
Automated Processor Generation for System-on-Chip

Chris Rowen
Tensilica, Inc.

rowen@tensilica.com

Dror Maydan
Tensilica, Inc.

maydan@tensilica.com

Abstract

New application-focused system-on-chip platforms
motivate new application-specific processors.
Configurable and extensible processor architectures
offer the efficiency of tuned logic solutions with the
flexibility of standard high-level programming
methodology. Automated extension of processor
function units and the associated software environment –
compilers, debuggers, simulators and real-time
operating systems – satisfies these needs. At the same
time, designing at the level of software and instruction
set architecture significantly shortens the design cycle
and reduces verification effort and risk. This paper
describes the key dimensions of extensibility within the
processor architecture, the instruction set extension
description language and the means of automatically
extending the software environment from that
description. It also describes two groups of benchmarks,
EEMBC’s Consumer and Telecommunications suites,
that show 20 to 40 times acceleration of a broad set of
algorithms through application-specific instruction set
extension, relative to high performance RISC processors.

1. The SOC Platform Paradox

Two major shifts – one technical, one economic – are
changing the design of electronic systems. First,
continuing growth in silicon chip capability is rapidly
reducing the number of chips in a typical system, and
magnifying the size, performance and power benefits of
system-on-chip integration. Second, many of the fastest-
growing electronics products demand ever-better cost,
bandwidth, battery life, and software functionality. These
systems – network routers, MP3 players, cell-phones,
home gateways, PDAs, and many others – require both
full programmability (to manage complexity and rapidly
evolving requirements) and high silicon efficiency (for
superior application performance per watt, per dollar and
per mm2). In other words, these new systems need new
system-on-chip platforms – silicon designs and software
environments that are simultaneously flexible and
optimal in the application.

The demand for application-specific processors
creates a paradox for modern system design: how do

architects develop new processors that combine the key
benefits of generic programmable chips – longevity,
development costs amortized over large volume,
adaptability to changing market requirements – with the
exactly the instruction set, interfaces and software
support optimized for the application. In other words,
how do they get the advantages of standard processors
without giving up the advantages of custom logic? If the
cost of fashioning new optimized processors could be
radically reduced, then a much broader array of highly
refined processor cores could be used in system-on-chip
designs.

Tensilica enables rapid design of highly efficient
processor cores by providing a base architecture, a lean
core implementation, and an automated method to
seamlessly extend the processor hardware and software
to fit each system’s application requirements. Processors
extended by this methodology close the performance gap
between high-overhead general-purpose programmable
processors and efficient, specialized hardware-only
solutions based on hardwired-data-path-plus-state-
machine logic functions [1]. This methodology also
closes the design gap between the rapid, exponential
growth of silicon capacity and the slower growth in
designer productivity [2]. This paper outlines the
capabilities of Tensilica’s Xtensa processor generator
[3], including the Tensilica Instruction Extension (TIE)
methodology and demonstrates a resolution to the
paradox.

2. Configurable Processor Basics

Every Tensilica processor is a superset of the baseline
Xtensa instruction set processor. This processor
supports a complete 32 bit RISC programming model,
implemented with roughly 80 base instructions and
requiring just over 25,000 gates for its basic VLSI
implementation. The instruction set is encoded in a
combination of 16 bit and 24 bit instructions leading to
very dense code and low instruction memory
requirements. In a generic 180nm CMOS foundry
technology, the design runs at over 200MHz under
worst-case process and operating conditions.

Configurable processor technology focuses on the
automatic generation of new platform-specific processor

hardware design and software tools from a unified high-
level description. By automating hardware and software
generation, the platform designer is guaranteed
consistency among all the representations of the
processor definition – the hardware design, test-benches,
simulation models, compilers, assemblers, debuggers and
real-time operating systems (RTOSs). All
representations are generated together for each
architectural variant; all are guaranteed consistent and
compatible with one another. This eliminates the
potential “Tower of Babel” that surrounds many
embedded processor environments today, where subtle
differences among members of a processor family –
differences in instruction set variations, memory system
organization, debug facilities and processor control
structures – frustrate the system designer integrating the
hardware, verification and software tools. By generating
the processor from a high-level description, the platform
designer regains control over all the relevant cost,
performance and function attributes of the processor
subsystem, without having to become a microprocessor
design expert. This effectively opens up processor design
to a broader population of system and application
architects, just as the proliferation of ASICs and logic
synthesis tools democratized IC design in the past
decade. The four key questions for configurable
processors are these:
1. What characteristics of the processor can be

configured?
2. How are the characteristics captured by the platform

designer?
3. What are the deliverables – the hardware and

software components – to the platform designer?
4. What are typical results for building new platforms

to address emerging “post-PC” communications and
consumer platforms?

