Autocorrelation-Based, Non-Contact Photoplethysmography: Computationally-Efficient, Noise-Tolerant, Extraction of Heart Rates from Video

Chadwick Parrish, Kevin D. Donohue, and Henry Dietz ECE Department, University of Kentucky COIMG-132, 9:10 AM, January 15th, 2019

Outline

- Overview of PPG
- Goals of the Current Work
- Related Work
- Data Acquisition
- Data Processing
- Results
- Difficulties
- Conclusions

What is Photoplethysmography (PPG)?

- Basis of PPG
- Contact PPG
 - Pulse Oximetry
- Non-Contact PPG

Our Goals

- Low Computational Power
- Non Selective Filter Bounds
- Passive Algorithm
- Development for Real-Time

Related Work

- PPG Works Have Long Used
 Frequency Analysis
 - Verkruysse , UC Irvine
 - Green & Blue Channels
 - Bandpass Filter: .8-6Hz
 - FFT

Related Work

- Short-Term Autocorrelation is more recent
 - Das, Univ. of Calcutta
 - Contact PPG
 - Filters
 - >.7 Hz, < 33 Hz
 - Range Looked at is Between 50-120 BPM

Data Acquisition

Video ROI Tiler & Sampler

In-Camera Data Capture

- Inputs
- Usage
- SamplingFFMPEG
- Output

- Input
- Usage
- Sampling
 - CHDK
 - Motion Detect
- Output

Data Processing

- Linear Detrend
- Filter
- Short-time Autocorrelations
- Outputs
 - BPM
 - Correlogram

Results: VIRTAS

Trial No.	Subject No.	Video Duration (in seconds)	Est. BPM (from Data Processing)	Ref. BPM *	Absolute Error in BPM
1.7	2	25	79.4	81	1.6
1.8	2	16	79.4	81	1.6
1.9	2	29	75.2	81	5.8
1.10	2	33	71.4	81	9.6
1.11	2	32	71.4	81	9.6

* obtained with active optical contact PPG sensor on subject finger

Results: In-Camera Data Capture

Trial No.	Subject No.	Est. BPM (from Data Processing)	Ref. BPM *	Absolute Error in BPM
2.1	1	75	68	7.0
2.2	1	68.2	68	0.2
2.3	1	65.2	68	2.8
2.4	1	71.4	68	3.4
2.5	1	68.2	68	0.2

* obtained with active optical contact PPG sensor on subject finger

Results

- Absolute Mean Error
 - VIRTAS: 15.6 BPM
 - In-Camera: 8.38 BPM
 - Total: 11.87 BPM
 - Lighting Variance
 - Verkruysse

Difficulties

- Fill-in Lighting on the Face
- Low Framerate/Sampling Frequency
- High Noise and Low Energy
- Octave Errors

Conclusions

- What the current work has done
 - Low Computational Cost
 - Real-Time Scalability
- Future Directions
 - Embedded Real-Time Application
 (In Progress)
 - Multiple Subjects

Overview

- Overview of PPG
- Goals of the Current Work
- Related Work
- Data Acquisition
- Data Processing
- Results
- Difficulties
- Conclusions

VIRTAS Flowchart

In-Camera Data Capture Flowchart

Data Processing Flowchart

