
Leveraging Pixel Value Certainty in Pixel-Shift and
Other Multi-Shot Super-Resolution Processing
Henry Gordon Dietz; Department of Electrical and Computer Engineering, University of Kentucky; Lexington, Kentucky

Abstract
Traditional super-resolution processing computes sub-pixel

alignment over a sequence of image captures to allow sampling
at a finer spatial resolution. Alternatively, the mechanism in-
tended to implement in-body image stabilization (IBIS) can be
used to shift the sensor in a stationary camera by precise frac-
tions of a pixel between exposures. The implicitly perfect align-
ment of pixel-shift images reduces post-processing to interleaving
of raw data, but motion of camera or scene elements produces
disturbing artifacts. Determining misalignments on raw images
from cameras using color filter array (CFA) sensors is potentially
problematic, so the synthesized super-resolution image is instead
typically built from already-interpolated image data, with a re-
duction in tonal quality.

The current work instead directly models the certainty, or
confidence, with which pixel values are known. Sub-pixel align-
ment may be computed on either raw or interpolated image data.
Still, only the underlying raw samples have precisely known val-
ues, so only they are used to compute the super-resolution im-
age. However, primarily due to motion, even raw pixel values
can have variable value certainty. Thus, a confidence metric is
calculated for each raw pixel value and used as a weighting fac-
tor in computing the best estimate for the value of each super-
resolution pixel.

Introduction
Television shows and movies often assume that an image

from any camera can be “zoom and enhance” processed to dra-
matically improve image resolution. The improvement is imag-
ined to happen in both spatial and tonal dimensions: not only
are incredibly fine details made visible, but the noise level of
the image is reduced so that finer tonal gradations can be per-
ceived. Processing to increase the spatial and/or tonal resolution
of a single captured image is generically referred to as single-
image super-resolution processing. In recent years, a variety of
artificial intelligence (AI) methods have emerged that appear to
enhance spatial and tonal resolution significantly [1] [2] [3], but
they are fundamentally hallucinating credible details that might
or might not resemble the actual scene detail. The only way to
create a known-accurate image of a scene with higher spatial or
tonal resolution than the sensor of the camera being used is to
combine images from multiple captures[4][5], which can be ac-
complished in various ways as summarized in Table 1.

Using film and photochemical processing, the emphasis is
on improving spatial resolution and multiple captures are gen-
erally shot as a panorama sequence in which the camera’s view
is changed with just enough overlap between captured images to

Table 1: Multi-Shot Methods for Improving Resolution

Method
What
Moves?

Capture
Overlap

Tonal or
Spatial?

Stitched Panorama Camera Small Spatial
Scanning Sensor Small Spatial
Averaging Nothing Large Tonal
Image Stacking Camera Large Both
Pixel Shift Sensor Large Both

facilitate aligning the seams between prints. Panorama stitch-
ing also is commonly used with electronic sensors[6]. Unlike
physical splicing of printed photographs, digital processing can
computationally warp images so that distortions caused by the
lens and re-aiming of the camera need not result in severely ar-
tifacted seams. As an alternative to panning the camera, scan-
ning[7][8] the coverage circle of the taking lens can be imple-
mented by moving the sensor, eliminating the potential for seam
misalignments due to lens distortion.

Given the ability to precisely align captures with sub-pixel
accuracy, keeping overlap between digital image captures very
high offers the significant benefit of potentially improving both
spatial and tonal resolution. Many cameras incorporate multi-
shot averaging modes for reducing high-ISO noise or as an anti-
shake mechanism. Image stacking, widely used in astrophotogra-
phy, computes precise alignments by analyzing the images cap-
tured and aligning features. In contrast, pixel shift uses com-
puter motion control mechanisms to implement tiny, very precise,
movements of the sensor, typically in units of 1/2 or 1 pixel. The
deterministic positioning should allow fewer captures to yield
higher-quality data because the scene is more regularly sampled,
and it should not be necessary to determine alignment computa-
tionally.

