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Abstract
Experimenting with custom-programming of cameras can be

difficult. Most consumer cameras are protected to prevent users
from reprogramming them. Industrial cameras can be flexibly
controlled by an external computer, but are generally not stand-
alone programmable devices. However, various inexpensive cam-
era modules, designed largely to be used for building IoT (Inter-
net of Things) devices, combine extensive programmability with
a camera in a compact, low-power, module. One of the smallest
and least expensive, the ESP32-CAM module, combines a 2MP
Omnivision OV2640 camera with a dual-core 32-bit processor,
802.11 WiFi and BlueTooth as well as wired I/O interfaces, a mi-
croSD slot, low power modes, etc., all supported by the Arduino
programming environment and a rich collection of open source
libraries. Why not use it for programmable camera research?

This paper describes how the ESP32-CAM had to be adapted
to enable use in a variety of experimental cameras. For exam-
ple, some of these cameras do not use the lens screwed and glued
onto the OV2640, and replacing this lens revealed a number of is-
sues ranging from spectral response to adjustment of lens correc-
tions. There are numerous strange interactions between different
functions that end-up sharing the same I/O pins, so work-arounds
were needed. It also was necessary to devise ways to handle vari-
ous higher-level issues such as implementation of a live view and
synchronization across cameras. However, the key problems have
been resolved with open source software and hardware designs
described here.

Introduction
A wide range of digital cameras are readily available, but

very few make it easy to conduct experimental camera research
requiring custom programming.

The most obvious options would be high-end consumer cam-
eras, especially mirrorless interchangeable-lens cameras using
MFT, APS-C, or full-frame sensors. Although most consumer
cameras employ a variety of mechanisms to discourage users from
reprogramming them, some open-source efforts have managed to
reverse-engineer ways to support 3rd-party programming. Magic
Lantern[1] was successful in adding programmability and various
features to several Canon EOS DSLRs and the original EOS M
mirrorless, but porting to new models is difficult, and none of the
latest models are supported. The OpenMemories[2] project en-
ables 3rd-party software to run in the protected Android camera
app environment that Sony created for their PlayMemories apps.
Sony supported that app environment in a wide range of models,
from digital video cameras to the high-end full-frame 42MP A7r
II, but discontinued support of Android apps in all new cameras
immediately after OpenMemories became viable.

Cell phones and compact consumer cameras also would be
obvious alternatives using smaller sensors. Most cell phones of-

Figure 1. ESP32-CAM actual size: front and rear views

fer excellent programmable camera support via either Android or
IOS, very similar to the API developed for the research platform
Frankencamera[3][4], but the cost is high for the image quality de-
livered, and the cameras are essentially unalterable sealed subsys-
tems. Compact cameras are much cheaper while offering some-
what better image quality, but only the reverse-engineered open
source Canon Hack Development Kit (CHDK)[5] offers the de-
sired level of programmability. At this writing, CHDK supports
160 different low-end Canons, including most PowerShot mod-
els and a few EOS M series mirrorless bodies; for more than a
decade, CHDK has been one of the most viable approaches for
experiments involving reprogramming of cameras.

Cameras designed to be tethered to a computer do not offer
programmability directly, but can be intelligently controlled by
a host computer program. Although various interfaces are avail-
able, most such cameras use USB, often leveraging the driverless
UVC (USB video class) protocol[6]. Consumer-oriented teth-
ered cameras are generally marketed as webcams, whereas those
marketed as industrial or machine vision cameras tend to have
more robust physical construction, accept C-mount interchange-
able lenses, and may offer additional features. Due to the limited
market for industrial cameras, cost tends to be higher than for
consumer cameras with similar specifications.

There have been a few commercial cameras designed for
programmability, but they tend to be relatively expensive. The
DevCAM[7] is a very promising open source design incorporat-
ing an FPGA to support research use of up to six MIPI sensor
modules, but it also is relatively expensive per camera.