The goal for configurability is to allow features to be
added or adapted in any form that optimizes the cost,
power and application-performance of the processor. In
practice, this can be broken into four categories, with
examples:
Instruction

Set
Memory
System

Interface Peripherals

• ALU functions
on general
registers

• Coprocessors
with new
application-
specific data-
types

• High
performance
parallel
arithmetic and
DSP

• Instruction cache
size,
associativity, line
size

• Data cache size,
associativity, line
size, write policy

• Memory
protection,
translation

• Instruction, data
RAM, ROM
size, address
range

• External bus
width, protocol,
address maps

• Direct
connection of
system registers,
queues, multi-
ported memories
to internal data
ports

• Multiprocessor
interconnect

• JTAG debug and
trace ports

• Timers
• Interrupt

controller:
interrupt count,
priority, type,
fast switching
registers

• Exception
vector
addresses

• Hardware
breakpoint
controls

The basic processor generations flow is shown below:

Customized
Software

Xtensa
Processor
Generator

Hardware
Design

RISC

DSP

OCD

Time
r

FPU Register File

Cache

Build using
any IC

process

Web-based
Specification

The chip designer or application expert comes to a
secure web-based generator interface, and selects or
describes the instruction set options, memory hierarchy,
closely-coupled peripherals and external interfaces
required by the application. The generator produces both
the complete synthesizable hardware design and the
software environment in about an hour. The hardware
can be immediately integrated into the rest of the system-
on-a-chip ASIC design. It is easily portable to any
fabrication process, ensuring optimal performance and
silicon leverage. The software environment includes C
and C++ compilers, an assembler, a debugger, a cycle-
accurate simulator, runtime libraries and popular real-
time operating systems. The software development and
tuning can also start immediately. With the integrated
profiler and one-hour turn-around for software tools and
RTOS, the designer can, for the first time, realistically
tune the processor to fit the application.

3. Configuration via Web GUI

Two levels of configurability are provided – the web-
based graphical user interface (GUI) and the Tensilica
Instruction Extension (TIE) language. The Web GUI
provides a series of configuration pages through which a
wide assortment of processor options can be selected.
Typical selections include the following:
• Target process type and operating conditions (e.g.

0.25, 0.18; typical, worse-case
• Optimization priorities (speed, power, area)
• Standard instruction set extensions:

16b, 32b fast multipliers
Boolean condition codes
IEEE floating point coprocessor
Low-end single MAC DSP coprocessor extensions
High-end Vectra quad MAC DSP coprocessor
Extra ALU ops: leading-zeros, sign-extend, min/max
Size of register file and implementation type

• Number, type and priority of interrupts (up to 32
interrupts on six priority levels)

• Processor read and write bus width (32 to 128b)
• Instruction cache size, associativity and refill size
• Instruction RAM and ROM sizes and base addresses
• Data cache size, associativity and refill size
• Data RAM and ROM sizes and base addresses
• JTAG-based debug control unit

• Real-time trace port
• Hardware data and instruction address breakpoints
• Exception and interrupt vector address
• Target RTL language (Verilog or VHDL)
• Target synthesis, place-and-route, power

optimization and test generation tools
• Target real-time operating system
• Target hardware/software co-design environment for

Bus Functional Modeling
The GUI provides real-time feedback on estimated gate
count, core and memory die area, power and clock
frequency for each configuration. This approach gives
designers instant access to huge number of possible
processor configurations with minimal effort. The
configuration GUI is typically used in conjunction with
the rapid software simulation and profiling tools bundled
with each generated processor. The profiler gives rapid
feedback on actual application throughput and helps the
system architect select the combination of instruction set,
memory system, peripherals and interfaces to meet the
system performance requirements at minimal cost and
power.