While all the above techniques are somewhat effective,
problems like motion artifacting limit the quality of the combined
images. The focus of this paper is the use of pixel value certainty,
or confidence in processing pixel-shift captures so that artifacted
pixel value samples are given less weight in determining the final
image pixel values.

Pixel Shift
Pixel shifting, sometimes called microscanning, has been

known for at least several decades as an evolutionary step beyond
line scanners. In the 1980s, the Jenoptic ProgRes (programmable
resolution) 3012 commercial microscope camera[9] moved a rel-



Figure 1. IBIS supports X, Y, and Roll movements; with a 2×2 RGGB CFA, a 4-shot sequence using X, Y pixel offsets can provide full color at each pixel

atively small and low resolution CCD sensor behind the lens us-
ing piezo-electric actuators so that a series of exposures could
produce images as large as 4608×3480 uninterpolated pixels.

The thing that has made pixel shift suddenly much more
appealing is the common implementation of IBIS (in-body im-
age stabilization) in interchangeable-lens mirrorless cameras. As
sensors reached ever higher pixel counts, tiny amounts of camera
shake became the fundamental limit on the spatial resolution that
could be delivered. Because moving the sensor to compensate
for this shake is done within the body, IBIS avoids adding com-
plexity to the lenses. OIS (optical image stabilization) in lenses
is also unable to compensate for as many types of motion. The
leftmost diagram in Figure 1 shows the six dimensions of motion
which may be present in camera shake. OIS is only able to easily
correct for Pitch and Yaw movements. In contrast, 3-axis IBIS,
which directly implements motion in the X, Y, and Roll dimen-
sions, can approximately correct for small-angle Pitch and Yaw
movements by combining them in the computation of Y and X
offsets. Except perhaps at macro focus distances, motion in the
Z axis has negligible impact on the image and is thus ignored.

The IBIS motion control is normally computed in response
to data from an IMU (inertial measurement unit) sampled many
times during an exposure. To track camera shake, typical sample
rates are in the kilohertz range, and the actuators that move the
sensor can only be effective if they are capable of responding
to shake on that timescale with positioning accuracy that is at
least comparable to the dimensions of a single pixel. Thus, given
the assumption that the subject and camera are in fixed relative
positions, it is actually much simpler to implement precise pixel
shifts between captures than to implement shake-compensation
movements. In pixel shift sequences, the Roll dimension position
is fixed and the X, Y offsets are changed between exposures.

Pixel Shift Modes
There are two ways in which pixel shifting potentially im-

proves both spatial and tonal resolution:
Full pixel steps: Nearly all cameras use a CFA (color filter ar-
ray), such as the 2×2 RGGB Bayer pattern shown in the center of
Figure 1. A single shot does not sample all color channels at each
pixel site. By moving the sensor in pixel-sized steps in the X and
Y directions, it is possible to position each color channel in every
pixel location over a series of captures. The result is primarily

improved color accuracy and reduction of artifacts like moire –
improvements to tonal resolution. In theory, spatial resolution of
luminance scene details might be unaffected by full-pixel shifts,
but resolution of color details could be doubled in both the X and
Y dimensions. Typical capture sequences for this use just four
exposures, one for each of the color placements within the CFA,
making exposures offset in a pattern like that shown in the right
side of Figure 1.
Fractional pixel steps: Moving the sensor in smaller increments,
it becomes possible to increase resolution by sampling between
pixels. Most commonly, 1/2-pixel steps are used, thus doubling
linear pixel density and quadrupling the total pixel count deliv-
ered. A typical capture sequence will sample each 1/2-pixel posi-
tion with all four channels of a 2×2 CFA, thus requiring a rather
long sequence of 16 exposures. Beyond the awkwardness of such
a long sequence, a high effective pixel fill factor implies that the
fractionally-moved pixels overlap the areas sampled in neighbor-
ing positions, reducing contrast. Similarly, many sensors incor-
porate filter stacks that include AA (anti-alias) filters that spread
focused light over multiple pixels, and this also can reduce con-
trast. Of course, a lens that does not project a sufficiently sharp
image will also limit the spatial resolution that can be achieved
by pixel shifting.

