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Abstract
SARS-CoV-2 is a highly contagious, airborne-transmission,

virus that can be spread by people who do not have obvious symp-
toms. In 2020, that combination of features forced much of the
world to impose a wide variety of forms of social distancing, rang-
ing from simple recommendations restricting how shared spaces
can be used to rigidly enforced quarantines. It is unclear how
much distancing is enough, but it is clear that the economic and
emotional costs of distancing are high. Fortunately, consistent
use of simple face masks dramatically reduces the probability of
others becoming infected. The catch is that a significant fraction
of the US population either is refusing to wear masks or is wear-
ing masks in ways that render them ineffective. For example, it is
problematic for a shop owner to prevent potential customers who
are not properly masked from entering their store. Thus, we have
created the Covered Safe Entry Scanner – an open source sys-
tem that uses image processing methods to automatically check
for proper use of masks and potentially deny entry to those who
do not comply. This paper describes the design, algorithms, and
performance of the mask recognition system.

Introduction
On July 9, 2020, Andy Beshear, Governor of the Common-

wealth of Kentucky, issued Executive Order 2020-586 requiring
that face coverings be worn in many public places in the hope of
slowing the spread of COVID-19. Later executive orders extended
the circumstances in which masks were required. However, no
enforcement process nor penalties for non-compliance were spec-
ified. In trips to the local supermarket and home supply store, the
author noted that not only were a large fraction of the people not
wearing masks, but a comparable number were wearing masks in
ways that would render them ineffective. Even store employees
often were not in full compliance. It was in this context that the
Covered Safe Entry Scanner, the topic of this paper, was born.

Severity of the Pandemic
The COVID-19 pandemic is caused by the Severe Acute

Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), a positive-
sense single-stranded RNA virus. There are many coronaviruses
(CoVs) which can infect humans and animals, causing illnesses
ranging from the common cold to much more serious diseases.
Both the Severe Acute Respiratory Syndrome (SARS) virus
detected in 2003 and the Middle East Respiratory Syndrome
(MERS) virus identified in 2012 are coronaviruses that have high
mortality rates for infected humans, as does SARS-CoV-2.

According to the WHO[1], the origin of the SARS-CoV-2
is not yet certain, but it is very closely related to coronaviruses
naturally occurring in Rhinolophus bat populations. Similarity of
the virus in samples taken from humans is high enough to sug-
gest there was a single point of introduction to humans – prob-
ably around Wuhan, China in the last quarter of 2019. A large

fraction of the earliest COVID-19 cases were linked to the Hua-
nan Wholesale Seafood Market in Wuhan City, which probably
played some role in transmitting the virus between species and/or
initially amplifying the human outbreak. However, not only did
the virus quickly spread beyond Wuhan through humans, but it
is also possible that the virus could be re-introduced to humans
from animal hosts not only in Wuhan, but perhaps anywhere the
bats are found, which spans Asia, Africa, the Middle East, and
Europe.

The severity of the COVID-19 disease is disturbingly clear:
it is at least an order of magnitude worse than influenza. The CDC
COVID-19 site[2] gives many details. As of January 29, 2021, the
United States had 25,615,268 confirmed total cases and 431,619
deaths. To put this in perspective, in less than a year from the first
United States COVID-19 diagnosis, fatalities exceeded the coun-
try’s total deaths caused by five years of World War II. Currently,
over 1.5% of those becoming sick with COVID-19 die. When
patient care was less effective largely due to shortages, in April
2020, fatality rate exceeded 7%. As much as 10-15% of COVID-
19 cases are severe. For those who do recover, initial recovery can
take as long as 2-6 weeks. The CDC also lists a variety of less-
common long-term effects involving cardiovascular, respiratory,
renal, dermatologic, neurological, and psychiatric complications.

However, the point of the current work is not that the pan-
demic is a terrible thing, but that it is critical to stop spread of the
virus to the other 300 million people in the United States.

Spread of SARS-CoV-2
Unfortunately, the SAR-CoV-2 virus is relatively easily

transmitted from one infected person to another. There are three
primary modes of transmission:
Contact transmission. The virus can remain viable on contam-
inated surfaces for periods ranging from hours to days, depend-
ing on the surface material and environmental conditions such as
ambient temperature. Touching a contaminated surface and then
touching your mouth, nose, or possibly eyes can transfer virus
into your body potentially causing an infection. Fortunately, the
virus does not survive simple cleaning procedures such as wash-
ing with soap and water or use of high-alcohol-content hand san-
itizer. Thus, contact transmission seems to be the most easily
controlled method by which the virus spreads.
Droplet transmission[3]. The virus can become temporarily air-
borne traveling in droplets of saliva or mucus, such as are expelled
when you sneeze, cough, sing, talk, or breath heavily. These
droplets can contaminate surfaces, and can directly enter the body
through the nose, mouth, or even eyes. Because droplets are rel-
atively large, commonly greater than 5 microns, they typically do
not spread much beyond 6 feet before settling out of the air, and
this is the main reason for the common rule suggesting social dis-
tancing by at least 6 feet. Most COVID-19 cases probably are the
result of droplet transmission.



