
SWAGAC'07: SIMD Within A Gate Array C

Compiler

November 20, 2007

This document summarizes the last phase of the �rst compiler project: con-
struction of the code-generation phase for SWAGAC'07, the SIMD Within A
Gate Array C dialect. Generating code is largely a matter of understanding the
target machine, SWAGA'07.

The machine you will be generating code for is a simple attached processor
designed to be implemented in an FPGA as a special-purpose accelerator. It
is not capable of doing general computing, but instead is entirely focussed on
extending the processor with an explicitly fed pipeline. The main processor
would send a data stream to a FIFO bu�ering inout to the SWAGA processor
and would read a result data stream from another FIFO bu�ering output; the
SWAGA processor has no other I/O mechanisms. Similarly, SWAGA has no
protection hardware or other operating system support; it is expected that the
host OS would ensure that only one host process at a time was given access to
the SWAGA hardware.

Aside from adding code to your parser to generate assembly code to stdout,
you will need to modify your symbol table again... to keep track of the loca-
tion/o�set for each variable. Oddly enough, your compiler really does not need
to distinguish between mono and poly stu� because the hardware really treats
everything as poly.

1 Assembly Language & Instruction Set

The SWAGA'07 instruction set is essentially an integer SIMD stack instruction
set with a few quirks. The quirks are about evenly split between making your
life easier and making the hardware more e�cient. All be warned that, despite
many similarities, this is not the same instruction set used for SWAGA last
year.

1

Instruction Arguments Function (as C code)

AND push(pop() & pop())

OR push(pop() | pop())

XOR push(pop() ^ pop())

SRL push(pop() >>= 1)

RIGHT push(PE[(IPROC-1)%NPROC].pop())

LEFT push(PE[(IPROC+1)%NPROC].pop())

ADD push(pop() + pop())

SUB a=pop(); push(pop() - a)

LT a=pop(); push(pop() < a)

GT a=pop(); push(pop() > a)

PUSH value push(value)

POP pop()

JNONE (BNONE) addr if (all_disabled) PC = addr

JUMP (BRANCH) addr PC = addr

CALL addr push_return_addr(); PC = addr

RET PC = pop_return_addr();

DISABLEZ disable_where(pop() == 0)

PUSHEN save_enable_state()

POPEN restore_enable_state()

RESET initialize everything

ALL enable_all_PEs()

LOAD place push(STACK[place])

STORE place push(STACK[place]=pop())

INPUT push(get(input_�fo))

OUTPUT put(output_�fo, pop())

Table 1: SWAGA Instruction Set Summary

The assembly language also provides a few other nice features. The same
kind of expressions used in SWAGAC'07 are also allowed for constant values
and addresses in assembly language instructions. There also are assembly-time
constants (by EQU) and variables (by SET). For example, all the following are
ways of saying PUSH 42:

a EQU 40

b SET a

PUSH 42

PUSH c

2

PUSH b+2

b SET 42

PUSH 2+a

c EQU 84-b

PUSH b

Also note that execution begins with the statement labeled start, not main.
This is signi�cant because the main function can be recursive, so you cannot put
system initialization code after the label at the beginning of the main function.

1.1 Processor Model

The SWAGA instruction set is a very simple design generally following RISC
principles, but using a register-stack addressing scheme to simplify the instruc-
tions. Further, there is no data memory other than this register �le. The register
�le is a �xed size, assumed to be at least 64 lines long. It looks like:

The LOAD and STORE instructions are perhaps the most strange in that they
provide two forms of addressing for the register �le, as illustrated in the �g-
ure above. The @ addressing refers to a �xed set of registers, whereas the $

addressing refers to registers relative to the top of the stack.
The only way to get a constant into the system is to PUSH a scalar value.

There is, however, one constant that the compiler does not know the value of:
NPROC. This value should be kept symbolic in your assembly language output
and the assembler will make the appropriate substitution. Note that IPROC is
not a constant, but a vector of constants. The hardware keeps IPROC in @0.