Generally, pixel shift modes require that the camera be in
a fixed position relative to the subject for the entire pixel-shift
capture sequence. There have been attempts to implement pixel
shifts while correcting for camera shake: i.e., handheld pixel
shift. However, that would require precisely correcting for shake
during the entire sequence of captures rather than just within a
single capture. Combining that longer correction period with
somewhat higher positioning accuracy requirements, such as po-
sitioning in 1/2-pixel steps, is challenging. For example, Pentax
has implemented handheld pixel shift[10], but only for a 4-shot
sequence.

Standard Pixel Shift Processing
Pixel shift is based on the idea of precisely-controlled mo-

tion of the sensor. Given that precise motion, the software for
combining pixel-shift captures is logically very straightforward:
Full pixel steps: The merging rule is simply that, instead of
the usual demosaicing interpolation to spread color information,
each pixel uses only the data for the color channel that it sampled



Figure 2. Fragment of PixelShift2DNG output showing motion artifacts

in each capture. The most common CFAs have one Red, one
Blue, and two Green pixels in a repeating 2×2 pattern (a RGGB
pattern was shown in the center of Figure 1). Clearly, to get a Red
sample in each pixel location will require four shift captures, and
the same holds for Blue. However, such a shift pattern will cause
each final pixel to contain two Green samples. If we assume that
the two Green filters have identical spectral properties, simply av-
eraging the two Green samples at each pixel location will produce
a lower-noise Green value. If the CFA pattern is more complex,
for example using a four-color pattern as in the Sony F828[11],
the process would be the same except for producing additional
color channel data for each pixel location. In any case, it is im-
portant to recognize that the result of this process is not a final
image rendering, but simply a “raw” image with more complete
data at each pixel site: color management and gamma encoding
would still need to be done.
Fractional pixel steps: The fractional pixel steps are generally
taken to be small integer divisors of the size of a pixel, such as 1/2
pixel steps producing an image with four times the sensor’s pixel
count. Typical pixel shift patterns will sample each CFA color in
each subpixel position, and the simplest processing would only
use the data for the color channel centered on each subpixel. The
main problem with this is that, as discussed earlier, each sample
sees light hitting a larger area than just the subpixel upon which it
is centered. The result is that the “raw” image produced will need
some type of sharpening to counter this degrading of local con-
trast. Empirically, relatively aggressive sharpening methods ap-
plied with a small radius work well because fine detail is present
with low contrast and low noise.

Although pixel shift support is generally in software pro-
vided by the camera manufacturer, and some cameras also offer
merging of pixel-shift captures in-camera, the only freely avail-
able implementation handling raws from a variety of cameras is
PixelShift2DNG[12]. That software, written by the developers
of LibRaw[13], uses the metadata recorded by the camera with
each capture to recognize pixel-shift images, and automatically
combines the captures as described above. The resulting file is
a DNG raw that retains the original raw file metadata for color
correction, etc, and the quality of the images it produces often is
remarkable.

Figure 3. Fragment of parsek output corresponding to Figure 2

Confidence-Based Pixel Shift Processing
The obvious problem with the processing implemented by

PixelShift2DNG is that any subject motion causes very dis-
tinctive and disturbing artifacts. For example, Figure 2 shows
a 120 × 80 pixel fragment of the 19128 × 12744 image pro-
duced by combining a 16-shot pixel shift sequence shot using
a Sony α7RV on a tripod. Care was taken to minimize camera
movement, including use of self timer and electronic shutter, but
that did not prevent some flowers in the foreground of the scene
from swaying with the wind. The shutter speed was fast enough
(1/336s) that there is no such artifact in any of the individual cap-
tures, so it should be possible to construct a more credible super-
resolution image.