Airborne transmission[3]. Some viruses can survive becoming
airborne in an aerosolized form on smaller droplets or dust par-
ticles. Aerosolized droplets are emitted mostly from the mouth,
but also from the nose. These 2 micron or smaller particles can
remain airborne for much longer periods, from minutes to hours,
allowing the concentration of particles to increase over time in an
enclosed space or for the airborne particles to travel larger dis-
tances. The inhalation of these particles also allows them to be
carried deeper into the respiratory system, where the virus has
a higher probability of causing infection. Fortunately, although
there are well-documentated cases of people becoming sick with
COVID-19 from passing through areas where an infectious per-
son had been as long as hours ago, or over distances much greater
than 6 feet, this does not seem to be common if there is adequate
ventilation or air filtration. It is useful to note that HEPA filters
in air cleaners typically are designed to remove particles down to
0.3 microns – which is bigger than the virus, but probably smaller
than most droplets that carry the virus.

Stopping the spread
The extreme social distancing of a total lock-down could end

the pandemic in a matter of weeks, and may be an answer in some
countries, but it is not feasible in the United States. In fact, at
this writing, Governor Beshear is facing an impeachment peti-
tion charging that his actions to limit spread of COVID-19 had
violated citizen’s rights in limiting certain public gatherings, out-
of-state travel, and tenant evictions.

Vaccines can be an effective way to reach pandemic-ending
“herd immunity.” As of January 2021, at least 60 COVID-19
vaccines have reached clinical development and several are in
widespread distribution. However, it will take months, perhaps
even another year, to get a sufficient fraction of the population
vaccinated. It is also significant that vaccines are designed to pre-
vent the illness – they do not make it impossible for an immune
person to spread the virus, for example, through contact transmis-
sion.

If obvious symptoms were associated with being infectious
with COVID-19, it would be relatively easy to quarantine people
before they spread the virus. Unfortunately, one can be infectious
while showing no symptoms. In fact, even when symptoms do
appear, they can be mild and easily mistaken for other issues; for
example, many governments have mandated temperature checks,
but a fever is neither necessary nor sufficient to indicate that
one is infectious with SARS-CoV-2. COVID-19 also has a rel-
atively long incubation time, ranging from 3 to 14 days, making
contact tracing more difficult and less effective. Most attempts
to improve contact tracing are highly invasive, and personal and
medical data are often potentially exposed; in fact, various HIPPA
protections were waived effective March 15, 2020[4]. In any case,
contact tracing alone is insufficient.

Properly used, masks can allow relatively normal interac-
tions. It takes a mask designed to filter aerosols, such as an N95,
to protect the wearer from inhaling airborne virus – and that mask
must be tightly sealed against the face. In fact, the seal must be
nearly perfect, which is not even possible if, for example, facial
hair interferes with the seal. The effectiveness of different types
of masks varies significantly, but almost any mask that seals
reasonably well over the nose and mouth will dramatically re-
duce the droplet quantity escaping and average distance trav-

eled. It is useful to understand that good mask materials are not
regular meshes with holes small enough to block particles. Good
masks are made with complex fibrous structures that force airflow
through relatively large paths that twist and turn, so that droplets
get trapped as they fail to make the tight maneuvers and collide
with the material.

In summary, the goals of the Covered Safe Entry Scanner
research project were to:

• Provide a low-cost (sub-$100) automated system that can
operate unattended 24/7 to confirm proper use of a mask

• Allow that system to optionally take non-contact tempera-
ture measurements

• Allow that system to implement a form of contact tracing
that is inherently non-invasive and secure, by literally hav-
ing no personally-identifiable data in the database

Related work
At the time this work was initiated, in Summer 2020, litera-

ture and patent searches mostly found either research attempting
to recognize the person behind a mask or systems designed to
confirm various types of protective gear were being worn in haz-
ardous workplaces. In response to the pandemic, many systems
have since appeared.