The alternative explored in the current work leverages the
large market that has developed for inexpensive camera mod-
ules intended to be used for building IoT (Internet of Things) de-
vices. These camera modules often are paired with fairly substan-
tial microcontrollers, and supported as platforms for both hob-
byist/experimenter use and IoT product development. On the
hobbyist/experimenter-oriented high end are boards providing a
full Linux environment, such as NVIDIA’s Jetson[8] and various



Table 1: Potential Camera Platform support of Key Attributes and Features

Attribute or Feature Mirrorless Webcam CHDK PowerShot AI-Thinker ESP32-CAM
Image quality ≥20MP,≥12bpp ≥0.3MP,≥8bpp 20MP, 12bpp 2MP (1600×1200), 10bpp
Exposure control Extensive Basic Extensive Basic plus some features
Interchange lens Yes Some models No Simple modification
Sensor size ≥17.3×13mm ≥2.4×1.8mm ∼6×4.5mm 3.59×2.684mm
Near infrared (NIR) Hard mod Some models Very hard mod Simple mod
Wired connectivity USB USB USB UART, SPI, & I2C
Wireless WiFi No Some models WiFi & Bluetooth (with BLE)
Tethered control Proprietary Yes, UVC Yes, CHDK PTP Yes, programmable
Autonomous operation Very limited No Yes Yes
Programmable display No No LCD Options via connectivity
Programming support No No CHDK C & Lua Arduino & Espressif C/C++
Processor Various ARM ? Dual 80MHz ARM Dual 240MHz Xtensa
Usable main memory Varies None Several MB 520KB SRAM & 4MB PSRAM
Flash memory SD card No SD card 4MB Flash & TF card
Power management Minimal No Minimal Modes from 310mA to 6µA
Sensor inputs Camera UI No Camera UI 9 I/O pins; ADC, I2C, & SPI
Control outputs Flash sync. No No 9 I/O pins; PWM, I2C, & SPI
Real time sync support Remote Some models RTC, USB detect RTC, programmable sync
Ease of embedding Very hard Moderate Hard Easy: 27x40.5x4.5mm board
Cost ≥ $500 $8−$150 ≥ $100 ∼ $7

Raspberry Pi models[9]. On the low end are the various ESP32-
CAM[10][11] versions, such as the AI-Thinker version used in the
projects discussed here. Despite being one of the least expensive
modules at around $7, the ESP32-CAM combines a 2MP Om-
nivision OV2640[12] camera with substantial computing facilities
centering on a dual-core 32-bit processor supported by the Ar-
duino programming environment and a multitude of libraries. For
example, a demonstration application implements a WiFi camera
web server with real-time face recognition.

Since 1999, our research group has constructed many pro-
grammable cameras and camera arrays[13]. Table 1 gives a com-
pact comparison of relevant features of some camera systems that
we have used to construct programmable camera research plat-
forms. From the table, it is not surprising that most of our earlier
efforts used Canon PowerShot cameras under CHDK. However,
the combination of lower resolution for the OV2640 camera, rel-
atively powerful computing hardware resources, and extensive li-
brary support makes the ESP32-CAM capable of implementing
significantly more sophisticated custom programming.

The remainder of this paper demonstrates the suitability of
ESP32-CAM for such research use by exploring three very dif-
ferent programmable camera systems our group has constructed
since 2019: KameraflY, KISS-E, and Lafodis.

Wireless Multicamera
The concept behind KameraflY was to create a very flexible

synchronized wireless multicamera that would allow a swarm of
stand-alone camera modules to be freely positioned for panora-
mas, 3D capture, Matrix-style time-frozen fly-bys, etc. The sys-

Figure 2. KameraflY Senior Project Team and system demonstration

tem was to be as inexpensive as possible, with a target cost of un-
der $25 per stand-alone camera. Yet, it was to be able to support
tightly synchronized capture using dozens of cameras. In fact,
this description is essentially the charge that was given to the un-
dergraduate Senior Design team of Nick Santini, William Davis,
Elisabeth Wilson, and Michael McKenzie – shown in Figure 2
with the working system they built[14].

Precise synchronization is critical for multicamera applica-
tions, so the team built a LED synchronization tester and experi-
mented. Synchronization proved easier than expected, with WiFi
synchronization of the cameras to 10ms – shorter than the elec-
tronic rolling shutter traversal time of an OV2640. The swarm
cameras were programmed to work with the Blynk IoT smart-
phone app[15] for capture to a TF card, image upload via FTP,



Figure 3. KameraflY control app and ftp image gallery

Figure 4. Swarm of four stand-alone KameraflY modules

and live streaming of video. A PHP web app allows browsing the
images collected from the multicamera. The two apps are shown
in Figure 3.