When confronted with such a problem, the common reaction
is now to apply machine learning (ML) to filter the image. Such
methods can be very effective, but ML is inherently biased by the
set of training images used. To ensure that artifacts are not sys-
tematically biased, the approach in this paper is instead focused
on directly using information from the captures themselves. The
key concept is to be certain that the value selected for each fi-
nal pixel is an accurate representation of the scene content, and
this certainty is sought by tracking the confidence with which
each potential contribution to a pixel value is known. Confi-
dence in pixel values is a function of:

1. Variations in the scene content at the target pixel location
over the time interval spanned by the individual exposures,
i.e., the issue evident in Figure 2. This similarity can be
measured in at least two fundamentally different ways, as
either the difference from a particular capture treated as a
reference or as the difference from the statistically average
scene content. Figure 3 shows how effectively the method
proposed in the current work resolves this problem.

2. The quality of the alignment of each sensel sample with the
target pixel’s ideal sample area. This metric also has multi-
ple dimensions in that poor alignment can arise from either
a mismatch in shape or size of the active sensor area (i.e.,
fill factor) or a mechanical positioning error. In conduct-
ing the experimental evaluation of the new approach, it was
discovered that positioning error is surprisingly significant



under ordinary capture conditions. Where micron-scale po-
sitioning is concerned, the phrase “trust, but verify” seems
particularly appropriate.

3. The probabilistic error bounds on each digitized sensel
value. This summarizes the combined effect of photon shot
noise, sensel characteristics, and basic analog and digital
processing of sensel values.

These three aspects of pixel value quality are each treated some-
what differently, yet all are internally represented as probability-
like confidence values between 0 and 1 for each individual sam-
ple. Confidences across these dimensions either can be combined
numerically to produce a unified confidence metric or can be used
as thresholds to invalidate low-quality potential contributions to
a final pixel value.

Parsek
The proposed new model for combining pixel shift captures

was prototyped by creating an open source C++ program called
parsek (probabilistic alignment raw stitcher experiment from
Kentucky)[14]. The name is a nod to the concept of a parsec,
which is a unit of distance corresponding to a parallax of one sec-
ond – i.e., the distance at which 1 AU subtends an angle of one
arc-second, or approximately 3.26 light years. Both are about
making big images by looking at small angle offsets.

At this writing, parsek has gone through over 40 revi-
sions. The current version is approximately 1500 lines of C++
source code that takes advantage of the OpenCV[15] library and
uses either dcraw[16] or LibRaw unprocessed_raw[13] as a
helper program to convert various proprietary raw formats into
unprocessed linear sensel data in the PGM format[17]. The PGM

file format with 16 bits per sensel value is used, but most cam-
eras have fewer active bits per raw sample, so parsek recog-
nizes how many bits are active, bpp, and promotes the values
to 16-bit integers using the formula ((v << (16− bpp))|(v >>
(bpp− (16− bpp))). All values within parsek are represented
either as 16-bit integers or 32-bit floating point values.

Raw Sensel Data?
In most computational merging of multiple images, such as

image stitching, the image data is usually cooked before merging.
For example, Adobe Photoshop can be used to automatically
image align layers for merging, but reading a raw image into the
software demosaics it, filling-in any missing pixel color channels
by interpolation. In contrast, traditional pixel shift processing is
performed entirely on raw sensel data.

While parsek can operate on raw data in a wide range of
formats using the raw decoding process described above, it also
can operate on cooked image data, including JPEGs. This was
done partially to make the software more flexible, but also to al-
low direct comparisons between use of raw data, use of cooked
data, and even use of approximate raw data synthesized from
cooked images. Input full color images with either 24 or 48 bits
per pixel can be used in their cooked form with all color chan-
nels for each pixel contributing to the final image. Most image
formats encoding 8 bits per color channel assume a gamma be-
tween 1.8 and 2.2, so correction with a default gamma of 2.0 is

Figure 4. A pixel value error model created by parsek

applied to create linear 16-bit values. The parsek software al-
lows explicit specification of a 2× 2 CFA pattern; for example,
the pattern seen in Figure 1 would be described as RGGB. If a CFA
pattern is specified, even if the input image was a cooked format,
only the pixel color channels that are not in interpolated positions
are used – effectively reverse-engineering approximate raw data.

Although the differences were typically small, using real
or reverse-engineered raw data tended to render details a little
sharper, but with slightly more noise, than using using interpo-
lated full-color data.