Our problem is unusual in that minimizing system cost was a
primary goal. We also wanted the unit to work without a continu-
ous internet connection. Thus, we targeted the cheapest available
Android tablet that had front and rear cameras and could be pow-
ered 24/7 while allowing USB connection of a thermal imager.
Our selection was an off-brand $65 7” tablet running Android 9
Pie on a quad-core 1.5GHz processor with 2GB of RAM: a very
limited computing platform.

Unlike Covered, which seeks to check one aligned face
at a time, most pandemic-inspired approaches to recognition of
masked faces involve deep learning to create recognizers that can
work directly on CCTV and similar surveillance video streams.

SSDMNV2[5] uses the Single Shot Multibox Detector as
a face detector and MobilenetV2 to distinguish masked vs. un-
masked faces with 92.64% accuracy. However, it uses signifi-
cantly more substantial computing resources than our target pro-
dives, including a relatively fast processor and GPU. Masked
AI[6] also uses deep learning to recognize humans with or without
various types of masks (N95, surgical, and cloth-based) in CCTV
or drone feeds of crowds. It offloads the relatively expensive pro-
cessing, e.g., to Azure cloud service. There are many systems
with the goal of spotting unmasked individuals in surveillance-
like images[7][8].

Those systems do not recognize improper mask use.
A YOLOv5-based system[9] discusses distinguishing
mask weared incorrect, but in the end was not trained
for that because too few of the test images were so marked.
Facemasknet[10] is a deep learning network that claims 98.6%
accuracy for identifying face mask use in CCTV footage, and
it does distinguish improperly-worn masks from no mask or a
properly-worn mask. However, the method used seems far too
computationally heavy for our target platform.

At the finalizing of the current paper for publication, it seems
that the combination of requiring face alignment, distinguishing
properly used masks from mere presence of a mask, and the abil-



Figure 1. The Masks

ity to run on a minimal self-contained platform are still unique.
The optional low-resolution thermal imager (which is largely vi-
able only because of the face alignment), and contact tracing sup-
port without storing personally-identifiable data, also appear to be
unique.

Recognizing proper use of a mask
Although the most desirable execution platform for this sys-

tem would be a sub-$100 Android tablet, development is easier in
a full Linux environment, so initial development and testing was
done using a Atom-based Asus Eee PC – an inexpensive notebook
computer with hardware performance comparable to an Android
tablet. Prototyping was done using C++ code with the OpenCV
library, which is easily portable to many platforms.

The basic algorithm is:

1. Wait for a person to be detected; this can be as simple as
looking for movement

2. Show the live camera view and instruct the user to align
their eyes with alignment outlines shown on the display, thus
making the most out of the poor resolution available; textual
prompts were both drawn on screen and rendered as audio
speech using Festival lite

3. Apply the standard OpenCV HAAR[11] classifiers for
left and right eyes (haarcascade mcs lefteye.xml and
haarcascade mcs righteye.xml) to the image areas that
should contain the user’s eyes; HAAR classifiers execute
slowly on these slow systems, but constraining the recogni-
tion to a small portion of the low-resolution (640x480 pixel)
built-in camera view results in a framerate >5FPS

4. If both eyes were found, use the standard
OpenCV HAAR classifiers to check for the
nose (haarcascade mcs nose.xml) and mouth
(haarcascade mcs mouth.xml) in the appropriate
areas of the image; again, restricting the image area

Figure 2. The Masks, positioned incorrectly

Figure 3. Sample Faces, correctly and incorrectly masked

searched by the HAAR classifiers improves the framerate
5. If the timeout has not expired and more samples are needed

to decide mask status, go to step 3
6. Display, announce, record the results, and/or open the door
7. After a short delay giving time for the person to react to the

results, go to step 1

For simplicity, there are various details omitted from the
above description, such as the determination of face area to max-
imally fit the camera aspect ratio and conversion of the color im-
ages to monochrome before applying the classifiers. However,
the complete first version required fewer than 200 lines of source
code.

This simple processing worked remarkably well, correctly
recognizing the mask status about 85% of the time primarily us-
ing myself live with various masks and reasonable scene light-
ing. Performance degraded substantially in poor lighting as cam-
era captures became of very low quality.

However, most of the errors in decent lighting were the sys-
tem finding the mouth exposed despite it being covered by a
mask. This makes sense in that many masks have vaguely mouth-
like patterns; even standard rectangular disposable surgical masks
have pleats in them that can produce mouth-like shadows. How-
ever, it is very difficult to wear most masks properly covering the



nose and not covering the mouth, so adding the simple rule that a
covered nose implies a covered mouth increased the correct rate
well past 90%. The catch is that our testing was nowhere near
rigorous enough to be sure the same behavior would be seen in
more realistic tests.

