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Synthesis of Reversible Logic Circuits

Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, and John P. Hayekow, IEEE

Abstract—Reversible or information-lossless circuits have ap- speed-ups by adding instructions to allow computation of an
plications in digital signal processing, communication, computer arbitrary reversible function. The problem of chaining such
graphics, and cryptography. They are also a fundamental require- 4 ctions together provides one motivation for studying re-

ment in the emerging field of quantum computation. We investi- ibl tati d ible loaic circuits. that is. lodi
gate the synthesis of reversible circuits that employ a minimum Vversible computation and reversibie fogic circutts, that Is, 1ogic

number of gates and contain no redundant input—output line-pairs ~ Circuits composed of gates computing reversible functions.
(temporary storage channels). We prove constructively that every  Reversible circuits are also interesting because the loss of in-
even permutation can be implemented without temporary storage formation associated with irreversibility implies energy loss [2].
using NOT, CNOT, and TOFFOLI gates. We describe an algorithm v, nis and Knight [22] showed that some reversible circuits

for the synthesis of optimal circuits and study the reversible func- b d icall loss| heir delay is al
tions on three wires, reporting the distribution of circuit sizes. We &N b€ made asymptotically energy-lossless as their delay is al-

also study canonical circuit decompositions where gates of the samelowed to grow arbitrarily large. Currently, energy losses due to
kind are grouped together. Finally, in an application important irreversibility are dwarfed by the overall power dissipation, but
to quantum computing, we synthesize oracle circuits for Grover's  this may change if power dissipation improves. In particular,
search algorithm, and show a significant improvement over a pre- o e sihility is important for nanotechnologies where switching
viously proposed synthesis algorithm. ; ; . g -
devices with gain are difficult to build.
Index Terms—Circuit optimization, combinational logic circuits, Finally, reversible circuits can be viewed as a special case of
logic synthesis, quantum computing, reversible circuits. guantum circuits because quantum evolution must be reversible
[14]. Classical (nonquantum) reversible gates are subject to
|. INTRODUCTION the same “circuit rules,” whether they operate on classical
bits or quantum states. In fact, popular universal gate libraries

N MOST computing tasks, the number of output bits 5 . . .
. X ' . for quantum computation often contain as subsets universal
relatively small compared with the number of input bits.

For example, in a decision problem, the output is only one t%F\te libraries for classical reversible computation. While the

. . speed-ups which make quantum computing attractive are not
(yes or no) and the input can be as large as desired. However,. . . .
; S . ; . available without purely quantum gates, logic synthesis for
computational tasks in digital signal processing, communic

. . . ca:‘:assical reversible circuits is a first step toward synthesis of
tion, computer graphics, and cryptography require that all ¢

the information encoded in the input be preserved in the outpﬂ;fj.ar.]tum circuits. Moreover, algorithms for guantum com-
munications and cryptography often do not have classical

Some of those tasks are important enough to justify addmgunterparts because they act on quantum states, even if their

new microprocessor instructions to the HP PA-RISC (MA action in a given computational basis corresponds to classical
and MAX-2), Sun SPARC (VIS), PowerPC (AltiVec), IA-32, [n a given computationa P .
reversible functions on bit-strings. Another connection be-

and I1A-64 (MMX) instruction sets [13], [18]. In patrticular, : . ,
. g : . tween classical and quantum computing comes from Grover's
new bit-permutation instructions were shown to vastly improve

performance of several standard algorithms, including matr%l(Jantum search algorithm [6]. Circuits for Grover's algorithm

transposition and DES, as well as two recent cryptographqggilgr:i;r?f 4?61”5 consisting of NOT, CNOT, and TOFFOLI

algorithms Twofish and Serpent [13]. Bit permutations aregaWe review existing work on classical reversible circuits
special case of reversible functions, that is, functions that per-_ . . 9 . . . '
offoli [20] gives constructions for an arbitrary reversible or

mute the set of possible input values. For example, the bUtterirlyeversible function in terms of a certain gate library. However
operation(z,y) — (z + y,z — y) is reversible but is not a N Y- '

his method makes use of a large number of temporary storage

bit permutation. It is a key element of fast Fourier transform annels. ie. inoutoutput wire-pairs other than those on
algorithms and has been used in application-specific Xtensa » 1€, Input-outp P . ;
ich the function is computed (also known as ancilla bits).

