
SWAGAC'07 Lexical Analysis

October 18, 2007

SWAGAC'07, SIMD Within A Gate Array 2007, is a wimpy little parallel
dialect of the C language designed to handle attached processing using a proces-
sor implemented within a gate array (FPGA) chip. SWAGAC'07 features just
a few control constructs, �xed-size integer vector variables and expressions, and
user-de�ned functions.

The construction is broken down into three stages: lexical analysis, parsing,
and code generation. Your lexical analyzer will simply recognize a token at a
time, with a degenerate parser that simply keeps calling the lexer until an EOF
token is returned. You'll need a symbol table, but all it will do for now is record
how many times each identi�er is referenced. So that we can see things are
working, this �parser� also will print information about each token to stderr.

1 SWAGAC'07 Lexemes

SWAGAC'07 is based on C. Consequently, it follows C's syntax and semantics
fairly closely. This means that the rules for handling of white space, characters
in an identi�er, etc. are the same except as noted here.

An identi�er begins with an alphabetic character, and is optionally followed
by any number of alphabetic or numeric characters; the underscore character
(_) is considered to be alphabetic. Case is signi�cant; a is not the same as A. It
is allowable to ignore characters after the �rst 7 in an identi�er.

The SWAGAC keywords all would be identi�ers if they were not keywords.
They are:

mono

poly

if

else

where

while

return

all

left

right

1

input

output

NPROC

IPROC

Note that all the keywords are lowercase except the last two.
Your lexer also must recognize decimal numbers, which look like a sequence

of one or more digits. In C, a leading 0 digit is used to indicate an octal value,
so, technically, 0 is the octal value zero. However, SWAGAC doesn't have octal
constants, so leading 0s do not change the base to octal.

There are not too many special symbols treated as tokens in SWAGAC, and
none of them is more than one character long. The special symbols you must
recognize are:

() , ; { } & | ^ < > + - * = ! ~

Note that end-of-�le, EOF, also behaves somewhat like a special symbol.

2 Structure Of This Project

Di�erent kinds of lexical analyzers have been discussed; this project will involve
writing a simple lexical analyzer and minimal symbol table interface. The so-
lution must be in the form of a C program which you will submit directly via
a WWW form (without a paper copy). It must be your own work, and you
are not permitted to use tools such as lex, yacc, or PCCTS to construct the C
code. Your symbol table may use linear search or whatever method you wish,
but again, it must be your own code.

Your program is to be written in a style that facilitates reuse of the lexer
in a parser. Toward this goal, the main() must call a function lex() to return
each token's type until an EOF token is returned. The main() should print, on
a separate line for each lexical item, the type and lexeme of the token just read.
The formatting should be:

• For any identi�er, output the lexeme followed by the number of previous
times this lexeme has been seen; this number should be recorded in the
symbol table entry created by the lexer

• For any of the keywords listed, simply output the keyword's lexeme

• For any decimal number, output the value of that number using fprintf(stderr,
�%d�, ...)

• For any special symbol, simply output the symbol; for the end-of-�le,
output EOF

The lexer should not return a token for any other characters; lex() should
essentially ignore the other symbols except in the sense of treating them as

2

�edges� between tokens � like whitespace. It is generally easiest to do this by
having the lexer advance past other characters before recognizing the current
token.

For example, input on stdin of:

poly abc, def;

func(mono p)

{

if (abc>23) def=p*5+left(abc);

}

Should cause output of the following to stderr:

poly

abc 0

,

def 0

;

func 0

(

mono

p 0

)

{

if

(

abc 1

>

23

)

def 1

=

p 1

*

5

+

left

(

abc 2

)

;

}

EOF

3

3 Due Date & Submission Requirements

This project is due by 11:59PM on October 19, 2007. It should be submitted
via the the appropriate WWW form on the course site as a �tarball� created
using tar -c. It must contain at least three �les:

1. Your C source code, in one or more �les.

2. A Makefile which will build an executable �le called lexer by simply
typing make.

3. Minimal �implementor's notes� describing how your code works... or fails
to work. The document should be formatted as very straightforward
HTML and placed in a �le named notes.html. The HTML should be
self-contained, not referencing anything outside of the contents of the tar-
ball. Code which is broken but documented as such will get only half as
many points taken o� for such errors. This is true even to the extent of
an empty assignment being given half credit if the documentation says
something like �This doesn't work because I didn't get around to writing
the project code.�

4