When this work was initiated in Summer 2020, we did not
find any datasets that contained an appropriate collection of un-
masked, properly masked, and improperly masked faces. Most
early interest in masked faces seemed to center on being able to
identify the person despite a portion of their face being obscured
by wearing the mask. In addition, it seems that in many parts
of the world, masks nearly always have one of only a few styles,
most commonly the light-blue creased rectangle of a disposable
surgical mask or a plain black reusable cloth mask. Empirically,
this is not true in the United States.

Masks are often treated as a fashion or style statement, or
even as a branding opportunity, in the United States. Reusable
cloth masks in a wide variety of styles and colors, often with
printed patterns or company logos, are very common. A signif-
icant number of masks actually have stylized mouths printed on
them – and you can order a custom mask with a photo of your
mouth printed on it. There are even masks with clear plastic over
the mouth that are advertised as helping deaf people by enabling
lip reading.

To reasonably represent this variety of mask designs, pri-
marily online ads were searched for mask images – the idea being
that advertised masks would have a similar statistical distribution
of design variants to masks actually in use. Over 200 images of
masks in as-worn orientation were manually extracted from on-
line sources. The images varied wildly in quality, so the collection
was paired-down to 100 acceptable-quality images that seemed
representative of the variations in the entire set. Each mask im-
age was manually aligned and scaled to a reference composite
face image, and then the background was removed. The resulting
mask images are shown in Figure 1.

Each of these 100 mask images was then distorted to sim-
ulate being improperly worn. The distortion was done manually
using GIMP to warp each mask image to expose portions of the
nose and/or mouth in a reference composite image averaging all
the aligned faces in our dataset. This produced the 100 aligned
mask images shown in Figure 2.

These mask images needed to be imposed on scaled and
aligned face images. However, existing face databases tended to
lack the desired level of diversity, and many faces were oriented
in ways not matching the straight-on view in which our scan-
ner would see the user. Thus, we collected approximately 2000
appropriately-aligned base face image that were created by gen-
erative adversarial networks (GANs)[12], primarily from online
sources including https://thispersondoesnotexist.com/

and https://generated.photos/. Synthesizing faces made
it easier to achieve a balanced representation of adult faces across
ethnicities, ages, genders, hair, and even eyeglasses. We did not
find any generated faces with significant deformities, tattoos, nor
jewelry such as nose piercings, so the face data still carries some
biases. Unfortunately, redistribution rights are either unclear or
not granted for faces synthesized by some tools, so we cannot re-
distribute the face data set used.

The test and training data was thus created by writing a
simple program to impose mask images on randomly-selected

Figure 4. Typical cascade features for mouth vs. nose and mouth

faces. The faces and mask images could also be horizontally
flipped. Thus, there could be approximately 4000 unmasked face
images and 800,000 possible combinations each of properly and
improperly masked faces. Visually insignificant perturbations
of the scale, angle, and positioning, as well as smoothing, also
could be imposed to avoid training the recognizer to identify the
artificially-clipped mask edges. Many training runs were con-
ducted using subsets of this dataset with several different types
of recognizers, especially using the OpenCV cascade classifier
training support for both HAAR[11] and the LBP (Local Binary
Pattern) cascades.

Cascade features selected in two representative training runs
(in this case using the cheaper LBP) are shown in Figure 4. The
left series was trained to distinguish only if the mouth is cov-
ered; the right series was trained to recognize if both the nose and
mouth are covered. Not surprisingly, the features sample around
the mouth to determine if the mouth is covered, however, only the
last feature in the nose and mouth recognizer samples the mouth.
This bias toward nose features held across all training runs, and
strongly confirms our earlier observation that it is sufficient to
simply check if the nose is visible to confirm a mask is being
worn properly. The system has not yet been tested in a full in-
stallation, but a simple nose recognizer can probably deliver better
than 90% accuracy despite poor camera quality and framerate.

Temperature check (optional)
Figures 5 and 6 are captures of the summary images dis-

played by an early version of the system respectively for no mask
and a properly-worn mask. Not only does the system recognize
proper masking, but it also measures temperatures. The temper-
ature displayed and green coloring of the face indicate the face
is within the normal temperature range; the background is blue
because it is colder.

Thermal imagers with good resolution are not inexpensive



Figure 5. Nose and mouth not covered – no mask

Figure 6. Nose and mouth properly covered by a mask

and, during this pandemic, have become extremely difficult to ob-
tain. However, because the mask check ensures the user’s face
is reasonably close and well-aligned, it is possible to use a much
lower pixel count thermal imager.