rocessors from Tensilica. One might expect to get furthg . . .
P 9 P 9 asao and Kinoshita show that any conservative funcién)[

is conservative ift and f(z) always contain the same number
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operators needed by Grover’'s quantum search algorithm [8], X X
[12], [21]. Some work on local optimization of such circuits g y
via equivalences has also been done [8], [12]. In a different Z
direction, group theory has recently been employed as a tong_ 1

analyze reversible logic gates [19] and investigate generators
of the group of reversible gates [5].

N <

3x 3reversible circuit with two T gates and two N gates.

Our paper pursues synthesis of optimal reversible circuits xy z|x f ?
which can be implemented without temporary storage chan- 0001000
nels. In Section Ill, we show by explicit construction that any 00 11001
reversible function which performs an even permutation on 0100 11
the input values can be synthesized using the CNTS (CNOT, 01 140 10
NOT, TOFFOLI, and SWAP) gate library and no temporary 1001 00
storage. An arbitrary (possibly odd) permutation requires, at 1011 01
most, one channel of temporary storage for implementation. 1101 1 1
By examining circuit equivalences among generalized CNOT 11 1|1 10

gates, we derive a canonical form for CNT-circuits. In Sec-
tion IV, we present synthesis algorithms for implementingig. 2. Truth table for the circuit in Fig. 1.
any reversible function by an optimal circuit with gates from

an arbitrary gate library. Besides branch-and-bound, we usgchanges the inputs; that is;,4) — (y,z). One reason for

a dynamic programming technique that exploits reversibilit¢hoosing these particular gates is that they appear often in the

While we use gate count as our cost function throughout, thjsantum computing context, where no physical “wires” exist,

method allows for many different cost functions to be usegind swapping two values requires nontrivial effort [14]. We will

Applications to quantum computing are examined in Section Ne working with circuits from a given, limited-gate library. Usu-
ally, this will be the CNTS gate library, consisting of the CNOT,

Il. BACKGROUND NOT, and TOFFOLI, and SWAP gates.
Definition 3: A well-formed reversible logic circuit is an

In conventional (irreversible) circuit synthesis, one typicall . o ST .
( ) Y yp cyclic combinational logic circuit in which all gates are re-

starts with a universal gate library and some specification o rsible and are interconnected without fanout

Boolean function. The gqal Is to fin_d_a I.OQiC cirpuit that imple? As Wi:[h reversible gates, a reversible circuit has the same
ments the Boolean function and minimizes a given cost metrig, o of input and output wires; again we will call a reversible
e.g., the number of gates or the circuit depth. At a high level, r

versible circuit synthesis is just a special case in which no fan Eireuit with n INputs ann x n CIrCuit, or a circuit onn wires.
) y J P ) % draw reversible circuits as arrays of horizontal lines repre-
is allowed and all gates must be reversible.

senting wires. Gates are represented by vertically-oriented sym-

bols. For example, in Fig. 1, we see a reversible circuit drawn

in the notation introduced by Feynman [7]. Tdhhesymbols rep-
Definition 1: A gate is reversible if the (Boolean) function itresent inverters and thesymbols represent controls. A vertical

computes is bijective. line connecting a control to an inverter means that the inverter
If arbitrary signals are allowed on the inputs, a necessary cas-only applied if the wire on which the control is set carries a

dition for reversibility is that the gate have the same number tfsignal. Thus, the gates used are, from left to right, TOFFOLI,

input and output wires. If it hag input and output wires, it is NOT, TOFFOLI, and NOT.

