
A Performance-Oriented Data Parallel Virtual Machine for
GPUs

Mark Segal Mark Peercy

ATI Technologies, Inc.

Abstract
Existing GPU programming interfaces require that applications employ a graphics-centric programming model
exported by a device driver tuned for real-time graphics andgames. This programming model impedes develop-
ment of non-graphics applications by hiding hardware resources behind its graphics-oriented interface.
We present a virtual machine abstraction for GPUs that provides policy-free, low-level access to the hardware and
is designed for high-performance, data-parallel applications.

1. Overview

GPUs make an attractive platform for numerically-intensive
calculation because of their inexpensive high-performance
SIMD arrays originally conceived to shade fragments. These
arrays consist of up to several dozen processors connected to
a high-bandwidth, latency-hiding memory system [ATI05].
This combination can outperform CPUs, sometimes by more
than an order of magnitude, on numerically-intensive appli-
cations. Examples of algorithms that have been implemented
with success on GPUs range from collision detection and re-
sponse to medical image segmentation.

Such implementations, unfortunately, must rely on either
OpenGL [SA04] or Direct3D [Mic06] to access the hard-
ware (or one of the many interfaces layered on top of these
which must ultimately do the same). OpenGL and Direct3D
contain many elements irrelevant to GPU computation, and
failure to ensure that such elements are set properly can lead
to confusing program bugs. More significant is that these
APIs, by design, hide architectural details that are of impor-
tance to GPU programmers. As part of this hiding, graph-
ics drivers make policy decisions, such as where data reside
in memory and when they are copied, that may rob perfor-
mance from a non-graphics application. Such a loss in per-
formance undermines the motivation to implement a tech-
nique on the GPU in the first place.

We present a new virtual machine abstraction for GPUs
that hides irrelevant graphics components and exposes the
GPU as a data-parallel processor array and a memory con-
troller, fed by a simple command processor. This model

presents a thin interface to the hardware, requiring practi-
cally no management on the CPU. The programmer makes
decisions, for instance, about when and how data are copied.
These capabilities allow programmers to obtain the maxi-
mum performance available from the hardware.

2. Related Work

Previous work on programming interfaces specifically for
GPU computation has focused on providing a layer above
D3D or OpenGL. Such systems include Brook [Be04] and
Sh [Me04], and even Cg [FK03]. These systems provide a
higher-level abstraction designed to present a particularpro-
gramming model that happens to fit GPUs well but may also
be applicable to other hardware, such as CPUs.

Our approach is to present the capabilities of modern
GPUs with as little interference as possible and without as-
suming a graphics usage pattern, while maintaining an ab-
straction that can span GPU architectures. Higher-level ab-
stractions can take advantage of the capabilities providedby
this low-level interface, providing higher performance than
would otherwise be achievable.

3. The Data Parallel Virtual Machine (DPVM)

The data parallel processing array (fragment engines) in a
GPU is embedded in a graphics pipeline that includes such
components as vertex processing, rasterization, texture filter-
ing, depth buffering, blending, and anti-aliasing. The graph-
ics pipeline, in turn, is controlled by a harness that couples

c©2006 ATI Technologies, Inc.



2 M. Segal & M. Peercy / A Performance-Oriented Data Parallel Virtual Machine for GPUs

the GPU to a computer system through a system bus. This
harness dispatches work requests, in the form of command
buffers, to the graphics pipeline and services read and write
requests to external memory.

In modern GPUs, the control harness architecture is rea-
sonably uniform from one GPU to another. The graphics
pipeline and data parallel processing array, however, remain
device-specific.

Our platform, the Data Parallel Virtual Machine (DPVM),
provides a device-independent control infrastructure (com-
mand buffer format and memory abstraction) that manages
device-dependent binary executables for a given data paral-
lel array. The DPVM control need not interpret this program
data; it simply allows the array to access it [Khr05]. All other
components of the graphics pipeline are hidden and man-
aged by the DPVM implementation. This keeps the interface
small and simplifies implementation on diverse GPU archi-
tectures.

The DPVM splits the problem of computation on the GPU
into one of code generation, which is device-dependent, and
program execution, which, ideally, is device-independent.
Code generation happens outside the DPVM. Naturally, with
this model, a program can be made device-independent by
compiling it from a higher-level language.