Pixel Value Error Model
The third attribute listed above as a key contributor to pixel

confidence is the probabilistic error bounds on sensel values: the
contribution of noise. In earlier work[18][19], we have shown
that a useful, yet concise, model of probabilistic errors in sensel
values sampled can be constructed as a 2D histogram for each
color channel. If two sensel values, v1 and v2, are found to be
likely recording the same scene content, then the histogram box
with the corners (v1, v2) and (v2, v1) is incremented. After all
such pairs have been processed, the counts are normalized to val-
ues between 0 and 1 by scaling each row v’s entries by the count
in entry (v, v). The result is essentially a lookup table in which
the value recorded at (v1, v2) can be treated as the confidence that
sensed value v1 is really representing the ideal value v2. Such an
error model can be visualized as a square color image like that
shown in Figure 4.

Typical methods used to determine when two different sam-
ples might really represent the same true pixel value included
using the exact same pixel location sampled from consecutive
video frames or searching areas within a single image looking
for the closest matches. In parsek, the analysis is done by per-
forming feature-based alignment of the images and marking all
the boxes determined by all possible pairings of the best-aligned
pixel values. For example, if there are three images and a partic-
ular aligned pixel location in the first image has the value v1, the
second has v2, and the third has v3, then three histogram boxes
would be incremented: (v1, v2) to (v2, v1), (v2, v3) to (v3, v2),
and (v1, v3) to (v3, v1). The histogram is then normalized to con-
fidence values between 0 and 1 and used as a lookup table for
determining how likely it is that two different samples are testing



the same scene content and should thus be averaged to obtain a
more precise estimate of the true pixel value.

Alignment
One of the key points of pixel shift is that the precision

movement of the sensor makes it unnecessary to perform align-
ment computations. However, we tested that assumption and the
results were surprising in more than one way.

The first surprise was how simple it was to compute suf-
ficiently accurate sub-pixel alignments using OpenCV[15]. The
findTransformECC() function is intended to find the geomet-
ric transformation (warp) between two single-channel images by
maximizing the Enhanced Correlation Coefficient[20]. Although
uninterpolated raw sensor data is represented as a single-channel
image, the data interleaves color channels, and it was not clear
that this algorithm would be effective. Test cases synthesized
by simulating precise unit pixel raw shifts yielded subpixel ac-
curacies much finer than the 1/2-pixel shifts which are the finest
movements intended in the pixel shift cameras available to us. A
known weakness of this alignment algorithm is that it requires an
initial estimate of the alignment transformation in order to be ef-
fective with large displacements and/or rotations, and parsek in-
corporates a filter to ignore input images requiring stronger trans-
formations, but the identity transform proved to be a sufficient
estimate for the scale of movements seen in pixel shifting.

The second surprise was that the offsets in “real world” pixel
shift images were not the precise multiples of 1/2-pixel shifts ex-
pected. For 16-shot pixel-shift sequences captured using a Sony
α7RV, Figure 5 shows the theoretical offsets, offsets measured
under near-ideal conditions indoors, and offsets measured from
capturing the the real-world scene from which Figures 2 and 3
were cropped. The shift measurements used the same camera
and tripod, with the camera set to electronic shutter and triggered
by self-timer to minimize vibration in both cases, but the off-
sets differed dramatically. Ideal conditions led to offsets close
to theory, but the real-world offsets are shockingly different. Is
it reasonable to expect a camera on a tripod to limit accidental
movement of the image on the sensor to far less than a 3.7µm
pixel over the course of a 16-shot capture sequence that took ap-
proximately one minute? In the particular case described here,
we photographed Yosemite’s El Capitan from a popular viewing
spot with the tripod resting on solid concrete, but surrounded by a
crowd of people with cars driving by and enough breeze to wildly
move flowers in the foreground (as seen in Figure 2).