called ak x k gate, or a gate oh wires. We will think of the Since we will be dealing only with bijective functions, i.e.,

mth input wire and thenth output wire as really being the samepermutations, we represent them using the cycle notation where

wire. Many gates satisfying these conditions have been exaapermutation is represented by disjoint cycles of variables. For

ined in the literature [15]. We will consider a specific set defineexample, the truth table in Fig. 2 is represented by (2,3)(6,7)

by Toffoli [20]. because the corresponding function swaps 010 (2) and 011 (3),
Definition 2: A k-CNOT isa(k+1) x (k+1) gate. Itleaves and 110 (6) and 111 (7). The set of all permutations fdexes

the firstk inputs unchanged, and inverts the last if and only i denotedS,,, so the set of bijective functions with binary

all others are 1. The unchanged lines are referred to as coningluts is.S>~». We will call (2,3)(6,7) CNT-constructible since

lines. it can be computed by a circuit with gates from the CNT gate
Clearly, thek-CNOT gates are all reversible. The first thredibrary. More generally:

of these have special names. The zero-CNOT is just an inverteDefinition 4: Let L be a (reversible) gate library. Ab-cir-

or NOT gate, and is denoted by N. It performs the operatiauit is a circuit composed only of gates from A permuta-

(z) — (z ® 1), whered denotes<or. The one-CNOT, which tion = € S, is L-constructible if it can be computed by an

performs the operatiofy,z) — (y,xz @ y) is referred to as n x n L-circuit.

a Controlled-NOT [7], or CNOT (C). The two-CNOT is nor- Fig. 3(a) indicates that the circuit in Fig. 1(a) is equivalent to

mally called a TOFFOLI (T) gate, and performs the operatioone consisting of a single C gate. Pairs of circuits computing the

(z,y,2) — (z,y,x @ yz). We will also be using another re-same function are very useful, since we can substitute one for

versible gate, called the SWAP (S) gate. Itis & 2 gate which the other. On the right, we see similarly that three C gates can

A. Reversible Gates and Circuits
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— Indeed, much of the reversible and quantum circuit literature
gﬁ = $ ;’P ;— =X >< allows the presence of polynomially many temporary storage
bits for circuit synthesis. Given that qubits are a severely limited
resource in current implementation technologies, this may not
be a realistic assumption. We are, therefore, interested in trying
Fig. 3. Reversible circuit equivalences @&, - N' - T2, - N = ¢2 and 10 synthesize permutations using no extra storage. To illustrate
(b)C - C3 - C2 = 527 subscripts identify “control bits” while superscripts the limitations this puts on the set of computable permutations,
identiy bits whose values actually change. suppose we restrict ourselves to the C gate library. The following

results are well known in the quantum circuits literature [3],

b—@
b
Il
I

(b)

n-1 — - _ nel] [15]. We provide proofs both for completeness and to accustom
Y ] 3 Reversible : ) Y the reader to techniques we will require later.
Tres circuit e Definiti_on 6: Afunction f : {0,1}" — {0,1}™ is Iine_ar_if
; K : andonlyiff(x®y) = f(x) ® f(y), where® denotes bitwise
X\, R ¥ (0.9 XOR.
Lo ] This is just the usual definition of linearity where we think of

{0,1}" as a vector space over the two-element field In our
Fig. 4. CircuitC with n — £ wiresY” of temporary storage. paper,n = m because of reversibility. Thug, can be thought
of as a square matrix ovér,. The composition of two linear

be used to replace the S gate appearing in the middle circuifofictions is a linear function.
Fig. 3(b). If allowed by the physical implementation, the S gate Lemma 7: [3] Every C-constructible permutation computes
may itself be replaced with a wire swap. This, however, is nah invertible linear transformation. Moreover, every invertible
possible in some forms of quantum computation [14]. Fig. 8near transformation is computable by a C-constructible circuit.
therefore, shows us that the C and S gates in the CNTS ghiie C-circuit requires more tham® gates.
library can be removed without losing computational power. We  Proof: To show that all C-circuits are linear, it suffices to
will still use the CNTS gate library in synthesis to reduce gat@ove that each C gate computes a linear transformation. Indeed,
counts and potentially speed up synthesis. This is motivated ®yz1 ®y1, 22D y2) = (21 By1, 21 Py1 X2 D Y2)= (21,21 D
Fig. 3, which shows how to replace four gates with one C gaig,) @® (2,22 ® y2) = C(z1,y1) ® C(z2,y2). In the basis
and, thus, up to 12 gates with one S gate. 10...0,01...0,...,0...01, aC gate with the control on thith