A benefit of the virtual machine model is that an imple-
mentation can readily coexist with graphics drivers. A game,
for example, could use a single GPU for both graphics and
physical simulation: OpenGL or Direct3D can be used for
the graphics rendering, while the DPVM can be used for
computation. The same memory is accessible by both the
graphics APIs and the DPVM. Additionally, multiple virtual
machines can be instantiated on a single GPU or across more
than one GPU.

3.1. DPVM Components

The Data Parallel Virtual Machine presents the GPU as three
major components: a command processor, a memory con-
troller, and a data-parallel processor array (see Figure 1).

3.1.1. Command Processor

The command processor accepts commands packaged by an
application. The programmer sends these commands to the
DPVM by filling a buffer with them and then calling a sub-
mit function to process them. The DPVM commands are
listed in Table 1. Each command is a group of 32-bit words.
The first word is the opcode of the command; subsequent
words are parameters to the command. Together, the com-
mands provide relatively direct control over the data parallel
array and the memory controller.

The command processor is responsible for scheduling
processors to run when it receives a startProgram command.
In the simple case, the program is run for every (x,y) index

Figure 1: Block diagram of the DPVM.

pair within a domain set by the setDomain instruction. This
is the equivalent of, in graphics, drawing a screen-aligned
rectangle and having the fragment processors shade each of
the resulting fragments.

The DPVM provides the ability to skip processing for
certain (x,y) points based on a conditional value associated
with all points. This value is compared with the correspond-
ing value stored in memory in a conditional buffer (a depth
buffer, in graphics). A particular (x,y) point is processedonly
if the comparison succeeds. Thus, this feature provides a
form of conditional execution. The comparison used is set
using a DPVM command, as is the location of the condi-
tional buffer in memory.

Finally, the command processor is responsible for some
DPVM system functionality. The waitForIdle command
blocks the execution of subsequent commands in the buffer
until all previous commands have taken effect. The Perf-
Counters commands allow setup and reading of basic perfor-
mance counters: total GPU cycles and total non-idle clocks
since last counter reset.

3.1.2. Memory Controller

In contrast to textures and render targets, the DPVM presents
graphics memory directly to the application. Command
buffers, program instructions, constants, and inputs and out-
puts are stored in GPU (video) or PCI-Express (CPU mem-
ory addressable by the GPU) memory locations specified by
the application. The application also specifies input and out-
put memory formats to the memory controller (before run-
ning a program that uses those inputs and outputs). Thus, the
programmer must ensure that memory is being interpreted in
the proper format, but an application may reinterpret values
written in one format (e.g. a 4 component array) in another
(e.g. a 1 component array of 4 times the length). Such cast-
ing can allow data reinterpretation without copying.

Modern GPUs use tiling, in which values that are ad-
dressed linearly are actually stored as tightly packed small
arrays (this is done to improve memory efficiency and cache

c©2006 ATI Technologies, Inc.



M. Segal & M. Peercy / A Performance-Oriented Data Parallel Virtual Machine for GPUs 3

Command Description
setInpAddress [i, a, f, n] Set base address of input

i to a, with format f and n
components

setOutFormat [o, a, f, n] Set base address of output
o to a, with format f and n
components

setConstAddress [a] Set constant base address
to a

SetCondOutAddress [a, f] Set conditional output
buffer base address to a
with format f

SetProgramAddress [a] Set program base address
to a

invInpCache Invalidate input caches
invConstCache Invalidate constant cache
invCondOutCache Invalidate cond. output

cache
flushOutCache Flush output cache
flushCondOutCache Flush conditional output

cache
SetCondTest [t] Set the conditional test to

t
SetDomain [x0, y0, x1, y1] Rectangle with corners

(x0, y0) and (x1, y1) de-
fines points to process

startProgram Run DPA program over
domain

waitForIdle Wait until previous com-
mands complete

resetPerfCounters Reset performance coun-
ters

ReadPerfCounters [a] Write performance
counter values starting at
address a

Table 1: Summary of DPVM commands.

behavior when working with 2D arrays). The DPVM ex-
poses such tiling. The details of a how values are placed
in memory under a particular tiled format may be GPU-
specific. But an application may specify a tiled format with-
out knowledge of how values are packed in memory for
that format, and access the data by running a program that
copies tiled to untiled. Additionally, exposing the tilingfor-
mat makes intermediate results interpretable, simplifying de-
bugging.

