Scene Appearance Change As Framerate Approaches Infinity

Henry Dietz, Zachary Snyder, John Fike, and Pablo Quevedo

DPMI-259, 4:40 February 17, 2016

University of Kentucky
Electrical & Computer Engineering
The Question

• Cameras use light to construct a model of scene appearance, **not record light properties**
• Model should change as the scene changes
 – How fast does the scene change?
 – Can we know (e.g., photon shot noise)?
• Increasing temporal resolution (framerate) should produce a sharply decreasing amount of additional data. **Does it?**
Why We Care

- If so, can use high framerate capture and
 - Pick still exposure interval after capture
 - HDR (High Dynamic Range)
 - Framerate-independent video
 - Negligible temporal gaps between frames
- In other words, can implement TDCI
 (Time Domain Continuous Imaging)
High-Framerate Cameras

- Consumer cameras with 240 to 1000 FPS
- Temporally-skewed multi-cameras... like *FourSee*:
Experiments

- Consumer cameras @ 240-1000 FPS record a normal scene in *ordinary* lighting
- Synthesize lower FPS by *stacking*
- Measure information content by TDCI coding
 - Waveform per pixel
 - Noise model
 - Record each time a pixel value changes from expected by more than noise
Canon PowerShot N @ 240 FPS
(original .mov was 66,252,172 Bytes)
Canon PowerShot N @ 240 FPS
(original .mov was 71,434,052 Bytes)
Conclusions

- Information content quickly approaches a **constant** as FPS is increased
- Noise model has a huge impact on compression obtained

Want details? See our paper & poster!

Aggregate.Org

University of Kentucky