Fig. 4 illustrates the meaning of “temporary storage” [20}wire and the inverter on thih applied to an arbitrary vector will
The topn — k lines transfern — k signals, collectively des- add theith entry to thejth. Thus, the matrices corresponding to
ignatedY’, to the corresponding wires on the other side of thiadividual C gates account for all the elementary row-addition
circuit. The signals” are arbitrary in the sense that the circuitmatrices. Any invertible matrix irGL(F) can be written as
K must assume nothing about them to make its computati@nproduct of these. Thus, any invertible linear transformation
Therefore, the output on the bottoinwires must be only a can be computed by a C-circuit. Finally, any matrix o¥er
function of their input valuest and not of the “ancilla” bits may be row-reduced to the identity using fewer tha&nrow
Y, hence, the bottom output is denotgdX ). While the signals operations. d
Y must leave the circuit holding the same values they enteredOne might ask how inefficient the row-reduction algorithm is
it with, their values may be changed during the computation assynthesizing C-circuits. A counting argument can be used to
long as they are restored by the end. These wires usually sefimd asymptotic lower bounds on the longest circuits [17].
as an essential workspace for computfifd). An example of  Lemma 8: Let L be a gate library; leK,, C S3. be the set
this can be found in Fig. 3(a): the C gate on the right needs twbé L-constructible permutations an wires, and letk; be the
wires, but if we simulate it with two N gates and two T gatesardinality ofK;. Then, the longest gate-minimaicircuit onn
we need a third wire. The signal applied to the top wire emergedres has more thalg k., / log b gates, wheré is the number
unaltered. of one-gate circuits om wires.b = poly(n), so for largen,

Definition 5: Let L be a reversible gate library. Theh,is worst case circuits have lengti(log k., / log n).
universal if for allk and all permutations € S,«, there exists Proof: Suppose the longest gate-minim&icircuit has
somel such that somé-constructible circuit computesusing z — 1 gates. Then every permutation ffy, is computed by an
[ wires of temporary storage. L-circuit of, at mostx — 1 gates. The number of such circuits

The concept of universality differs in the reversible and iis Y, 'bi < b®. Thereforek, < b, and it follows that
reversible cases in two important ways. First, we do not allow > logk /logb.

ourselves access to constant signals during the computation, anginally, let G be a gate ifi, with the largest number of inputs,
second, we synthesize whole permutations rather than just fusgyy. Then, on: wires, there are, at most(n—1)...(n—p+

tions with one output bit. 1) < n? ways to make a 1-gate circuit using GJlfhasq gates
) intotal, therb < gqn? = poly(n). Hencegx > log k, /(plogn+
B. Prior Work IOg (]) — Q(lOg kn/ log TL) |

Itis aresult of Toffoli's that the CNT gate library is universal; We now need to count the number of C-constructible permu-
he also showed that one can bound the amount of temportaijons. On two wires, there are six, corresponding to the six
storage required to compute a permutationSin by n — 3. circuits in Fig. 5.
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Corollary 9: [17] Son hasII?_} (2" — 2¢) C-constructible
permutations. Therefore, worst case C-circuits requi
Q(n?/logn) gates.

Proof: A linear mapping is fully defined by its values on o .
basis vectors. There at® — 1 ways of mapping the"-bit Theorem 12: Every even permutation is CNT-constructible.

string 10....0. Once we have fixed its image, there are — Before beginning the proof, we offer the following two corol-

2 ways of mapping)10 ... 0, and so on. Each basis bit—stringla”es' These give a way to synthesize circuits computing odd

cannot map to the subspace spanned by the previous bit-stri ég'mutatlon_s using t_emporary sto_rage, and also extend Theorem
to an arbitrary universal gate library.