The DPVM specifies data formats for inputs and out-
puts that consist of one, two, or four components per ele-
ment. Only formats consisting of 32-bit floating-point val-
ues are currently exposed, even though the underlying hard-
ware supports many more (such as fixed-point formats of 4,
8, or 16 bits per component). This restriction simplifies the

DPVM, yet provides sufficient functionality for the majority
of data-parallel applications.

The memory controller uses caches to improve its per-
formance. The size and structure of these caches is unspec-
ified, but the programmer is responsible for flushing output
caches and invalidating input caches when required (as when
changing an address). Thus, the programmer is in control of
these potentially expensive operations, rather than a graphics
driver.

3.2. Data Parallel Array

The data parallel array (DPA) is the computational element
of the DPVM. It can access some number of inputs (textures)
and can write some number of outputs (render targets and
conditional buffer). Beyond this, the details of the processing
capabilities of the array are machine-specific. The DPVM
specifies an application binary interface (ABI) that exposes
the native instruction set of the DPA (fragment) processors.
The DPVM implementation includes a program loader that
extracts binary executables from objects in the Executable
and Linking Format (ELF). A programmer specifies where
in memory, with a command in the command buffer, these
ELF modules are located and when they are to be used by
invalidating the instruction cache.

Exposing the native instruction set of the data parallel ar-
ray brings several benefits. First, once a program is compiled
(or written directly in assembly language) it is immune to
compiler changes resulting from driver updates that might
affect its performance. Further, access to machine language
simplifies debugging and performance tuning. Finally, if a
compiler is failing to produce code of the desired efficiency,
the programmer can always revert to assembly language.

4. DPVM Interface

The DPVM interface consists of four function calls into a li-
brary. OpenConnection and CloseConnection, respectively,
create and destroy instances of the DPVM. SubmitCom-
mandBuffer submits the specified command buffer (of spec-
ified length) to the DPVM, returning an ID for that buffer,
and CommandBufferConsumed tells whether the buffer with
given ID has been completely scanned by the GPU, allowing
its memory to be overwritten.

OpenConnection returns a structure that contains informa-
tion about the GPU’s memory layout. Included are the base
addresses and sizes of GPU memory, as well as PCI-E mem-
ory, cached and uncached on the CPU. For GPU memory,
GPU addresses are returned; for CPU memory, both GPU
and CPU addresses are returned. Taken together, this infor-
mation describes the GPU memory available to the applica-
tion.

All other control of the DPVM is achieved by submitting
commands. The command buffer was chosen as the method

c©2006 ATI Technologies, Inc.



4 M. Segal & M. Peercy / A Performance-Oriented Data Parallel Virtual Machine for GPUs

of control because the underlying hardware also works by
being sent command buffers. Error checking can be added
to the command interpreter on the CPU, but otherwise the
correspondence between DPVM commands and hardware
commands is nearly one-to-one.

5. Implementation

We have implemented a DPVM on the ATI X1K architecture
using low-level, internal, components from ATI’s OpenGL
driver. We also developed an assembler/disassembler for the
X1K DPA processor so that we could program the proces-
sor in its machine language. And we developed a compiler
that generates X1K DPA ELF files from programs written in
HLSL and Direct3D PS 3.0.

5.1. ATI X1K processor

While the instruction set architecture of the processor array
in a DPVM instantiation is GPU-specific, for concreteness
we briefly describe the characteristics of the DPA processors
found in the ATI X1K architecture. An individual processor
(Figure 2) comprises a read/write register file for intermedi-
ate results, a read-only constant file (values of which can be
written by the CPU before program execution), an ALU ca-
pable of simultaneously operating on a vector (3-tuple) and
a scalar, an input unit that issues memory read requests, an
output unit that issues memory write requests, and an in-
struction sequencer.

Figure 2: Block diagram of an X1K DPA processor.

The vector and scalar components of the ALU each con-
sist of two parts. The main portion of each ALU performs
an operation on its three inputs (A, B, C) in a single clock
cycle. The vector and scalar operations are summarized in
Tables 2 and 3, respectively. The second portion can add or
subtract inputs from one another before they are presented
to the main ALU. All data values are IEEE floating-point
single-precision, and calculations conform to the IEEE stan-
dard with the following exceptions: rounding cannot be con-
trolled; denorms, except in certain pass-through operations,
are treated as 0; 1/x is accurate to 1 lsb; and the trig and
power functions have varying accuracy.

