
A Simple Network Switch
(In Verilog)

EE685, Fall 2021

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Clocking Over A Network

• Lots of wires increases cost
– Data paths narrower than transfer unit
– Bidirectional links reduce wire count,

but require a protocol to avoid conflicts

• Often not practical to have a global clock
– Drive problems with high fanout
– Long wires cause clock skew

• Clock is generally sent with/determined by data

Basic Serial Transmission
• Serial Peripheral Interface (SPI)

– 4-wire bidirectional bus with clock
– https://www.circuitbasics.com/basics-of-the-spi-communication-protocol

• Universal Asynchronous Reciever/Transmitter
(UART)
– 2-wire w/o clock; start bit & baud rate
– https://www.circuitbasics.com/basics-uart-communication/

• Inter-Integrated Circuit (I2C)
– 2-wire with clock from current master
– https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

https://www.circuitbasics.com/basics-of-the-spi-communication-protocol
https://www.circuitbasics.com/basics-uart-communication/
https://www.circuitbasics.com/basics-of-the-i2c-communication-protocol/

Verilog Bidirectional Links

• Explicitly use assignment to z to disconnect:

module tribuf(o, i, en);
parameter BITS=1;
output [BITS-1:0] o;
input [BITS-1:0] i;
input en;

assign o = (en ? i : {BITS{1'bz}});
endmodule

• External assignments will alter o’s value here

Routing

• Direct connection it’s just direction

• 2-way-switch networks can use test & shift
– Use (source ^ destination) & bitmask
– Shift routing tag one position at each level

• Internet, Ethernet, etc. use table lookup
– Domain Name System (DNS) IP address→
– Route[destination] gives output port
– Not in table? Send it everywhere but port

request came in on… learn from response

Routing: Are We There Yet?

• Many schemes send requests to devices they
are not trying to talk to (e.g., I2C, Ethernet)

• All devices receive address

• Is it mine?
Yes: Ack, process request, respond
No: keep my outputs disabled (e.g., z state)

A Simple (Blocking) Switch

• 2 top inputs, 2 bottom outputs… all bidirectional

• Wires for 1 connection contain:
– Clock (from above; a single clock is allowed)
– 8-bit address (always from above)
– 32-bit data (to be written / as read)
– Read (always from above)
– Write (always from above)
– Ready (always from below)

• Everything happens on posedge of clock

A Simple (Blocking) Switch

• Protocol for Write (from above):
– When Ready: Address=?, Data=?, Write=1
– Address=z, Data=z, Write = 0

• Protocol for Read (from above):
– When Ready: Address=?, Read=1
– Address=z, Read=0
– When Ready: Data holds value from memory

To Test It

• Make two instances of processor from:
http://aggregate.org/EE380/onebeq.html
– Have a word cache each for instruction, data;

nothing happens until all is ready, so best
case is really several clocks per instruction

– Fetch instruction, then do data access…
both only as needed

– Make $1 be processor number, 0 or 1

• Hook each to a top input of one switch

http://aggregate.org/EE380/onebeq.html

Memory Module(s)?

• Have one 256x32 memory module with 2 port
connections acting on disjoint halves of memory

• One memory module can easily be initialized
using output from AIK
– Have code start at memory location 0
– Have data start at memory location 128

• You’ll be testing two different memory mappings
– Port p is 8’bxxxxxxxp
– Port p is 8’bpxxxxxxx

Your Project, Due Dec. 6

• You are all one team
– All will not work on every part, but each must

be “aware” of all portions of the project
– Only one submission…

• What you will submit: a tar containing
– Implementor’s notes
– Verilog implementation

(Hint: memory module is a simplified switch)
– AIK code for your test program(s)

Your Test Program(s)

• Open choice for you… except:
– Both PE0 and PE1 start with PC=0, but at

some point they take different paths based on
contents of register $1

– The code in PE0 and PE1 should access
at least a few shared variables and some that
are not shared for both loads and stores

• Implementor’s notes should say a bit about
which of the two address mappings worked best

Implementor’s Notes Notes

• Say a bit about what needed to change in
module processor

• Which of the address mappings worked best?

• How much did the processors slow down? Was
it more or less than you expected?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