There are™ — 2¢ choices for theth basis bit-string. Once alll i .
basis bit-strings are mapped, the mapping of the rest is specifie(fOrOIIary 13: Every permutation, even or odd, may be com-
! ed in a CNT-circuit with, at most, one wire of temporary

by linearity. The number of C-constructible permutationsion pu

A : L rage.
wires is greater thaﬁ"2/2. By Lemma 8, worst case C—CII’CUItSStO algrf)of- Suppose we have anx n gate G computing: €
requireQ2(n?/logn) gates. O '

. _ on, and we place it on the bottomwires of an(n+1) x (n+1)
. Lgt us retumn to CNTTconstru.ctlll.)Ie permutations. A resu bversible circuit; lefr be the permutation computed by this new
S|m|Ia_r to Lemma 7 requires F)eﬁrnﬂon 10. o circuit. Then, by Lemma 117 is even. By Theorem 1% is
Definition 10: A permutation is called even if it can bey,o cNT-constructible. Let C be a CNT-circuit computingC
written as the product of an even number of transpositions. T@@mputegr with one line of temporary storage. 0
set of even permutations i}, is denotedd,,. Corollary 14: For any universal gate librarf, and suffi-
It is well known that if a permutation can be written as th%ienﬂy largen, permutations ind,. are L-constructible, and

product of an even number of transpositions, then it may n@pse ind,. are realizable with, at most, one wire of temporary
be written as the product of an odd number of transpositiongerage.

Fig. 6. CircuitsN'® for « < 8. The superscript is interpreted as a binary
mber, whose nonzero bits correspond to the location of inverters.

Moreover, half the permutations #), are even fon > 1. Proof: Sincel is universal, there is some numbesuch
Lemma 11:[20] Any n x n circuit with non x n gates com- that we can compute the permutations corresponding to the
putes an even permutation. NOT, CNOT, and TOFFOLI gates using a total bfwires.

Proof: It suffices to prove this for a circuit consisting ofLet n > k, and letr € A,.. By Theorem 12, we can find a
only one gate, as the product of even permutations is even. [BNT-circuit C computingr, and can replace every N, C, or
G be a gate in am x n circuit. By hypothesis(@ is notn x T gate with a circuit computing it. The second claim follows
n, SO there must be at least one wire which is unaffected bimilarly from Theorem 12 and Corollary 13. O
G. Without loss of generality, let this be the high-order wire. To prove Theorem 12, we begin by asking which permuta-
Then2"—! @ G(k) = G(2"~!' @ k), andk < 2"~! implies tionsare C-, N-, and T-constructible. The first of these questions
G(k) < 2"~1. Thus, every cycle in the cycle decomposition ofvas answered in Section Il. We now summarize the properties
G appears in duplicate: once with numbers less ttfart, and  0f N-constructible permutations. In what follows denotes bit-
once with the corresponding numbers with their high-order bit§S€ XOR. ‘
set to one. But these cycles have the same length, and so thelpefinition 15: Given an integet, we denote byV* the cir-
product is an even permutation. Therefafgis the product of Cuit formed by placing an N gate on every wire corresponding
even permutations, and, hence, is even. O toalinthe binary expansionef .

To illustrate this result, consider the following example. e will use N* to signify both the circuit described above,
A 2 x 2 circuit consisting of a single S gate performs thand the permutat_lon which thls_ circuit cqmpute_s. Technically,
permutation (1,2), as the inputs 01 and 10 are interchanged, 4fgiatter is not uniquely determined by the notation, butalso
the inputs 00 and 11 remain fixed. This permutation considEPends on the numberf wires in the cm_:mt;_h(_)weven wil
of one transposition, and is, therefore, odd. On the other ha%yyays be clear from context. THe" notation is illustrated for
in a 3 x 3 circuit, one can check that a swap gate on t € case of three wires in Fig. 6.

bottom two wires performs the permutation (1,2)(5,6), which Lemma 16: Letr E.SQ" be N-construcnble: There _eX|s_ts an
is even 1 such thatr(z) = = @ ¢. Moreover, the gate-minimal circuit for

7 is N*. There ar@™ N-constructible permutations it .
Proof: Clearly,N¢ computes the permutatiar{z) = = &

1. It now suffices to show that an arbitrary N-circuit may be re-
duced to one of th&V? circuits. Any pair of consecutive N gates