Each register and constant consists of 4 values. The vec-
tor and scalar units each select registers or constants for each
input independently. Once registers and constants are se-
lected, any individual components within the selections may

Name Description
MAD A*B + C
DP3 A[0]*B[0]+A[1]*B[1]+A[2]*B[2]
DP4 A[0]*B[0]+A[1]*B[1]+A[2]*B[2]+A[3]*B[3]
D2A A[0]*B[0]+A[1]*B[1]+C[2]
MIN min(A,B)
MAX max(A,B)
CND C>0.5 ? A : B
CMP C>=0 ? A : B
FRC fractional part of A
SOP Replicate scalar math result

Table 2: Vector ALU operations.

Name Description
MAD A*B + C
VDP DP3, DP4, or D2A vector op result
MIN min(A,B)
MAX max(A,B)
CND C>0.5 ? A : B
CMP C>=0 ? A : B
FRC fractional part of A
EX2 2A

LN2 log2(A)

RCP 1/A
RSQ 1/sqrt(A)
SIN sin(A)
COS cos(A)

Table 3: Scalar ALU operations.

be routed to any of the vector component or scalar inputs.
The result of an ALU operation may be sent to a register, the
output, or both; masking may be specified to cause only cer-
tain of the 4 components to actually be written. In addition,
predication based on a previous ALU result is available to
enable data-dependent conditional writing of a register.

The ATI X1K DPA may submit a request for a memory
read to the memory controller by passing it an (i,j) index
pair. This index pair is used to retrieve data within a 2D array
whose dimensions and format are set in the command buffer.
The value(s) read by the memory controller are placed in a
return register specified in the input instruction; this place-
ment may include rearrangement or duplication of the com-
ponents obtained from memory. The DPA may also submit a
request to the memory controller to write memory by passing
it the (x,y) index pair identifying the current processor, and
specifying one of four outputs. Each output holds 4 values,
specified as the result of an ALU instruction. In addition, a
value can be output by a processor to the conditional output
buffer.

The sequencer reads instructions from memory, decodes
them, and causes each instruction to be executed. Each in-

c©2006 ATI Technologies, Inc.



M. Segal & M. Peercy / A Performance-Oriented Data Parallel Virtual Machine for GPUs 5

struction comprises 6 32-bit words, and there can be up to
512 of them. There are three kinds of instructions: ALU, in-
put read, and flow control. The operation of ALU and input
read instructions has already been described. Flow control
instructions allow conditional branching based on conditions
generated by the ALU as well as the value of constant flags,
looping using dedicated integer loop limit registers (set by
the CPU only), and subroutine calls. Nested conditionals,
loops, and subroutine calls are allowed up to 4 deep.

6. Usage Example

Consider a simple DPA program to copy input to output. The
X1K assembly language for such a program consists of just
two instructions:

TEX r1 r0 in0
MAD out0 r1 1 0 mad out0 r1 1 0

The first instruction says to use register r0 as the (i,j) index to
obtain the value stored in input 0 (only the first two compo-
nents of r0 are used); the result is placed in r1. (In the X1K
DPA processor, when a program is started, the (x,y) values
of the point being processed are placed in the first two com-
ponents of r0). The second instruction has two parts: the up-
percase MAD controls the vector unit, processing the first
three components, and the lowercase one controls the scalar
unit. Each multiplies the corresponding values in r1 by 1 and
adds zero to them, placing the results in output 0.

To set up the DPVM so that it can execute this program, a
connection is opened to the DPVM:

info = OpenConnection();
uint32 cbufGPU = info.baseAddressPCIE;
uint32 cbufCPU = info.CPUbaseAddressPCIE;
uint32 progGPU = cbufGPU + 2048;
uint32 progCPU = cbufCPU + 2048;
uint32 inputGPU = progGPU + 2048;
uint32 inputCPU = progCPU + 2048;
uint32 outputGPU = info.baseAddressGPU;

This code reserves space in PCI-E memory for a com-
mand buffer, program instructions, and input. Both GPU and
CPU addresses are derived (the latter are required so the
CPU can write data into each of these areas). The last line
indicates that the output is to go in GPU memory.