4. Configuration via TIE

The combinatorial possibilities offered by the
processor generator GUI are enormous, but many
important computational problems offer unique
opportunities for application-specific instruction sets.
The TIE language lets system designers formally specify
their own extensions to the Xtensa core processor.
Designer-defined instruction-set extensions captured as
TIE work seamlessly with the configuration options
selected from the Web GUI.

A TIE description consists of three basic parts:
• State declarations and types: Designers may add

state registers and register files of any width and
number. New C or C++ data-types can be
associated with new register files.

• Instruction encodings and formats: Designers may
specify new formats with up to 6 source and
destination registers, including encoded immediate
fields. Each new instruction gets a unique encoding

• Instruction semantics: For each group of
instructions and data-type, designers specify the
corresponding transformations from source registers
or memory to destinations registers or memory. The
designer may optionally specify pipeline latency,
used by the compiler, simulator and hardware
generator to automatically stretch complex functions
across multiple clock cycles.

The TIE language is sufficiently general to efficiently
describe almost any instruction set function. In fact, all
of the instruction set options available under the GUI,
including the sophisticated floating point and Vectra
DSP options are implemented entirely in TIE.

A Simple TIE example
Here is a simple, but complete, TIE example of

adding a set of instructions to the processor. It defines a
new C data-type “long128”, and associates with it a 16
entry register file where is each entry is 128b wide. The
instructions that use the new register file include loads
and stores, by default, plus one arithmetic instruction
“add128”. This instruction is pipelined so the 128b
operation does not impact the clock frequency of the
processor.
;use generator;

;generator::regfile(name => "L",

; cname => "long128",

; sname => "s",

; width => 128);

opcode add128 op2=0 CUST1

iclass ipv {add128} {out sr, in ss, in st}

reference add128 { assign sr = st + ss;}

schedule c2 {add128} { use ss 1; use st 1; def
sr 2;}

The software developer might directly use the new
data-type and operations as follows:
main() {

int i;

long128 source1[256], source2[256], dest[256];

for (i=0; i<256; i++)

dest[i] = add128(source1[i], source2[i]);

5. Hardware Support

The Xtensa processor generator produces a complete
hardware design, verification environment and VLSI
implementation automation flow. Deliverables include
the Verilog or VHDL source RTL for the processor, the
hardware test-bench, complete diagnostics, including
coverage of TIE extensions, and scripts for synthesis,
place and route, test generation, timing and power
optimization and simulation.

Support for TIE-based functions goes beyond simple
transcription from TIE into equivalent combinatorial
RTL functions. Many of the most interesting instruction
sets require complex functions. Rather than require the
designer to manually pipeline TIE functions, or to slow
the entire processor down to longest path in TIE, the
hardware generator automatically pipelines the TIE
function units. In addition, it also identifies all possible
pipeline interactions among instructions and implements
pipeline interlocks and result bypass logic to minimize
effective latency for complex pipelined functions.

6. Software Support

The Xtensa processor generator produces software
support for each configuration as complete as software
developed for traditional, non-configurable, systems. In
some ways, in fact, it provides better support. In a
traditional processor, software developers are often
forced to adapt their algorithms to constraints imposed
by general-purpose programming languages targeted for

general-purpose hardware. In contrast, configurable
processor users can design their hardware and software
development system together to better match the
underlying algorithm. When a user adds a custom TIE
instruction, the Xtensa C/C++ compiler, assembler,
simulator, debugger, operating systems and application
libraries are all automatically modified to support and
exploit the extended architecture.

The Xtensa software system supports configurability
from appropriate features in TIE through the generation
of dll's (dynamically linked libraries) and Xtensa target
code from the TIE description. When a new instruction
is added, the TIE compiler generates dll's that describe
the TIE instructions, typically in 30-60 seconds for large
extensions. This speed is essential to support rapid
instruction set architecture tuning and experimentation.
Every TIE instruction is directly accessible in C or C++
via an intrinsic function. In addition, the TIE language
allows users to define new C datatypes that are mapped
to TIE register files along with instruction sequences to
load and store these datatypes from and to memory. The
C/C++ programmer can use these types as if they were
built-in data-types, declaring scalar variables, arrays or
structures of them. Data operations are described via
intrinsics, but register allocation, instruction sequences
for loading and storing new datatypes, addressing
arithmetic and control flow generation are all handled
automatically just as native datatypes are. The software
system automatically extends the cycle-accurate
instruction-set simulator via dlls. Similarly, full visibility
of all extended register state is incorporated into the
debugger and all new instructions are supported by the
assembler and disassembler.