The fact that pixel-shift offsets are not precise under nor-
mal shooting conditions implies that higher resolution could be
achieved by using computed alignments than by using the ex-
pected shift values. In practice, there was very little if any ad-
ditional detail visible in 2× super-resolution, but the tonal qual-
ity was notably better using measured offsets to compute confi-
dences. Super-resolution processing to 3×, which is not possi-
ble using traditional pixel-shift processing that assumes 1/2-pixel
offsets, revealed slightly more detail. In all cases, traditional
pixel-shift processing resulted in slightly higher contrast, but that
was likely due to a higher noise level. Confidence-weighted av-
eraging mean that a typical pixel color channel value has contri-
butions from 16 samples rather than just 1.

Perhaps more significantly, it was found that without tak-
ing exceptional measures, simply mounting a camera on a tri-
pod and making a series of captures caused random movements
of comparable magnitude to those implemented by pixel shift.
This was true for a Sony NEX-5 (mechanical shutter mirrorless),
Canon EOS 5D Mark IV (mechanical shutter DSLR), Panasonic
Lumix DC-GX850 (electronic shutter mirrorless), etc. Whereas
movement range over the Yosemite sequence was around 8µm,
manually firing the electronic shutter of a mirrorless body tended
toward about twice as much movement and mechanical shut-
ters caused 2×−4× that much movement. The tripod-mounted
movements also had a distinct profile: there was almost no ro-
tation and X movement tended to be significantly more than Y
movement. Of course, it is also possible for parts of the camera
itself to cause shifts; it is common in compact cameras that vi-
bration induced by lens aperture or shutter movement can shift a
lens within the mechanical tolerance limits of its focus and zoom
mechanisms. Using parsek to process these random-movement
sequences produced results strikingly similar to those using pixel
shift.

Pushing this idea to the extreme, the amount of motion
across shots when hand-holding a camera with IBIS also was
measured. Within each shot, IBIS is effective in keeping over-
all motion negligible. However, IBIS systems may reset between
shots to avoid hitting motion limits and the user’s grip may also
change slightly. Using a Sony α7II handheld with IBIS and
mechanical shutter, worst-case movement was limited to about
0.2mm – an order of magnitude more than using a tripod. How-
ever, the IBIS correction of Roll was very effective. The re-
sult was that the findTransformECC() routine was able to find
subpixel-accurate alignments and handheld super-resolution pro-
cessing using parsek still provided notable improvements even
when alignment of some shots failed causing their data to be ig-
nored.

Subject Motion
The first motivation listed above for finding a better pixel-

shift processing technique was to better deal with subject mo-
tion. Although PixelShift2DNG apparently does not try to re-
duce such artifacting, there are at least three methods that have
been used to avoid the artifacting seen in Figure 2.

One approach is to use a slow shutter speed for the cap-
tures. If the individual captures are blurry due to subject mo-
tion, merging them tends to produce a natural-looking blur rather
than the type of artifacts seen in Figure 2. The main problem
with this is that we now know the natural movement of a tripod-
mounted camera in poorly-controlled environments easily could
cause pixel-level blur for portions of the scene that aren’t mov-
ing. This is also a method that can only be applied at capture
time, not a decision made during post-processing.

A second alternative is to pick a reference capture and sub-
stitute interpolated values from it when the intended sample is
significantly different. A minor variation on this scheme mea-
sures sharpness of all captures and prefers data from the image
that is sharpest in image regions where the difference is signif-
icant. A very simple early version of this is Nikon’s BSS (best
shot selector), which captures multiple shots and then in-camera



Figure 5. Plot of Sony α7RV 16-shot pixel shift offsets: theoretical, measured ideal indoor conditions, measured real-world outdoor scene

discards all but the sharpest. Of course, this solution implies that
where there is motion, there will be no increase in spatial or tonal
resolution.

The third option would be using the average value from
nearby pixels across all captures to define the expected value of
the pixel and discard pixel values distant from that. This is essen-
tially the idea used in the Drizzle algorithm[21], and the princi-
ple is extremely effective for astronomical imaging because most
“motion” is essentially noise from short-lived phenomena that are
not the intended target. Unfortunately, motion artifacts caused by
natural scene element movement, such as plants swaying in the
breeze, often survive this averaging process.