Since the CNTS gate library contains no gates of size greater the same wire may be removed without changing the per-
than three, Lemma 11 implies that every CNTS-constructibfeutation computed by the circuit. Applying this transformation
(without temporary storage) permutation is evernvior 4. The until no more gates can be removed must leave a circuit with, at
main result of this section is that the converse is also true. most, one N gate per wire; that is, a circuit of the fakh. [

Il. THEORETICAL RESULTS
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A. T-Constructible Permutations in A,, forn > 4, there are at least two other indexes,uw.
Using these, we haver, y, 2) = [(z, y)(v, w)][(v, w)(z, 2)]

Characterizing the T—constructible permutations is more diffi- A careful count of transposition pairs gives the bouhdt
cult. We will begin by extending th&/* notation defined above. 1) /2 in the statement of the lemma. This bound is tight in the

Definition 17: Let N be an N-circuit as defined above. Letcase of a permutation consisting of a single+ 3 cycle. O
k be an integer such that the bitwise Boolean product= 0. By Lemma 19, it suffices to show that we may construct a
Let there bep 1's in the binary expansion of, andq in the circuit for an arbitrary disjoint transposition pair. We begin with
binary expansion of. Define N,iI to be the reversible circuit gn important special case. @nwires, aN21k_4 gate computes
composed of g-CNOT gates, with control bits on the wiresthe permutation:, = (2" —4,2" — 3)(2" — 2,2™ — 1), which
specified by the binary expansionigfand inverters as specifiedmay be implemented by(n — 5) T gates [1, Corollary 7.4].
by the binary expansion &f. N} performsN" if and only if the Lemma 20: Onn wires, the permutation, = (2" —4, 2" —
wires specified by: have the value 1. 3)(2" — 2,2" — 1) is T-constructible.

Ina 3 x 3 circuit, there are three possible T gates, namely Consider now an arbitrary disjoint transposition pair=
Ng, N3, andN3. They compute the permutations (6,7), (5,7)a, b)(c, d). Given a permutation with the propertyr(a) =
(3,7), respectively. By composing these three transpositionsgin_ 4, w(b) = 2" —=3,7(c) = 2" — 2, n(d) = 2" — 1, we have
all possible ways, we may form all 24 permutations of 3,5,6,%. = rx,n !, wherex, is the permutation in Lemma 20. We
These are precisely the nonnegative integers less than 8 whiglre a circuit which computes,. Given a circuit that computes
are not of the form 0 o2*. Clearly, no T gate can affect an inputy, we may obtain a circuit computing™! by reversing it. We
with fewer than two 1's in its binary expansion. now construct a circuit computing.

Lemma 18: Every T-circuit fixes 0 an@* for all 7. Lemma 21: Suppose: > 3, and0 < a, b, ¢, d < 2". Further

Fork x k T-circuits,k > 3, there is an added restriction. Assuppose that none af, b, ¢, d is 0, or of the form2’. Then
T gates are X 3, there can be nbx k gates in the circuit, so by there exists a T-constructible permutatiowith the property
Lemma 11, the circuit must compute an even permutation. @) =2"—1,7(b) = 2" — 2, 7(c) = 2" — 3, w(d) = 2" — 4,
the other hand, we will show that these are the only restrictiossmputable by a circuit of no more than — 2 T gates.
on T-constructible permutations. We will do this by choosingan  Proof: To simplify notation, setM = 2"~! andm =
arbitrary even permutation, and then giving an explicit construg-— 1. Now, we constructr in five stages. First, we build a
tion of a circuit which computes it using no temporary storaggermutationr, such thatr,(a) = M + 4. Then, we buildr,
The first step is to decompose the permutation into a productgifch thatr, o w,(b) = M + 1, andm,(M + 4) = M + 4.
pairs of disjoint transpositions. Similarly, w. will fix M +1andM +4, while . o7, o, (c) =

Lemma 19:Forn > 4, any even permutation i§,, may M + 2, andr, will fix M + 1, M + 2, M + 4 while 74 o
be written as the product of pairs of disjoint transpositions. Ifa, o 7, o 7.(d) = M + 7. Finally, we build a circuit that maps
permutationr movesk indexes, it may be decomposed inton@yf +4 —— 2M —4, M +1+—— 2M —3, M +2 — 2M — 2,
more than(k + 1)/2 pairs of transpositions. andM + 7 —s 2M — 1.

