A Simple Network Switch
(In Verilog)

EE685, Fall 2021

Hank Dietz

http://aggregate.org/hankd/

@z University of
Kentucky

http://aggregate.org/hankd

Clocking Over A Network

* Lots of wires increases cost
— Data paths narrower than transfer unit
— Bidirectional links reduce wire count,
but require a protocol to avoid conflicts

* Often not practical to have a global clock
— Drive problems with high fanout
- Long wires cause clock skew

* Clock is generally sent with/determined by data

Basic Serial Transmission

* Serial Peripheral Interface (SPI)
— 4-wire bidirectional bus with clock

— https://www.circuitbasics.com/basics-of-the-spi-communication-protocol

* Universal Asynchronous Reciever/Transmitter
(UART)
— 2-wire w/o clock; start bit & baud rate

— https://www.circuitbasics.com/basics-uart-communication/

* |nter-Integrated Circuit (12C)
— 2-wire with clock from current master

— https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

https://www.circuitbasics.com/basics-of-the-spi-communication-protocol
https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

Verilog Bidirectional Links

* Explicitly use assignment to z to disconnect:

module tribuf (o, i, en);
parameter BITS=1;

output [BITS-1:0] o;
input [BITS-1:0] 1i;
input en;

assign o = (en ? 1 : {BITS{l1'bz}});
endmodule

* External assignments will alter o’s value here

Routing

* Direct connection it’s just direction

* 2-way-switch networks can use test & shift
- Use (source A destination) & bitmask
— Shift routing tag one position at each level

* Internet, Ethernet, etc. use table lookup
— Domain Name System (DNS) — IP address
— Route[destination] gives output port
— Not in table? Send it everywhere but port
request came in on... learn from response

Routing: Are We There Yet?

* Many schemes send requests to devices they
are not trying to talk to (e.g., 12C, Ethernet)

e All devices receive address

* |s it mine?
Yes: Ack, process request, respond
No: keep my outputs disabled (e.g., z state)

A Simple (Blocking) Switch

2 top inputs, 2 bottom outputs... all bidirectional

Wires for 1 connection contain:

— Clock (from above; a single clock is allowed)
— 8-bit address (always from above)

— 32-bit data (to be written / as read)

- Read (always from above)

— Write (always from above)

— Ready (always from below)

Everything happens on posedge of clock

A Simple (Blocking) Switch

* Protocol for Write (from above):
- When Ready: Address=?, Data=?, Write=1
— Address=z, Data=z, Write = 0

* Protocol for Read (from above):
- When Ready: Address=?, Read=1
— Address=z, Read=0
— When Ready: Data holds value from memory

To Test It

* Make two instances of processor from:

http://aggregate.org/EE380/onebeq.html

— Have a word cache each for instruction, data;
nothing happens until all is ready, so best
case is really several clocks per instruction

— Fetch instruction, then do data access...
both only as needed

— Make $1 be processor number, O or 1

* Hook each to a top input of one switch

http://aggregate.org/EE380/onebeq.html

Memory Module(s)?

Have one 256x32 memory module with 2 port
connections acting on disjoint halves of memory

One memory module can easily be initialized
using output from AIK

- Have code start at memory location 0

- Have data start at memory location 128

You'll be testing two different memory mappings
— Port pis 8bxxxxxxxp
— Port pis 8bpxxxxxxx

Your Project, Due Dec. 6

* You are all one team
— All will not work on every part, but each must
be “aware” of all portions of the project
— Only one submission...

* What you will submit: a tar containing
- Implementor’s notes
- Verilog implementation
(Hint: memory module is a simplified switch)
— AIK code for your test program(s)

Your Test Program(s)

* Open choice for you... except:

— Both PEO and PE1 start with PC=0, but at
some point they take different paths based on
contents of register $1

— The code in PEO and PE1 should access
at least a few shared variables and some that
are not shared for both loads and stores

* Implementor’s notes should say a bit about
which of the two address mappings worked best

Implementor’s Notes Notes

Say a bit about what needed to change in
module processor

Which of the address mappings worked best?

How much did the processors slow down? Was
it more or less than you expected?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