The current work investigated a wide range of different
weighting methods for reducing motion artifacting. The key to
most methods is being able to distinguish between samples that
are or are not seeing the same scene element. In parsek this is
not done by ML recognition of scene content, but by having the
histogram-based model of noise described above. Not only does
table lookup provide a confidence that two values are approxima-
tions to the same ideal value, but as a side-effect it also filters-out
excessively noisy or “stuck” pixels. In fact, this type of noise
model is highly effective for noise reduction in images[19].

Using this similarity confidence metric, parsek can filter
potential pixel contributions by either similarity to pixels in a
given reference image or by similarity to the average value –
the second and third options discussed above, but with important
twists.

The confidence metric can implement either a hard or soft
cutoff. Command line options for parsek allow setting a confi-
dence threshold for discarding a value, but confidences also can
be directly used for merging not only disparate data values, but
also their component confidences. There is even an adjustable
level of softness implemented by specifying an exponent for the
histogram-based confidences; sharpen the cutoff by specifying an
exponent >1, smooth it with an exponent <1.

The “average” used is not the mean, but a metric closer to
the median. The interesting concept here is how to deal with hav-
ing three color channels. Rather than computing median based
on value, we compute it as the sample that has the highest total
confidence of being paired with all the other samples potentially
relevant to this pixel. In case of a tie, the contending values are
averaged to define the reference value.

The best choice for filtering of motion artifacts depended
somewhat on the scene content. For example, natural landscapes
with moving foliage were handled best by soft filtering based on
similarity to a reference image while noisy relatively static scenes
are handled better using a hard filter on the average. In cases like
raw landscape captures that have uncorrected bad pixels (e.g.,
“Christmas Tree light” artifacts from long exposures without dark
frame subtractions), a combination filter is most effective.

Conclusions
The current work has explored an alternative model for pro-

cessing of pixel-shift and other types of captures for multi-shot
super-resolution rendering as full-color raw images. Rather than
assuming that the intended pixel-shift motions are perfectly im-
plemented and using ML techniques to filter-out larger-scale mo-
tion artifacts, the proposed approach simply pays closer attention
to the statistical properties of the raw captures – or of reverse-
engineered approximations to raws generated from cooked input
images. Expected shifts are used as no more than initial esti-
mates for directly measuring the shifts from the captures them-
selves. All potential sample contributions to the the computation
of each final raw pixel value are weighted by confidence values
taking noise, alignment, and consistency across component cap-
tures into account. These confidence values also allow consid-
erable tuning by adjusting a small number of easily understood
model variables.

Working with pixel-shift captures as input, the typical re-
sult is a modest improvement in quality of the super-resolution
raw result. Spatial resolution is slightly better than conventional
pixel-shift processing would produce. Contrast is lower using
the proposed approach, but noise is significantly reduced, so the
resulting super-resolution raw can be aggressively sharpened.

Unless the capture environment is very carefully controlled,
random movements, primarily in the X axis for tripod-mounted
cameras, occur across captures with magnitude similar to or
greater than pixel shifts. Although these movements make pixel
shift offsets differ from the expected motion, by measuring the
actual shifts in a sequence of shots with a tripod-mounted cam-
era or even a handheld camera with IBIS, our parsek software
was able to produce high-quality super-resolution images – even
when pixel shift was not used. The C++ source code of parsek
is freely available[14].



References
[1] D. Glasner, S. Bagon and M. Irani, “Super-resolution from

a single image,” 2009 IEEE 12th International Conference
on Computer Vision, Kyoto, Japan, 2009, pp. 349-356, doi:
10.1109/ICCV.2009.5459271

[2] W. Yang, X. Zhang, Y. Tian, W. Wang, J-H. Xue and Q. Liao, “Deep
Learning for Single Image Super-Resolution: A Brief Review,” in
IEEE Transactions on Multimedia, vol. 21, no. 12, pp. 3106-3121,
Dec. 2019, doi: 10.1109/TMM.2019.2919431

[3] Honggang Chen, Xiaohai He, Linbo Qing, Yuanyuan Wu, Chao
Ren, Ray E. Sheriff, and Ce Zhu, “Real-world single image super-
resolution: A brief review,” Information Fusion 79 (2022): 124-145.

