = (Peak Memory BW x
Arithmetic Intensity, Peak Floating Point Perf.)
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Graphical Processing Units

= Given the hardware invested to do graphics well,
how can be supplement it to improve
performance of a wider range of applications?
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® Basic idea:

= Heterogeneous execution model
= CPU is the host, GPU is the device

= Develop a C-like programming language for GPU
= Unify all forms of GPU parallelism as CUDA thread

" Programming model is “Single Instruction Multiple
Thread”




Threads and Blocks

" Athread is associated with each data element
" Threads are organized into blocks
" Blocks are organized into a grid
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" GPU hardware handles thread management, not
applications or OS




NVIDIA GPU Architecture

= Similarities to vector machines:
= Works well with data-level parallel problems
= Scatter-gather transfers
= Mask registers
= | arge register files
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= Differences:
= No scalar processor
= Uses multithreading to hide memory latency

= Has many functional units, as opposed to a few
deeply pipelined units like a vector processor




Example

= Multiply two vectors of length 8192

Code that works over all elements is the grid

Thread blocks break this down into manageable sizes
= 512 threads per block

SIMD instruction executes 32 elements at a time
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Thus grid size = 16 blocks

Block is analogous to a strip-mined vector loop with
vector length of 32

Block is assigned to a multithreaded SIMD processor
by the thread block scheduler

Current-generation GPUs (Fermi) have 7-15
multithreaded SIMD processors




Terminology

® Threads of SIMD instructions
= Each has its own PC
" Thread scheduler uses scoreboard to dispatch
= No data dependencies between threads!
= Keeps track of up to 48 threads of SIMD instructions
= Hides memory latency
" Thread block scheduler schedules blocks to
SIMD processors

= Within each SIMD processor:
= 32 SIMD lanes
= Wide and shallow compared to vector processors
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Example
= NVIDIA GPU has 32,768 registers

= Divided into lanes
= Each SIMD thread is limited to 64 registers
= SIMD thread has up to:

= 64 vector registers of 32 32-bit elements
= 32 vector registers of 32 64-bit elements

" Fermi has 16 physical SIMD lanes, each containing
2048 registers
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NVIDIA Instruction Set Arch.

® |SA s an abstraction of the hardware instruction
set
= “Parallel Thread Execution (PTX)"
= Uses virtual registers
" Translation to machine code is performed in software

= Example:

shl.s32R8, blockldx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadldx ; R8 =i = my CUDA thread ID
|d.global.f64 RDO, [X+R8] ; RDO = X][i]

|d.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 ROD, RDO, RD4 ; Product in RDO = RDO * RD4 (scalar a)
add.f64 ROD, RDO, RD2 ; Sum in RDO = RDO + RD2 (Y[i])
st.global.f64 [Y+R8], RDO ; Y[i] = sum (X[i]*a + Y[i])
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Conditional Branching

= Like vector architectures, GPU branch hardware uses
Internal masks

= Also uses

= Branch synchronization stack
= Entries consist of masks for each SIMD lane
= |.e. which threads commit their results (all threads execute)

= |nstruction markers to manage when a branch diverges into
multiple execution paths

= Push on divergent branch
= _..and when paths converge
= Act as barriers

sjun buissaooud |eoiydels

= Pops stack

= Per-thread-lane 1-bit predicate register, specified by
programmer




Example
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if (X[i] != 0)
X[i] = X[i] = Y[il;

else X[i] = Z]i];

|d.global.f64  RDO, [X+R8] ; RDO = X]i]

setp.neq.s32 P1, RDO, #0 ; P1 is predicate register 1

@!'P1, bra ELSE1, *Push ; Push old mask, set new mask bits
; if P1 false, go to ELSE1

|d.global.f64 RD2, [Y+R8] ; RD2 = YTi]

sub.f64 RDO, RDO, RD2 - Difference in RDO

st.global.f64 [X+R8], RDO ; X[i] = RDO

@P1, bra ENDIF1, *Comp , complement mask bits
; if P1 true, go to ENDIF1

ELSE1: |d.global.f64 RDO, [Z+R8]; RDO = Z]i]

st.global.f64 [X+R8], RDO ; X[i] = RDO
ENDIF1: <next instruction>, *Pop ; pop to restore old mask




