EE480 Assignment 1: 8-bit Sighed Saturation Adder

Implementor’s Notes

Hank Dietz
Department of Electrical and Computer Engineering
University of Kentucky, Lexington, KY USA
hankd@engr.uky.edu

ABSTRACT

This project was a simple combinatorial design problem to
ensure that students were somewhat comfortable with basic
use of Verilog, including the concept of writing an exhaustive
testbench.

1. GENERAL APPROACH

This assignment required construction of a synthesizable
8-bit signed saturation adder. It was hinted that this could
be constructed using a conventional (modular) adder fol-
lowed by a check for the inputs having the same sign while
the output had a different sign. When that check is true, I
realized that the ordinary add sign being 1 meant the satu-
rated value should be 127, and if it is 0, the saturation result
should be -128.

I built my saturation adder using three modules, satadd8
(as required by the assignment), add8, and fa. The modular
adder (add8) is a simple ripple-carry implementation built
using full adders (fa).

Rather than clutter the testbench routine with the com-
putation of the correct (oracle) result, I wrote a separate
module for that, called refsatadd8 — which uses the same
algorithm as the sample code in the assignment.

ACMISBNN.A..
DOIL: N.A.

2. ISSUES

It was a little confusing how each variable should be de-
clared and when it should be updated.... The #1 in test-
bench is a hack to ensure that each pair of inputs is processed
in sequence with nothing missed. There are various other
ways to do this, but I didn’t want to implement a clock for
testing what is inherently a combinatorial circuit.

Everything was tested and apparently worked correctly
the first time it made it through the WWW-form compiler
and simulator. However, to confirm that the error detection
code in testbench worked, I deliberately introduced an er-
ror (an incorrect carry of cout[2] into fa4) and observed
the output stating 52,744 correct and 12,792 failed. The as-
signment did not make clear what format the faulty outputs
should be listed in, so I just composed a format where each
line starts with Wrong:.