Although bare ESP32-CAM can be used with the software,
making a stand-alone KameraflY module requires a bit more.
Making self-contained units able to run off either USB power
or an internal rechargeable battery was perhaps the largest chal-
lenge, especially since battery safety was a priority. The 3D-
printed housing and custom board the team made neatly pack-
aged the ESP32-CAM with a charging module and a BP-70A
3.7v Lithium-Ion battery – a battery used in many Canon Power-
Shot models. The KameraflY modules shown in Figure 4 actually
came-in well under budget, at a total cost of $13.43 each.

KISS-E Interchangeable-Lens Camera
While KameraflY modules are standalone cameras, they are

designed to be programmed to be either fully autonomous or re-
mote controlled via WiFi. For example, there is no shutter button
and the camera has no display to show images nor even camera
status. In contrast, KISS-E, shown in Figure 5, fully supports
tethered control via either USB or WiFi, but also implements the
basic features needed to directly operate the camera. However,
the most important aspect of KISS-E is that it is designed to ac-
cept any of a wide range of interchangeable lenses. KISS-E stands
for Kentucky’s Interchangeable-lens Small Sensor – E mount; the
OV2640 lens is removed and any lens adaptable to Sony E mount
may be used instead.

Why Sony E mount? Most small-sensor cameras with in-
terchangeable lenses use C mount. However, Sony’s mirrorless
cameras have made the larger-diameter E mount the most popu-
lar target for adapting lenses, so inexpensive adapters for almost
any lens (including C mount) are widely available. Compared to
full-frame 36×24mm Sony cameras, the tiny OV2640 sensor im-
poses a crop factor of approximately 9.7; that makes it hard to get

Figure 5. KISS-E front and rear views

a wide angle view, but a 50mm lens essentially becomes 485mm,
giving very long effective focal lengths and high magnifications
with cheap and compact lenses. This is somewhat problematic
for hand-held use, because any camera shake is greatly magni-
fied, but there is a standard tripod 1/4-20 screw thread on the base
of KISS-E.

The electronics, wiring, and 3D-printed parts of KISS-E are
shown in Figure 6. Total parts cost was about $14. Unlike Kam-
eraflY modules, there is no custom board in KISS-E. Instead, the
3D-printed KISS-E body incorporates structures to mechanically
hold the ESP32-CAM, FT232RL, SSD1306 boardlets and shut-
ter button, which additionally can be secured using hot glue. In
fact, 3D printers even can print custom circuit boards – they sim-
ply cannot print wiring. Thus, combining 3D-printed mechani-
cal mountings with electrical connections implemented by wire
wrap directly to boardlet pins provides remarkable design flex-
ibility. Note that the rear OLED mount is a printed-assembled
hinged door that can be pivoted up for waist-level live view and
also serves as an access to the camera internals, including the TF
card. The small rectangular object on the 3D model plate is a tool
for removing/inserting a TF card.

The software written for KISS-E is very flexible, allowing a
mix of WiFi, USB, and manual control. Most significantly, KISS-
E fully supports real-time live view. Live view is a feature digital
cameras generally provide, but there is actually some complexity
in managing the OV2640 to provide a fast frame rate live view
stream while allowing on-demand image captures at a higher res-
olution. KISS-E can deliver the live view stream via WiFi and
also via the built-in rear OLED display.

The SSD1306 OLED display is bright and costs just $3, but
it is tiny, only 128×64 pixels resolution, and each pixel is strictly
on or off with no colors nor gray levels. Despite those restric-
tions, we were able to write special software to produce the live
display seen in Figure 7. Of course, bigger and better displays
are available, but in addition to cost, better displays would have
implied significantly more compute overhead, lowering camera
responsiveness. The OLED display shows:

• KISS-E version (“210716” in Figure 7)
• Percentage of available TF card space used... or, in Figure

7, the fact that no TF card was present
• The last part of the current WiFi address (.21) and a single

character indicating WiFi status (“-” means on, no request
being processed)

