
Performance Analysis

EE380, Fall 2015

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Why Measure
Performance?

• Performance is important
• Identify HW/SW performance problems
• Compare & choose wisely

• Which system configuration is better?
• Which ISA is better?
• Which ISA implementation is better?

• Expose significant issues, ignore others

What Does
Performance Measure?

Measures of Computer
Performance

• What to measure?
• Execution time for application
• Power / temperature / battery life
• Reliability / availability
• Cost for acceptable functionality
• Size

• Measure what matters to you...

Measures of Computer
Performance

• Response Time & Throughput
• Time to complete an operation
• Jobs completed per unit time
• Often can trade one for the other

• Performance(X) = 1/ExecutionTime(X)
• X is Performance(X)/Performance(Y) times
faster than Y, also:

ExecutionTime(Y)/ExecutionTime(X)

For Whom The Clock Ticks

• Posix uses real, user, system time
• Real “Wall Clock” time always ticks
• CPU time ticks only when CPU is yours

• User time while in your code
• System time while in OS code for you
• Multiplied by #PEs in multiprocessors

• I/O time not reported under Posix

What Is The Clock?
• Not as simple as you think...
• Used to count AC zero crossings in SW
• Legacy of the IBM PC:

• Clock chip counts seconds (w/battery)
• Counter/timer chip @ 1.193181 MHz

• Processor tick count performance register
• Borrowed clocks: NTP, PTP, & GPS
• Jiffy is system interrupt interval (1-10ms)
• Posix counts seconds since 1970, but

knows timezones, leaps, etc.

Running What program?

• Different program, different performance
• Application (all that really matters!)
• “Toy” program
• Benchmark: representative application
• Micro Benchmark: tests a certain feature
• Synthetic Benchmark: a program written

solely to perform like a particular
application, but doing nothing useful

• Benchmark Suite: multiple benchmarks

Common Metrics
• Application/benchmark time for specific

data: e.g.: Quake updates/s
• LIPS: Logical Inferences/s
• FLOPS: Floating-Point OPerations/s
• MB/s, Mb/s: MegaBytes/Megabits per s
• MIPS: Millions of Instructions/s
• MOPS: “” OPerations/s
• Hz: clock cycles/s
• CPI: Cycles Per Instruction

IPC: Instructions Per Cycle

CPI

• Clock ticks at a (mostly) constant rate
• Can express program runtime as:

Cycles / Program?

• Programs are made of instructions
• Can use CPI to compute:

All Instructions Alike?

• Different instruction type, different CPI
• Can sum over types separately:

Σ ()

Parameters

• Instruction types can be “classes”
• Instructions / Program

• Expected execution counts
• % or ratios for relative performance

• CPI
• Clock period same for everything

(analyze separately for each clock rate
If the processor dynamically throttles)

An Example

• This program takes:
((20*10)+(10*30))*10ns = 5us

• What can be changed to make it 4us?

A Little Disclaimer...

That CPI analysis assumes sequential execution
of instructions, but most modern processors are
parallel in various ways...

the model is still useful, but approximate, using
1/IPC to approximate CPI; it also works to analyze
sequential portions of a design

What Effects What?

What Effects What?

How Does A Change Affect
Design?

• For a particular application
• For a particular compiler
• For a particular ISA
• For a particular implementation arch.
• For a particular VSI technology
• Etc.

Amdahl's Law

• If 1/N time is not affected by a change,
the best possible speedup is only N

• Originally for sequential overhead in
parallel code, but applies for any change

Suppose a program spends 80% of its time doing
multiplies... you can't get more than a 5X speedup
by improving only multiplies!

A Lesson From Top500.Org

Summary

• Most performance numbers not relevant;
measure what you care about

• Relate performance to causes
• Best designs usually make everything

(and hence nothing) the bottleneck
• Stuff is getting better fast...

Don't base design decisions on now,
but on when you will need/market it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