An increasing fraction of system-on-chip platforms
use standard real-time operating systems. With
conventional processor development, the RTOS
developer must expend significant time to adapt the
runtime environment and development tools to each new
architectural variant. Even the addition of a single
register or a change in memory organization may trigger
a six to twelve month development, validation and
release cycle. Xtensa is the first processor technology to
fully automate RTOS adaptation for the most important
RTOS environments. From the configuration interface,
system architects can define the memory map, add new
memories, interrupt levels, register files and instructions.
The third-party software development environments are
automatically extended to support compilation, assembly,
and kernel-aware debugging. Interrupt and exception
handlers, diagnostic routines and kernel/user code and
data segments are all configured and located in the
correct regions of the address space. The TIE compiler
also automatically generates operating system context
switch code using the load and store instruction
sequences for new datatypes, mentioned above, further
automating software platform delivery. Commercial
operating systems, such as Wind River’s VxWorksTM,
are delivered pre-built with hooks in their context

switching code to call the routines generated by the TIE
compiler. This abstraction of all configuration-specific
details makes RTOS porting both simpler and
configuration-independent.

The compiler also supports vectorization, which
allows ordinary scalar C code to fully exploit SIMD
(single instruction, multiple data) or vector extensions,
such as the TIE-based Vectra DSP engine, a vector
DSP coprocessor. The compiler is able to automatically
vectorize C code regardless of how many vector
elements are configured into each Vectra register.
Tensilica also provides optimized hand-tuned application
libraries including FFTs, filters, convolution decoders,
and other routines. Those routines are also automatically
customized for each configuration of the Vectra engine.

7. Application Examples

Two sets of representative application kernels – one
for consumer devices and one for telecommunications –
help illustrate the impact of TIE-based configurability on
application performance. The process of tuning these
two suites of algorithms parallels the typical use of
extensible processors – each of the algorithms is complex
and a single processor is tuned for enhanced performance
across the whole mix of tasks. Moreover, the twenty
separate applications or test-cases in these two suites
were all ported, analyzed and used to drive processor
configuration over a period of just eight weeks by one
engineer, using Tensilica’s standard tools.

Example 1: Consumer Multimedia
Video processing lies at the heart of consumer

electronics – in digital video camera, in digital television
and in games. Common tasks include color-space
conversion, two-dimensional filters and image
compression. The industry-standard, independently
certified, EEMBC Consumer benchmark suite includes a
representative sample of all these applications [4]. A
baseline configuration of Tensilica’s Xtensa processor
already includes many appropriate features for these
tasks. Even this baseline configuration at 200MHz
delivers performance more than eleven times the
performance of a basic RISC processor
(ST20@50MHz), and on par with popular high-end 32-
bit and 64-bit stand-alone processors, where performance
is measured as the geometric mean of the relative number
of iterations per second through each algorithm.
However, when instructions for image filtering and
color-space conversion (RGB-to-YIQ and RGB-to-
CYMB) are added using TIE, the average performance is
increased by a further 17 times, resulting in a processor
with almost 200 times the performance of the reference
processor as shown in Figure 1. The base configuration
was optimized for 200MHz worst-case performance in
0.18µ CMOS technology and utilized 16KB two-way set
associative caches, 256KB local data RAM, a 16-entry
write buffer and a 32-bit multiplier for a total of 57,600

gates of logic. The optimized results used software that
exploited the additional 64,100 gates of extensions
implemented in TIE.