NVIDIA GPU Memory Structures

= Each SIMD Lane has private section of off-chip DRAM
" “Private memory”

= Contains stack frame, spilling registers, and private
variables
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= Each multithreaded SIMD processor also has
local memory
= Shared by SIMD lanes / threads within a block

" Memory shared by SIMD processors is GPU
Memory
" Host can read and write GPU memory




Fermi Architecture Innovations

= Each SIMD processor has

= Two SIMD thread schedulers, two instruction dispatch units

= 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store
units, 4 special function units

= Thus, two threads of SIMD instructions are scheduled every two
clock cycles

= Fast double precision

= Caches for GPU memory

= 64-bit addressing and unified address space
" Error correcting codes

" Faster context switching
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" Faster atomic instructions




Fermi Multithreaded SIMD Proc.

| SIMD thread scheduler | | SIMD thread scheduler

Dispatch unit

Dispatch unit
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Fermi streaming multiprocessor (SM)




Loop-Level Parallelism

" Focuses on determining whether data accesses in later
iterations are dependent on data values produced In
earlier iterations

= |Loop-carried dependence

= Example 1:

for (i=999; i>=0; i=i-1)
x[i] = x[i] + s:
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®" No loop-carried dependence




Loop-Level Parallelism

= Example 2:
for (i=0; i<100; i=i+1) {
Ali+1] = Afi] + C[i]; /* S1*/
B[i+1] = B[i] + Ali+1]; /* S2 */

= 51 and S2 use values computed by S1 in
previous iteration

m S2 uses value computed by S1 in same iteration
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Loop-Level Parallelism

" Example 3:
for (i=0; i<100; i=i+1) {
Ali] = A[i] + BIiJ; /* S1*/
B[i+1] = C[i] + D[i]; /* S2 */
}

= 51 uses value computed by S2 in previous iteration but dependence
is not circular so loop is parallel

" Transform to:
A[0] = A[0] + BIO];
for (i=0; i<99; i=i+1) {
Bli+1] = C[i] + DIi;
Ali+1] = A[i+1] + BJi+1];
}
B[100] = C[99] + D[99];
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Loop-Level Parallelism

= Example 4:
for (i=0;i<100;i=i+1) {
Ali] = BJi] + CI[il;
DIi] = Ali] * E[i;
}

= Example 5:
for (i=1;i<100;i=i+1) {
Y[i] = Y[-1] + Y[iJ;
}
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Finding dependencies

= Assume indices are affine:
" axi+ b(iisloop index)

"= Assume:
= Storeto axi+ b, then
" load fromcecxi+d
" jruns from mton

= Dependence exists if:
= Givenj,ksuchthatms<j<n m<k<n
= Storetoaxj+b,loadfromaxk+d,andaxj+b=cxk+d
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Finding dependencies

® Generally cannot determine at compile time

= Test for absence of a dependence:

= GCD test:
* |f a dependency exists, GCD(c,a) must evenly divide (d-b)

" Example:
for (i=0; i<100; i=i+1) {
X[2*i+3] = X[2*i] * 5.0;
}
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Finding dependencies

= Example 2:
for (i=0; i<100; i=i+1) {

Y[i] = X[i]/ c; /* S1 %/
X[i] = X[i] + ¢; /* S2 */
Z[i] = Y[i] + c; /* S3 %/
Y[i] = ¢ - Y[i]; /* S4 */
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= Watch for antidependencies and output
dependencies




Finding dependencies

= Example 2:
for (i=0; i<100; i=i+1) {

Y[i] = X[i]/ c; /* S1 %/
X[i] = X[i] + ¢; /* S2 */
Z[i] = Y[i] + c; /* S3 %/
Y[i] = ¢ - Y[i]; /* S4 */
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= Watch for antidependencies and output
dependencies




Reductions

=  Reduction Operation:
for (i=9999; i>=0; i=i-1)
sum = sum + x][i] * y[i];

" Transform to...
for (i=9999; i>=0; i=i-1)
sum [i] = x[i] * y[i];
for (i=9999; i>=0; i=i-1)
finalsum = finalsum + sum(iJ;
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" Do on p processors:
for (i=999; i>=0; i=i-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];
" Note: assumes associativity!