• The current camera state (“live” meaning showing live view)



Figure 6. KISS-E component wiring and 3D printed parts

• A live histogram of pixel values
• An 80×60 pixel live view image produced by a special ren-

dering algorithm that combines error distribution with edge
enhancement to make the scene as recognizable as possible

• A new type of focus quality indicator (below the live view):
the gap between two horizontal lines gets smaller as manual
focus becomes sharper

The focus quality indicator is particularly important because the
poor quality of the live view makes it insufficient to check focus,
but focus is critical with typical lenses due to the very thin depth
of field. Empirically, this line-gap focus aid based on contrast
detection in the center of the frame is very effective.

A complication is that, not only does removing the (fixed
focus) native lens from the OV2640 make it possible to use a dif-
ferent lens that requires manual focusing, but it also has the side
effect of removing the NIR-blocking coating that is on the native
lens. Without that filtration, the camera responds strongly to a full
spectrum of light starting in the NIR region. Figure 8 shows the
classic NIR-dominated colors of an outdoor scene shot without an
NIR-blocking filter. Although an appropriate filter can be fitted to
the front of a lens, large NIR filters are not cheap; the best alter-
native was thus to 3D-print a holder that can use 8×8mm 650nm
NIR-cut filters which cost under $1, as shown in Figure 8. These
filters work well, but it is significant that the holder covers the
edges of the filter glass, because they otherwise caused strange
flare/tinting of the image.

There are a number of other minor issues worth noting in the
construction of KISS-E:

• Although KISS-E provides a USB interface that can be used

Figure 7. KISS-E capture of Lafodis and corresponding OLED live view

for providing power, ESP32-CAM programming, or teth-
ered control, it currently cannot support the driverless UVC
protocol to behave as a webcam

• The ESP32-CAM as mounted in KISS-E relies on the an-
tenna built-into the boardlet, which easily can suffer inter-
ference if wire-wrap wires are routed over the antenna

• There are actually at least two different versions of the
OV2640 supplied with the ESP32-CAM. Although func-
tionality is very similar, the sensor is rotated 90◦ in one rel-
ative to the other

• Removing the standard lens from the OV2640’s plastic

Figure 8. KISS-E image captured without NIR filter, 8×8mm filter mount



Figure 9. Lafodis large-format wireless IoT camera

screw mount is complicated by the fact that it is glued in
place

• The software is more convoluted than one might expect due
to multiple functions sharing I/O pins

In sum, KISS-E is a very poor replacement for a Sony E-
mount camera, but it is highly functional and fully programmable.

Lafodis Scanning Camera
Lafodis (LArge FOrmat DIgital Scanning) is a large-format

camera that can scan a 160mm diameter lens-projected image to
resolutions of approximately 2.6GP. Originally intended purely as
a test platform for research investigating novel scan orderings[16],
it became clear that such a device could be useful to others.
Lafodis has thus far evolved through four prototypes with the de-
sign goal of making it easy for others to build this sub-$50 camera
to capture ≥500MP images from a 4x5” sensor area. The third
prototype is shown in Figure 9.

Unlike KameraflY and KISS-E, Lafodis does not just use
the ESP32-CAM as a programmable camera, but also as a micro-
controller to control the physical scanning. The ESP32-CAM is
mounted on a moving platform via a traceless 3D-printed circuit
board mount, and it orchestrates the rotational and radial move-
ment of that platform using a pair of 28BYJ-48 steppers with
ULN2003 driver boardlets. The stepper and driver boardlet com-
binations cost just $3 each because they are a standard part widely
used in HVAC, vending machines, etc. There are 32 full steps
per rotation of the motor, but internal gears drop the speed by a
factor of 32/9× 22/11× 26/9× 31/10 = 63.68395, giving ap-
proximately 2037.8864 full steps per rotation of the drive shaft.
This gives the steppers substantial torque even when stepping at
a peak rate of over 1000 steps/second. Each step is done using

Figure 10. Inside Lafodis: electronics and Herringbone gear drive

Figure 11. Circuit design for 3rd and 4th Lafodis prototypes

four control signals to select which coils should be energized, and
the ULN2003 driver simply provides Darlington transistor pairs
to switch power.