There are two additional hardware stacks, an NPROC-bit-wide SIMD enable
stack and a scalar return address stack. The enable stack is manipulated by

3

the PUSHEN, POPEN, DISABLEZ, and ALL instructions. DISABLEZ and ALL merely
impact the current (top-of-stack) enable state, they do not push nor pop. The
return address stack is accessed only through CALL and RET.

How does one initialize the three stacks? Well, that's what RESET is for.
After RESET, the register stack is empty, the enable stack has only one entry (in
which all processing elements are enabled), and the return stack is empty (so
that a RET will halt the processor).

The last oddity is the handling of conditionals. There is an explicit enable
mechanism that not only serves to selectively disable processing elements, but
also is used as a type of parallel condition code register. JNONE, the only condi-
tional control �ow construct, alters control �ow only if no processing elements
are enabled. Notice that JNONE and JUMP are jumps, not branches, so there is no
restriction on the location of the target. However, there actually are also branch
forms, BNONE and BRANCH, which the assembler automatically will substitute for
JNONE and JUMP whenever the spans allow.

2 Example Code

A live version of the compiler will be available at the course WWW site to help
you understand what code to generate. However, the following example code
should guide your translation process.

mono one;

poly two;

twe(mono x, poly y){

if (y < two) {

two = IPROC;

where (x < y) {

two = NPROC;

}

if (x < one) {

y = two = two + 1;

}

}

while (one < two) {

two = two - y;

}

return(y & 5);

}

main(mono arg)

{

two = twe(42, input);

output two;

}

4

The assembly code output should work like (but not necessarily be identical to)
the following. Note that this instruction set has been dramatically simpli�ed,
so it is highly likely that multpile students will generate code that di�ers only
in cosmetic ways such as comments, use of EQU and SET for symbolic names,
and names of automatically generated labels.

; compiled by swagac07 version 20071109

start:

RESET

JUMP main

; start of function twe

twe:

; if statement

PUSHEN

LOAD $0

LOAD @2

LT

LOAD $0

DISABLEZ

JNONE _0

; expression statement

LOAD @0

STORE @2

POP

; where statement

PUSHEN

LOAD $2

LOAD $2

LT

LOAD $0

DISABLEZ

; expression statement

PUSH NPROC

STORE @2

POP

POPEN

POP

; if statement

PUSHEN

LOAD $2

LOAD @1

LT

LOAD $0

DISABLEZ

JNONE _1

; expression statement

5

LOAD @2

PUSH 1

ADD

STORE @2

STORE $3

POP

_1:

POPEN

POP

_0:

POPEN

POP

; while statement

PUSHEN

_2:

LOAD @1

LOAD @2

LT

DISABLEZ

JNONE _3

; expression statement

LOAD @2

LOAD $1

SUB

STORE @2

POP

JUMP _2

_3:

POPEN

; return statement

LOAD $0

PUSH 5

AND

STORE $3

POP

POP

POP

RET

; default return

POP

POP

RET

; end of function

; start of function main

main:

; expression statement

6

PUSH 0

PUSH 42

INPUT

CALL twe

STORE @2

POP

; expression statement

LOAD @2

OUTPUT

POP

; default return

POP

RET

; end of function

3 Due Date & Submission Requirements

This project is due November 9, 2007. It should be submitted via the the
appropriate WWW form on the course site as a �tarball� created using tar -c.
It must contain at least three �les:

1. Your C source code, in one or more �les.

2. A Makefile which will build an executable �le called swagac by simply
typing make.

3. Minimal �implementor's notes� describing how your code works... or fails
to work. The document should be formatted as very straightforward
HTML and placed in a �le named notes.html. The HTML should be
self-contained, not referencing anything outside of the contents of the tar-
ball. Code which is broken but documented as such will get only half as
many points taken o� for such errors. This is true even to the extent of
an empty assignment being given half credit if the documentation says
something like �This doesn't work because I didn't get around to writing
the project code.�

7