Figure 1: EEMBC Consumer Suite

0

50

100

150

200

Pe
rf

or
m

an
ce

 re
la

tiv
e

to
 S

T2
0C

2/
50

AMD ElanSC520/133 NEC V832/143
National Geode GX1/200 NEC VR5432/167
Xtensa Baseline/200 NEC VR5000/250
AMD K6-2E/400 Xtensa Optimized/200

Example 2: DSP Telecommunications
Telecommunications applications present a different

set of challenges. Here the data is often represented as
16-bit fixed-point values, as densely compacted bit-
streams or as redundantly encoded channel data. Over
the past ten years, standard DSP processors have evolved
to address many of the requirements of filtering, error
correction and transform algorithms. The EEMBC
“Telemark” benchmark includes many of these common
tasks. In this case, the applications designer might start
with a standard Xtensa configuration. This gives baseline
performance on the EEMBC benchmarks that compares
well with other leading 32-bit and 64-bit RISC
processors, where performance is measured as the
geometric mean of the relative number of iterations per
second through each algorithm compared to the reference
processor (IDT 32334TM – MIPS32 architecture - at
100MHz). However, when additional features are added,
including the Vectra DSP co-processor and a few
additional instructions in TIE, and the code is re-
optimized to exploit the new capabilities of the platform,
the performance jumps another 37 times. The overall
performance then exceeds that of a high-end Texas
Instruments TMS320C6203TM VLIW DSP using hand-
optimized code, as shown in Figure 2. The base
configuration was again optimized for 200MHz worst
case performance in 0.18µ CMOS technology and used
16KB two-way set associative caches, 16-entry write
buffer, but not the Vectra extensions. The optimized

code utilizes Vectra and 18,000 additional gates of TIE
for a total of 180,000 gates.

Figure 2: EEMBC Telecom Suite

0

20

40

60

80

100

Pe
rf

or
m

an
ce

 re
la

tiv
e

ID
T

32
33

4/
10

0

Analog Devices 21065L/60 NEC V832-143
Xtensa Baseline/200 NEC VR5432-167
NEC VR5000/250 AMD K6-2E/400
TI TMS320C6203 Opt/300 Xtensa Optimized/200

8. Conclusion

System-on-chip integration offers significant
improvements in system bandwidth, cost and power
efficiency, compared to systems built with discrete
semiconductor building blocks. These application-
specific system ICs can take full advantage of the
efficiency benefits of application-specific processors, but
only if designers can generate new processors quickly
and completely. Automatic generation of optimized
processor core hardware and of the associated software
tools sharply reduces the time, cost and risk in
development of new processor-based platforms, and
eases the integration of processors into system-on-chip
designs. New methodologies, tools, and processor
foundations are required for this shift to application-
specific processors, but these methods are triggering an
explosion of new silicon platforms that combine the
flexibility of standard programming models and the
efficiency of application-tuned silicon.

Processor configurability has many dimensions —
sizing of memories, addition of specialized external
interfaces, and incorporation of closely coupled
peripherals. The single most important dimension of
configurability is instruction set extension. This paper
has outlined the mechanisms for instruction set
extensibility, the Tensilica Instruction Extension
description format and techniques for full configuration
of compilers, simulators, RTOS and RTL
implementation. The performance impact is significant,
often averaging more than ten-fold that of current

implementations of traditional, fixed-instruction set,
general-purpose processors.

9. Acknowledgements

The authors wish to thank the entire technical staff of
Tensilica, whose efforts underlie the Xtensa Processor
Generator, the foundation of this work. Special
recognition is due to Michael Carchia, who did all the
EEMBC benchmarking, and to Albert Wang, Earl
Killian, Kim Alfaro and Pavlos Konas who reviewed the
manuscript.

 10. References

[1] N. Zhang and R. W. Brodersen, "Architectural Evaluation
of Flexible Digital Signal Processing for Wireless
Receivers," Proc. Asilomar Conf., Pacific Grove, CA,
October 2000

[2] R.G. Bushroe et al., “CHDS: A Foundation for Timing-
Driven Physical Design into the 21st Century,”
SEMATECH, Inc.

[3] R. Gonzalez, “Configurable and Extensible Processors
Change System Design”. Hot Chips 11, 1999.
ftp://www.hotchips.org/pub/hotc7to11cd/hc99/hc11_pdf/h
c99.s4.3.Gonzalez.pdf

[4] http://www.emmbc.org

