SWAGAC’07 Parser

October 18, 2007

SWAGAC’07, SIMD Within A Gate Array 2007, is a wimpy little parallel
dialect of the C language designed to handle attached processing using a pro-
cessor implemented within a gate array (FPGA) chip. SWAGAC’07 features
just a few control constructs, fixed-size integer vector variables and expressions,
and user-defined functions. Your parser will parse SWAGAC’07 code and print
debugging, error, and warning messages to the standard error stream. It will
not generate output code (or anything else) on the standard output stream —
that’s where generated code goes.

1 Syntax

SWAGAC’07 follows C’s syntax and semantics fairly closely. The following
grammar, combined with the lexical rules in the previous assignment, defines
the language structure. Note that the grammar is given in an Extended BNF
(EBNF) notation which allows mixing of regular expression operators with BNF
constructs; for example, (decl)* means zero or more decl. The nice thing
about this notation is that it trivially allows the constructs of syntax diagrams
to be written as text.

prog: (decl)* (func)* EOF
func: WORD ’(’ typ WORD (’,” typ WORD)* ’)’ stat
decl: typ WORD (’,” WORD)* ’;’
typ: ‘‘mono”
| “pOly"
stat: {’ (decl)* (stat)* ’}’
| ¢“if’’ expr stat {’’else’ stat}
| ¢“where’” expr stat {’’else” stat}
| “while’” expr stat
| “return’” expr ’;’
| “all” stat
| expr ’;?

|);)

expr: exprl ((C°&’ | 2|2 | ’~?) exprl)*
exprl: expr2 ((°<’ | ’>’) expr2)*
expr2: expr3 ((°+’ | ’-7) expr3)*
expr3: expr4 (’*’ expr4)x*

expr4: NUMBER

| WORD {(’(° expr (’,? expr)* ’)’) | (=’ expr)}
| -’ expré

| 21’ exprd

| 7 exprd

| 2 expr 1)

| ““left” expr4d

| “right’’ expr4d

I “input”

| ¢‘output’’ expr

| ¢“NPROC”

| ¢“IPROC”

B

The grammar is LL(1) as given. However, there is a minor ambiguity, common
to most high level languages, in the grouping of else clauses. Given two or more
nested if or where statements, an else clause is always treated as belonging to
the innermost un-else’d construct. Don’t worry too much about this because
it is naturally how it will be recognized — you would have to do some pretty
convoluted things to make it work any other way.

You may have noticed that a few liberties are taken with C’s syntax in
SWAGAC’07. For example, C’s if and while statements require parens around
the condition expression; the grammar above does not require parens, but will
happily accept them as part of the expression. Similarly, function bodies do
not need braces. These simplifications are harmless, essentially simplifying the
grammar while imposing a very reasonable handling of what would otherwise
have been easily corrected warning-level violations of the syntax.

2 Structure Of This Project

As for the lexer, you have a free choice of how to build your parser. The solution
must be in the form of a C program which you will submit directly via a WWW
form (without a paper copy). It must be your own work, and you are not
permitted to use tools such as lex, yacc, or PCCTS to construct the C code. It
is expected that you will reuse the lexical analyzer that you built in the previous

project; WORD in the above grammar refers to identifiers as discussed in the lexer
phase. You also can reuse your symbol table code, although it will need to be
extended to handle the relevant attributes and lexically-nested scoping.

In the next phase, your parser will be enhanced to generate code to stdout
— for this project, nothing should go anywhere but stderr. What should be
output?

e Every time a WORD that has not been declared is seen in a context that
looks like a reference to a variable (as opposed to a function call), output
an error message stating that the variable was not declared. This error
should not terminate the parse. At your option, you may also handle other
errors, and it is permissible for other errors to terminate the parse.

e The comma (?,’) only appears in places in this grammar where the mean-
ing would be unambiguous even with that symbol missing. If it is omitted,
output a warning message stating that the parser has assumed this sym-
bol was missing. At your option, you may also handle other warnings; no
warning should ever prematurely terminate the parse.

e Only if your code was compiled with the SYMBUG flag defined (i.e., -DSYMBUG
on the cc command line), every time a WORD is seen, print a message giv-
ing the name (lexeme) of the WORD and the type that your parser/symbol
table have associated with it. The type is one of three things: mono, poly,
or function.

There is actually a standard format for error and warning messages, designed
to facilitate programming environment tools automatically processing the mes-
sages... however, you need not strictly comply with that standard for this
project. The standard message format is something like:

filename : linenumber: type: message

Your project is reading from stdin, so it doesn’t know the file name; a dash (-)
would be used to indicate this. The line number reported by your project is al-
lowed to be somewhat inaccurate; you may report the line number the lexer was
at when the parser noticed the problem, rather than the prefered line number
at which the faulty construct began. An easy way to approximately track line
numbers is to have a global variable which starts at 1 and is incremented every
time a newline character (*\n’) is read from stdin. The type is either error
or warning. The message is a simple explanation of what the parser thinks was
wrong.

3 Due Date & Submission Requirements

This project is due before class on October 25, 2007. It should be submitted
via the the appropriate WWW form on the course site as a “tarball” created
using tar -c. It must contain at least three files:

1. Your C source code, in one or more files.

2. A Makefile which will build an executable file called parser by simply
typing make.

3. Minimal “implementor’s notes” describing how your code works... or fails
to work. The document should be formatted as very straightforward
HTML and placed in a file named notes.html. The HTML should be
self-contained, not referencing anything outside of the contents of the tar-
ball. Code which is broken but documented as such will get only half as
many points taken off for such errors. This is true even to the extent of
an empty assignment being given half credit if the documentation says
something like “This doesn’t work because I didn’t get around to writing
the project code.”

