
SWAGASM'07:

SIMD Within A Gate Array Assembler

November 25, 2007

This document summarizes the assembler project.

1 SWAGASM'07 AIK Speci�cation

Although you are to write your assembler from scratch (well, reusing only code
that you authored for earlier projects), one of the most concise descriptions of
what you are to do is the following fully functional AIK speci�cation:

.noarg := .this:8

.alias .noarg { AND OR XOR SRL RIGHT LEFT ADD SUB LT GT

POP RET DISABLEZ PUSHEN POPEN RESET ALL INPUT OUTPUT }

LOAD @ .x := 0x2:4 .x:4

LOAD $.x := 0x3:4 .x:4

STORE @ .x := 0x4:4 .x:4

STORE $.x := 0x5:4 .x:4

PUSH .x ?((.x<=7)&&(.x>=-8)) := 0x6:4 .x:4

PUSH .x := 0x7:4 0:4 .x:32

JNONE .x ?(((.x-.)<=7)&&((.x-.)>=-8)) := 0x8:4 (.x-.):4

JNONE .x := 0x9:4 0:4 .x:16

JUMP .x ?(((.x-.)<=7)&&((.x-.)>=-8)) := 0xa:4 (.x-.):4

JUMP .x := 0xb:4 0:4 .x:16

CALL .x := 0xc:4 0:4 .x:16

.const 8 NPROC

.alias .equate EQU

.alias .set SET

.alias .if IF

.alias .end ENDIF

.segment TEXT 8 0x10000 0 .VMEM

Using this speci�cation with the Assembler Interpreter from Kentucky:

http://aggregate.org/AIK

yields an assembler that is fully compatible with the one you're building from
scratch. It even generates its output as a Verilog MEMory (.VMEM) image �le.

1

2 SWAGASM'07 Language Syntax

SWAGASM'07 is a fairly typical assembler. The following extended BNF gram-
mar, combined with the same lexical conventions used by your compiler project,
de�ne the language structure.

prog: (stat)* EOF

;

stat: WORD labstat

| �AND�

| �OR�

| �XOR�

| �SRL�

| �RIGHT�

| �LEFT�

| �ADD�

| �SUB�

| �LT�

| �GT�

| �PUSH� expr

| �POP�

| �JNONE� expr

| �JUMP� expr

| �CALL� expr

| �RET�

| �DISABLEZ�

| �PUSHEN�

| �POPEN�

| �RESET�

| �ALL�

| (�LOAD� | �STORE�) ('@' | '$') expr

| �INPUT�

| �OUTPUT�

| �IF� expr

| �ENDIF�

;

labstat: ':' stat

| (�EQU� | �SET�) expr

;

expr: expr1 (('&' | '|' | '^') expr1)*

;

expr1: expr2 (('<' | '>') expr2)*

;

expr2: expr3 (('+' | '-') expr3)*

;

expr3: expr4 ('*' expr4)*

2

;

expr4: NUMBER

| WORD

| �NPROC�

| '-' expr4

| '!' expr4

| '~' expr4

| '(' expr ')'

;

There are two features of this assembly language that require special treatment:

• There are three potentially span-dependent instructions: PUSH, JNONE, and
JUMP. Each has a short form with a signed 4-bit value and a long form
which has a 32-bit value for PUSH and 16-bit values for JNONE and JUMP.
Note that the value in a PUSH is the value of the expression, whereas the
other SDIs encode an o�set from the current location. Multiple passes
will be needed to resolve these SDIs.

• The nestable IF construct works very much like the C preprocessor's #if,
conditionally �commenting out� the code between an IF and the corre-
sponding ENDIF. Note that what was commented out in one pass might
not be commented out in another pass....

Your lexical analyzer was designed to read from stdin, which generally cannot
be �rewound� to make multiple passes. Thus, you will have to modify your
lexical analyzer. This can be done trivially by reading the entire input into an
array (you may assume the input is no more than 1024*1024 characters) and
then replacing getchar() with something like:

#define getchar() inputbuffer[++inputpos]

or whatever names you select for your input bu�er and current position. Rewind-
ing the input is simply setting the input position to 0. Note that declaring the
input bu�er as holding short, rather than char, values neatly eliminates the
potential problem with EOF returning -1.

3 Instruction Set Encoding

Perhaps the clearest explanation of the encoding is the AIK description given
above; it is also online at http://aggregate.org/CS/aik.html .

3

Instruction Arguments Encoding

AND 0x00

OR 0x01

XOR 0x02

SRL 0x03

RIGHT 0x04

LEFT 0x05

ADD 0x06

SUB 0x07

LT 0x08

GT 0x09

PUSH v 0x6? or 0x70 0x????????

POP 0x0a

JNONE (BNONE) a 0x6? or 0x70 0x????

JUMP (BRANCH) a 0x8? or 0x90 0x????

CALL a 0xc0 0x????

RET 0x0b

DISABLEZ 0x0c

PUSHEN 0x0d

POPEN 0x0e

RESET 0x0f

ALL 0x10

LOAD @ place 0x2?

LOAD $ place 0x3?

STORE @ place 0x4?

STORE $ place 0x5?

INPUT 0x11

OUTPUT 0x12

Table 1: SWAGA Instruction Set Summary

4

4 Output File Format

What you will generate is a Verilog MEMory (.VMEM) image �le. It is a very
simple format that looks like:

//generated by ... comment

@1234

42

ab

//end

Here, the @0000 line sets the origin at 0x1234. Each subsequent line holds the
value of one byte, with a low-byte-�rst byte order. In other words, the above
encodes the 16-bit value 0xab42.

5 Due Date & Submission Requirements

This project is due November 30, 2007. It should be submitted via the the
appropriate WWW form on the course site as a �tarball� created using tar -c.
It must contain at least three �les:

1. Your C source code, in one or more �les.

2. A Makefile which will build an executable �le called swagasm by simply
typing make.

3. Minimal �implementor's notes� describing how your code works... or fails
to work. The document should be formatted as very straightforward
HTML and placed in a �le named notes.html. The HTML should be
self-contained, not referencing anything outside of the contents of the tar-
ball. Code which is broken but documented as such will get only half as
many points taken o� for such errors. This is true even to the extent of
an empty assignment being given half credit if the documentation says
something like �This doesn't work because I didn't get around to writing
the project code.�

5