In the first two Lafodis prototypes, the 8 stepper control sig-
nals were directly taken from 8 I/O pins on the ESP32-CAM.
The catch is that the various restrictions on how pins can be used
meant that only 7 appropriate digital outputs were available on
boardlet pins – a wire had to be soldered to the pad normally driv-
ing the red LED on the back of the ESP32-CAM boardlet for the
eighth. Although that was fully functional, we felt that the sol-
dering needed could discourage others from building Lafodis, so
the third and fourth Lafodis prototypes use an entirely different
method: I2C communication with a second microcontroller dedi-
cated to stepper control.

The second microcontroller is an Arduino Pro Micro (actu-
ally, a clone which cost us $1.25; pricing is now closer to $7), and
it conveniently also provides a USB connector that can be used to
externally power Lafodis. The wiring diagram is shown in Figure
11, and again all components are mechanically held by 3D-printed
mounts and electrically connected using standard cables or wire
wrap – without needing a custom board. This I2C solution is very
scalable; not only does the second microcontroller provide many



more I/O pins, but the I2C network can be used to connect up
to 128 devices. I2C devices we have used in other experimental
systems range from an AMG8833 thermal camera to an MPU-
9250 9-axis inertial measurement unit – as well as displays like
the SSD1306 OLED used in KISS-E. The only negative issue we
found in using I2C for Lafodis is that the electrically noisy envi-
ronment within the camera tended to cause (rare) transmission er-
rors between the ESP32-CAM and Pro Micro. These errors were
essentially eliminated by building a simple higher-level protocol
on top of the I2C transport to detect and correct errors.

Thanks to the I2C offloading, the third and fourth Lafodis
prototypes leave enough pins open on the ESP32-CAM to allow
for USB reprogramming of the processor by adding the circuitry
shown as a ghosted image in Figure 11. However, the ESP32-
CAM also allows for OTA (over the air) reprogramming via WiFi,
and all our Lafodis software takes advantage of that. The only
complication is that some chip resources must be reserved to sup-
port OTA, so the maximum application code size is reduced to
1.9MB.

Conclusion
The construction of programmable cameras for research pur-

poses requires an appropriate camera platform. The one-line sum-
mary of the findings in this paper is that cameras designed for
IoT applications generally, and the ESP32-CAM in particular, are
a good match to typical research system requirements. A 2018
paper[13] summarized the key requirements for multicamera re-
search systems as:

• Programmable camera modules: it is difficult to find a
better-supported programming environment than the combi-
nation of Espressif ESP32-specific libraries and the Arduino
infrastructure; there are over 50 ESP32-specific example ap-
plications in the Arduino programming environment (and
dozens more generic Arduino application examples that also
can run on ESP32-CAM)

• Synchronization of local clocks: in addition to a multitude
of hardwired mechanisms, ESP32-CAM can use NTP to
synchronize clocks with internet time references

• Local storage and processing: compared to the resolution of
the camera, the RAM and non-volatile storage available are
quite large, and the combination of the OV2640’s ability to
do JPEG and other processing reduces load on the dual-core
32-bit 240MHz Tensilica Xtensa LX6 ESP32 processor

• Physical mounting and alignment: in addition to the designs
detailed here, there are 259 open source 3D-printed designs
on Thingiverse involving use of ESP32-CAM

• Live view: although not directly provided by ESP32-CAM,
we developed reasonable support for live view in the KISS-
E project – and now it can be used as a library for other
projects

• Fault tolerance: ESP32-CAM is cheap enough to have mul-
tiple spares

Beyond those concerns, KameraflY, KISS-E, and Lafodis all
clearly demonstrate extensive support for connectivity – espe-
cially wireless – which makes many research tasks easier. Finally,
Lafodis shows that the ESP32 is also a good general-purpose mi-
crocontroller, able to implement a wide range of real-time control
and sensing tasks in addition to managing an OV2640 camera.

All the work discussed in this paper, and additional materi-
als, will be linked into:

http://aggregate.org/DIT/ESP32CAM

Note that the authors have no affiliation with any entities in-
volved in producing nor selling any of the various versions of the
ESP32-CAM, nor does our research group speak for the Univer-
sity of Kentucky in advocating use of this platform.
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