High-End Computing Systems

EE380 State-of-the-Art Lecture

Hank Dietz

Professor & Hardymon Chair in Networking Electrical & Computer Engineering Dept.

University of Kentucky Lexington, KY 40506-0046

http://aggregate.org/hankd/

What Is A Supercomputer?

- One of the most expensive computers?
- A very fast computer?
- Really two key characteristics:
 - Computer that solves big problems...
 stuff that wouldn't fit on a PC
 stuff that would take too long to run
 - Performance can scale...
 more money buys a faster machine
- A supercomputer can be cheap!

The Key Is Parallel Processing

- Process N "pieces" simultaneously, get up to factor of N speedup
- Modular hardware designs:
 - Relatively easy to scale add modules
 - Higher availability (if not reliability)

The Evolution Of Supercomputers

- Most fit survives, even if it's ugly
- Rodents outlast dinosaurs...
 and bugs will outlast us all!

When Does Supercomputing Make Sense?

- When you need results NOW!
- Top500 speeds up 1.4X every 6 months!
 Just waiting might work...
- Optimizing your code helps a lot; do that first!
- When your application takes enough time per run to justify the effort and expense
- Our technologies don't change the basics... they mostly improve price/performance

What Is A Cluster Supercomputer?

- Not a "traditional" supercomputer?
- Is The Grid a cluster?
- Is a Farm a cluster?
- A Beowulf?
- A supercomputer made from Interchangeable Parts (mostly from PCs)
- Some PC parts you don't need or want
- Often, Linux PC "nodes"

Parts... Vs. In A Traditional Supercomputer

- Processors: AMD Athlon, Opteron; Intel Pentium 4, Itanium; Apple G5... within 2X of best @ very low cost
- Motherboards, Memory, Disks, Network, Video, Audio, Physical Packaging...
- Lots of choices, but parts tuned for PC use, not for cluster supercomputing

AMD Athlon XP

Types Of Hardware Parallelism

- Pipeline
- Superscalar, VLIW, EPIC
- SWAR (SIMD Within A Register)
- SMP (Symmetric MultiProcessor)
- Cluster
- Farm
- Grid

Engineer To Meet Application Needs

- Know your application(s)
- Tune your application(s)
- Know your budget: Money, Power, Cooling, Space
- Hardware configuration options
- Software configuration options

Engineering A Cluster

- This is a systems problem
- Optimize integrated effects of:
 - Computer architecture
 - Compiler optimization/parallelization
 - Operating system
 - Application program
- Payoff for good engineering can be HUGE! (penalty for bad engineering is HUGE!)

One Aspect: Interconnection Network

- Parallel supercomputer nodes interact
- Bandwidth
 - Bits transmitted per second
 - Bisection Bandwidth most important
- Latency
 - Time to send something here to there
 - Harder to improve than bandwidth....

Latency Determines Smallest Useful Parallel Grain Size

Network Design

- Assumptions
 - Links are bidirectional
 - Bounded # of network interfaces/node
 - Point-to-point communications
- Topology
- Hardware
- Software

No Network

Direct Fully Connected

Toroidal 1D Mesh (Ring)

Physical Layout Of Ring

Non-Toroidal 2D Mesh

3-Cube (AKA 3D Mesh)

Switch Networks

- Ideal switch connects N things such that:
 - Bisection bandwidth = # ports
 - Latency is low (~30us for Ethernet)
- Other switch-like units:
 - Hubs, FDRs (Full Duplex Repeaters)
 - Managed Switches, Routers
- Not enough ports, build a Switch Fabric

Simple Switch (8-Port)

Channel Bonding (2-Way)

Tree (4-Port Switches)

A Better Tree

Fat Tree

Our Insights

- Want a "flat" single-level network
 - Top level determines bisection b'width
 - Multiple levels multiply latency
- Connect each node to multiple switches, talk with nodes i n the same neighborhood"
- Use a wiring pattern such that each node pair has at least one switch in common
 - Design is a problem in graph theory
 - Genetic Algorithm evolves a solution!

Flat Neighborhood Network

Flat Vs. Fat

- Latency:
 - 8 node, 4 port: 1.0 vs. 2.7 switch delays
 - 64 node, 32 port: 1.0 vs. 2.5
- Pairwise bisection bandwidth:
 - 8 node, 4port: 1.29 vs. 1.0 units
 - 64 node, 32 port: 1.48 vs. 1.0
- Cost: more interfaces vs. smart routers
- Summary: Flat Neighborhood wins!

KLAT2, Gort, & Klaatu

Behind KLAT2

KLAT2 Changed Everything

- KLAT2 (Kentucky Linux Athlon Testbed 2):
 - 1st network designed by computer
 - 1st network deliberately asymmetric
 - 1st supercomputer under \$1K/GFLOPS
- 160+ news stories about KLAT2
- Various awards:
 - 2000 Gordon Bell (price/performance)
 - 2001 Computerworld Smithsonian, among 6 Its most advancing science

Cool, But What Have You Done Recently?

LOTS!

- Nanocontrollers
- GPUs for supercomputing
- Warewulf & cAos systems software
- etc., see:

Aggregate.Org

Did I Mention SFNNs?

- Real parallel applications don't actually have every node talk to every other node
- Design the network to be "Sparse": FNN properties only for the node pairs that actually will talk to each other
- Network complexity apparently grows as O(N*N), but this makes it O(N*LogN)!

June 2003, KASY0

KASY0

- 128-node system using 24-port switches!
- KASY0 (Kentucky ASYmmetric zero):
 - 1st Sparse FNN
 - 1st physical layout optimized by GA
 - 1st TFLOPS-capable computer in KY
 - 1st under \$100/GFLOPS
 - World record fastest POVRay 3.5

POVRay 3.5 Benchmark

Supercomputers R Us

- We make supercomputing cheap!
- You can help...
 - Build parties
 - Weekly research group meetings
 - Projects
- Everything's at:

Aggregate.Org