At this conference in 2020, KVIRP (Kentucky’s Visual /
Infra Red Painter) demonstrated effective use of an inexpen-
sive thermal imager with a pair of fisheye cameras to capture
high-resolution 360◦ visible-light images painted with thermal
data[13]. With some repackaging, that same thermal imager is
used here.

The thermal imager is shown mounted just above the built-in
camera of the Asus laptop in Figure 7, and by itself in Figure 8.
Our 3d-printed thermal camera contains a $3 ATmega32U4 Pro
Micro[14] to provide a USB interface and a $40 Adafruit Grid
Eye Thermal Camera board[15]. The 8x8 pixel AMG8833 sensor
measures temperatures from 0◦C to 80◦C with a thermal resolu-
tion of approximately 0.25◦C and absolute accuracy of +/-2.5◦C.

Figure 7. Thermal imager mounted on back of laptop

Figure 8. AMG8833-based thermal imager in 3D-printed mount

Samples from the thermal imager are averaged over periods when
eye alignment is detected, and the highest temperature from the
face region is reported; it is only because the face is positioned
close to the camera that the low 8x8 pixel resolution is usable.

As is the case with most thermal imagers, accuracy is not
sufficient to reliably detect fevers. In medical applications, ther-
mal imagers are required to be calibrated by imaging a known
temperature source – but that is not feasible here. Instead, the
system enters a calibration mode at boot where a reference nor-
mal temperature is measured. As the system is operating, it uses
an age-weighted average of median values measured to attempt
to correct drift of thermal readings. This essentially assumes that
the average person measured will have a normal temperature so
it can continuously self-calibrate, which is an assumption com-
monly made by fever-detection scanners.

Contact tracing (optional)
The key to maintaining privacy while contact tracing is the

ability to have no personally-identifiable information stored in the
database. We propose to do this by issuing each person a unique
ID and associating contract, infection, and quarantine status with
that ID rather than with the person.

The system does not use face identification to recognize
users; in fact, it literally never stores a face image. Instead, we
prefer that it recognizes users by either an RFID or QR code, and



QR code can be printed with a conventional printer or displayed
on a cell phone, and can easily be recognized using the OpenCV
QRCodeDetector with the same camera used to check mask sta-
tus. The key concepts are:

• Each person has one randomly-generated ID and a corre-
sponding password for it. No record is made of which per-
son owns each ID; only the fact that a person has been issued
an ID is recorded to ensure one person has only one ID.

• Using their ID and password, a person may create multiple
unique, randomly-generated, QR codes to represent that ID.
Any data recorded about any of those QR codes is thus con-
nected to the ID that created that QR code.

• Upon entering or exiting an area protected by a Covered
Safe Entry Scanner, the user activates the system by showing
any one of their QR codes. Thus, each QR code entry/exit
is recorded in a common database.

• When the QR code is scanned, Covered checks the database
for issues associated with that QR code. An ID that has been
flagged as infected, potentially exposed, having a pend-
ing request for a meeting with a human contact tracer or
a healthcare provider for consultation, etc., causes an appro-
priate message to be issued. If the ID associated with the
scanned QR code has recently passed a check, the system
can skip mask and temperature checks to speed entry.

• Because the database literally does not know how to contact
the owner of an ID, detailed information about the status
of an ID is only available to the person using their ID and
password to access their information via an online database
interface. Even healthcare workers making authorized up-
dates to the database generally do not need to know IDs and
which people are associated with them; all interactions can
use a QR code to identify the user.

To provide these services, the computer or tablet running Cov-
ered must have at least intermittent internet access to the database,
which was prototyped as an SQLite database to be run on a server
with an HTTP (web browser compatible) interface.

Conclusion
This paper has discussed the pandemic caused by SARS-

CoV-2 and three key mechanisms that can be implemented in a
safe entry scanner to slow spread of the virus. Most important is
the automatic recognition of a properly-worn mask, which turns
out to be remarkably easy to do, essentially by detecting that the
nose is covered. Additionally, methods are described for imple-
menting a simple fever check and for semi-automatic contact trac-
ing without exposing any personally-identifiable data.

The system was conceived and prototyped in Summer 2020,
but has not yet been tested in a real-world environment. Although
a provisional patent was filed by the University of Kentucky, it
has always been our intent that the recognition of a properly-
worn mask should be an open technology and details will be at
http://aggregate.org/DIT/COVERED. The patent reflects our
desire to find a partner that could further develop the complete
system and put it into widespread use. The do-it-yourself nature
of the system, combined with fears about potential liability, have
thus far prevented application of the system in venues such as the
retail stores that inspired creation of the system.
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