Assume the CPU has assembled the DPA program and
placed it in its proper location in memory, and that the CPU
has initialized the input. If the input and output both have
dimensions of 512 x 512, then the following DPVM com-
mands are placed in memory (represented here in a func-
tional shorthand) starting at cbufCPU:

FlushOutCache
SetOutFormat:

0, outputGPU, FLOAT4\_UNTILED, 512, 512
InvalidateInpCache
SetInpFormat:

0, inputGPU, FLOAT4\_UNTILED, 512, 512

SetInstFormat: progGPU
InvalidateInstCache
SetDomain: 0, 0, 511, 511
StartProgram

This command buffer is submitted:

id = SubmitCommandBuffer(cbufGPU, length);

Then the application waits for the command buffer to be
consumed:

while (CommandBufferConsumed(id) == 0);

When this while loop terminates, the commands have all
been read. If, in addition, the DPA program should have
completed running on all (x,y) points, then the submitted
command buffer should have a WaitForIdle command ap-
pended to it.

7. Experience

We have implemented several basic applications using the
DPVM, including dense matrix-matrix multiply and 1D
FFT. For matrix-matrix multiply, we use block multiplica-
tion to reduce the number of redundant reads (thus improv-
ing performance) of the input matrix elements as described
in [FSH04]. Their method uses a single 4 component output
and 2x2 blocking. Our implementation uses all 4 outputs to
achieve 4x4 blocking, halving the number of reads. Using
this technique, we have been able to achieve performance on
an ATI X1900 XTX of 110 Gflops/sec for 512 x 512 matri-
ces.

While matrix-matrix multiply is a relatively straightfor-
ward algorithm, using the DPVM to implement it provided
several advantages that aided development. Using assembly
language for the DPA program instead of a higher-level lan-
guage allowed us to understand the program’s performance
clearly, since we directly described the hardware instructions
being executed; it also made it simple to try different instruc-
tion orderings to determine their effect on performance. The
CPU program is short and simple because required compu-
tational elements were accessed directly instead of mapping
them to graphical constructs provided by OpenGL or D3D.
Finally, the ability to read and write matrices in PCI-E mem-
ory directly eased debugging, since the CPU can examine
the results written by the GPU directly.

The FFT implementation is complicated; we will not de-
scribe it here. But the same features that helped in the devel-
opment of the matrix-matrix multiply code were even more
helpful in this more complicated case. In addition, the abil-
ity to write data in one format and read it in another without
copying (Section 3.1.2) proved invaluable in obtaining the
maximum performance. On a 1D 4K complex FFT, we ob-
tained performance of 12 Gflops/sec on an ATI X1900 XTX.

c©2006 ATI Technologies, Inc.



6 M. Segal & M. Peercy / A Performance-Oriented Data Parallel Virtual Machine for GPUs

8. Conclusion

The DPVM provides a straightforward programming model
for data parallel applications. It gives access to essen-
tial low-level functionality, yet presents a simplified target
more palatable for tool development than the full hardware
specification. As a result, developers can focus on com-
pilers, debuggers, and utility libraries that target the data-
parallel array of fragment processors without the burden ofa
graphics-centric driver. This is essential for developinghigh-
performance data parallel applications that use the GPU for
computation.

In the future, we would like to augment the DPVM with
at least some of the GPU capabilities that were left out (de-
scribed in Section 3) in the interests of expediency and sim-
plicity. Adding some of these features simply amounts to
adding commands to control them (examples include the
per-pixel operations), while others require more care and
perhaps some changes to the DPVM model (vertex process-
ing and rasterization are examples).

References

[ATI05] ATI R ESEARCH, INC.: The Radeon X1x00 Pro-
gramming Guide. www.ati.com, 2005.

[Be04] BUCK I., ET AL: Brook for gpus. InProc. SIG-
GRAPH ’04(2004), pp. 777–786.

[FK03] FERNANDO R., KILGARD M.: The Cg Tutorial:
The Definitive Guide to Programmable Real-Time Graph-
ics. Addison-Wesley, 2003.

[FSH04] FATAHALIAN K., SUGARMAN J., HANRAHAN

P.: Understanding the efficiency of gpu algorithms for
matrix-matrix multiply. InProc. Graphics Hardware ’05
(2004), pp. 89–94.

[Khr05] KHRONOS GROUP: OpenGL ES 2.0 Specifica-
tion. www.khronos.org, 2005.

[Me04] MCCOOL M., ET AL: Shader algebra. InProc.
SIGGRAPH ’04(2004), pp. 787–795.

[Mic06] M ICROSOFT I.: Direct3D Reference.
msdn.microsoft.org, 2006.

[SA04] SEGAL M., AKELEY K.: The OpenGL Graph-
ics System: A Specification, Version 2.0. www.opengl.org,
2004.

c©2006 ATI Technologies, Inc.


