Performance Analysis

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Why Measure
Performance?

Performance is important

ldentify HW/SW performance problems

Compare & choose wisely

* Which system configuration is better?
* Which ISA is better?

* Which ISA implementation is better?

Expose significant issues, ignore others

What Does
Performance Measure?

Airpiane Passengers Range (mi) Speed (mph)
Boeing 737-104 141 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350

Douglas DC-8-50 146 8720 544

Measures of Computer
Performance

* What to measure?

* Execution time for application
Power / temperature / battery life
Reliability / availability
Cost for acceptable functionality

* Size
* Measure what matters to you...

Measures of Computer
Performance

* Response Time & Throughput
* Time to complete an operation
* Jobs completed per unit time
* Often can trade one for the other
 Performance(X) = 1/ExecutionTime(X)
X is Performance(X)/Performance(Y) times
faster than Y, also:
ExecutionTime(Y)/ExecutionTime(X)

For Whom The Clock Ticks

Posix uses real, user, system time

Real "Wall Clock” time always ticks
CPU time ticks only when CPU is yours
* User time while in your code

* System time while in OS code for you
* Multiplied by #PEs in multiprocessors
/O time not reported under Posix

What Is The Clock?

Not as simple as you think...

Used to count AC zero crossings in SW
Legacy of the IBM PC:

* Clock chip counts seconds (w/battery)
* Counter/timer chip @ 1.193181 MHz
Processor tick count performance register
Borrowed clocks: NTP, PTP, & GPS

Jiffy is system interrupt interval (1-10ms)
Posix counts seconds since 1970, but
knows timezones, leaps, etc.

Running What program?

Different program, different performance
Application (all that really matters!)

“Toy” program

Benchmark: representative application
Micro Benchmark: tests a certain feature
Synthetic Benchmark: a program written
solely to perform like a particular
application, but doing nothing useful
Benchmark Suite: multiple benchmarks

Common Metrics

Application/benchmark time for specific
data: e.g.: Quake updates/s

LIPS: Logical Inferences/s

FLOPS: Floating-Point OPerations/s
MB/s, Mb/s: MegaBytes/Megabits per s
MIPS: Millions of Instructions/s

MOPS: ™" OPerations/s

Hz: clock cycles/s

CPI: Cycles Per Instruction

IPC: Instructions Per Cycle

CPI

* Clock ticks at a (mostly) constant rate
* Can express program runtime as:

Seconds Cycles . Seconds
Program Program Cycle
Seconds Cycles

/ Frequency
Program Program

Cycles / Program?

* Programs are made of instructions
* (Can use CPI to compute:

Cycles Instructions CPI
Program Program

Cycles Instructions
—_—_— s —— IPC

Program Program

All Instructions Alike?

* Different instruction type, different CPI
* Can sum over types separately:

Instructlons
z (P)
Prog ram

Parameters

Instruction types can be “classes”
Instructions / Program

* Expected execution counts

* % or ratios for relative performance
CPI

Clock period same for everything
(analyze separately for each clock rate
If the processor dynamically throttles)

An Example

Instruction | Execution CPI Clock
Type Count Period

A 20 10 10ns

B 10 30 10ns

* This program takes:

((20*10)+(10*30))*10ns = Sus

* What can be changed to make it 4us?

A Little Disclaimer...

That CPI analysis assumes sequential execution
of instructions, but most modern processors are
parallel in various ways...

Lyl
Hadjidrsl

LT L L

Crosshar

S TTDry
ot rotier

Hyrpwer
| rafsport ™

Branch

Predict lon

DirectPath VectorfPath

Dispatch fRetirement

STOR

What Effects What?

Instruction Clock
CPI
Count Rate

Program
(Algorithm)

Compiler

ISA

Impl. Arch.

VLSI

What Effects What?

Instruction
Count

CPi

Clock
Rate

Program
(Algorithm)

Compiler Yes!

‘ vz ‘ RV .,*;f.~‘r7- o7
| |, N =
‘ N Y ‘ M A Ix‘z‘_*‘ri T 7
[ik® Sz BV an

W
ISA Yes!
I Crad n

Impl. Arch. uOps?

VLSI No!

How Does A Change Affect
Design?

For a particular application

For a particular compiler

For a particular ISA

For a particular implementation arch.
For a particular VSI technology

Etc.

Amdahl's Law

* |If 1/N time is not affected by a change,
the best possible speedup is only N

* Originally for sequential overhead in
parallel code, but applies for any change

Suppose a program spends 80% of its time doing
multiplies... you can't get more than a 5X speedup
by improving only multiplies!

A Lesson From Top500.0rqg

Projected Performance Development

10 EFlop/s

1 EFlop/s

100 PFlop/s

10 'PFlopfs

1 PFlopls

100 TFlopfs

%

Summary

Most performance numbers not relevant;
measure what you care about

Relate performance to causes

Best designs usually make everything
(and hence nothing) the bottleneck

Stuff is getting better fast...

Don't base design decisions on now,

but on when you will need/market it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