[4] Sung Cheol Park, Min Kyu Park and Moon Gi Kang, “Super-
resolution image reconstruction: a technical overview,” in IEEE Sig-
nal Processing Magazine, vol. 20, no. 3, pp. 21-36, May 2003, doi:
10.1109/MSP.2003.1203207

[5] S. Farsiu, M. D. Robinson, M. Elad and P. Milanfar, “Fast and
robust multiframe super resolution,” in IEEE Transactions on Im-
age Processing, vol. 13, no. 10, pp. 1327-1344, Oct. 2004, doi:
10.1109/TIP.2004.834669

[6] Helmut Dersch, “Panorama tools: open source software for immer-
sive imaging,” The international VR photography conference pro-
ceedings, vol. 1, 2007

[7] “BetterLight,” https://www.betterlight.com/index.html (accessed
2/3/2021)

[8] Henry Dietz and Paul Eberhart, “An Ultra-Low-Cost Large-Format
Wireless IoT Camera,” Electronic Imaging, Imaging Sensors and
Systems, pp. 70-1 - 70-7(7), 2021 doi: 10.2352/ISSN.2470-
1173.2021.7.ISS-070

[9] “Professional Digital Cameras and Jenoptik - a Long Tradition,” in
G. I. T. Imaging and Microscopy, vol. 6, pp. 26-27, July 2004.

[10] Ricoh Imaging Company, Ltd., “The advanced Pixel Shift Resolu-
tion System II for super-high-resolution images,” https://www.ricoh-
imaging.co.jp/english/products/k-1-2/feature/02.html (accessed
2/15/2024)

[11] DPReview, “Sony announce new RGBE CCD,”
https://www.dpreview.com/articles/1471104084/sonyrgbeccd
(accessed 2/15/2024)

[12] LibRaw LLC, “PixelShift2DNG: Convert
Sony and Pentax Pixel Shift Files to DNG,”
https://www.fastrawviewer.com/PixelShift2DNG (accessed
2/15/2024)

[13] LibRaw LLC, “LibRaw raw image decoder,”
https://www.libraw.org/ (accessed 2/15/2024)

[14] Henry Dietz, “The Aggregate: PARSEK,”
http://aggregate.org/DIT/PARSEK (accessed 2/15/2024)

[15] OpenCV, https://opencv.org/ (accessed 2/15/2024)
[16] Dave Coffin, “Decoding raw digital photos in Linux,”

https://www.dechifro.org/dcraw/ (accessed 2/15/2024)
[17] Jef Poskanzer, “NETPBM: Extended portable bitmap toolkit,”

1993, https://netpbm.sourceforge.net/ (accessed 2/15/2024)
[18] Henry Dietz, Paul Eberhart, John Fike, Katie Long, Clark Dema-

ree, Jong Wu, “TIK: a time domain continuous imaging testbed
using conventional still images and video,” in Proc. IS&T Intl.
Symp. on Electronic Imaging: Digital Photography and Mobile
Imaging XIII, 2017, pp 58 - 65, https://doi.org/10.2352/ISSN.2470-
1173.2017.15.DPMI-081

[19] Henry Dietz, “An improved raw image enhancement algorithm us-
ing a statistical model for pixel value error,” in Proc. IS&T Intl.
Symp. on Electronic Imaging: Computational Imaging, 2022, pp
151-1 - 151-6, https://doi.org/10.2352/EI.2022.34.14.COIMG-151

[20] Georgios D. Evangelidis, and Emmanouil Z. Psarakis, “Parametric
image alignment using enhanced correlation coefficient maximiza-
tion,” IEEE transactions on pattern analysis and machine intelligence
30, no. 10, pp. 1858-1865, 2008

[21] A. S. Fruchter and R. N. Hook, “Drizzle: A method for the linear
reconstruction of undersampled images,” Publications of the Astro-
nomical Society of the Pacific 114, no. 792 (2002): 144