Proof: By a pair of disjoint transpositions, By hypothesisg is not zero, nor of the forra’. This means
we mean something of the form (a,b)(c,d) thata hasatleasttwo 1sinits binary expansion, say in positions
where a, b, ¢, and d are distinct. Fork > 3, B, andk,. Apply T gates with controls on positiohs andk, to
(o, @1, 2k) = (2o, 71)(Th—1,71)(T0, T2, 73,...,Tk—1). setthe second andth bits. More precisely, let, = 2"« 4 2ka
Now, (zo,z1)(zr—1,2k) are disjoint, iteratively applying apply aN?/ if and only if o has a 0 in thén — 1)th bit and N}
this decomposition process will convert an arbitrary cyclgand only ifa has a 0 in the second bit. Now, apply T gates with
into a product of pairs of disjoint transpositions with a finajhe controls on the:th and second bits to set the remaining bits
two-cycle or three-cycle. transpositions possibly followed by zero. Letr, be the permutation computed by the circuit given
single transposition, a three-cycle or both. above.

Consider an arbitrary permutatiom = cgcy-.-ck, 7. (b) must again have two nonzero bits in its binary expan-
where ¢p...c; are the disjoint cycles in its cycle de-sion; sinceb # a impliesw,(b) # m.(a), SOme nonzero bit of
composition. As shown above, we may rewrite this as,(b) lies on neither thenth nor the second wire. Controlling
T = Ki...EnT1...Tp01...04, Where thes,; are pairs of by this and another bit, use the techniques of the previous para-
disjoint transpositions, ther; are transpositions, and thegraph to build a circuit taking,(b) — M + 1. By construction,

o; are 3-cycles. As ther; come from pairwise disjoint this fixesM + 4; let the permutation computed by this circuit
cycles, they must in turn be pairwise disjoint. Moreovehe 7.

there must be an even number of them aswas as- Consider now the nonzero bits of = 1, o m,(c). Again,
sumed to be even, and the and o; are all even. Pairing sincea,b # ¢, we haveM + 4, M + 1 # ¢'. Therefore, there
up the 7; arbitrarily leaves an expression of the fornmust be atleast one bit in whiechdiffers from M + 4. This bit

K1 ... Kmy(p/2)01-.-0q. Again, the o; are pairwise dis- could be thenth or the second bit, and could have a zero in
joint. Note that(a,b,c)(d,e, f) = [(a,b)(d,e)][(a,c)(d, f)]; this position. However, as is guaranteed to have at least two
we may, therefore, rewrite any pair of disjoint three-cyclesonzero bits, there must be some other bit which is & &nd
as two pairs of disjoint transpositions. lterating this processin M + 4. Similarly, there must be some bit which is 1dh
leaves, at most, one three-cycle, {, z). Since we are working and 0 inM + 1. Controlling by these two bits (or, if they are the
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same bit, by this bit and any other bit which is 1cf), we may In particular,V;(N*) = N7, andV,.V;(G*) = Vig,;(GY).
use the above method to sét— M + 2. Addition, multiplication, etc., of lower indexes will always be
Next, consider the nonzero bits@f= 7. o, om,(d). First, takento be bitwise Boolean, with, -, ® representin@r, AND,
suppose there are two which are not onqthién wire. Control- andxoRr, respectively. We denote the bitwise complement of
ling by these can také¢’ — M + 7 without affecting any of the asz.
other values, asnone 8 + 1, M +2, M +4 have 1'sinboth Lemma 24:Let K be ann x n reversible circuit
these positions. If there are no two 1's in the binary expansisnch that K(0z;...z,-1) = (0zy...7,-1), and
of d’ which both lie off themth wire, there can be, at most, twolet f : B"! — B"! pe the function defined by
1's in the binary expansion, one of which lies on théh wire. K(lzy...2p-1) = (1f(z1...2,-1)). Thenf is a well-de-
Sincea, b, ¢ # d, the second must lie on some wire which is ndined permutation inSy».—., and if F' is a circuit computingf,
the zeroth, first, or second; in this case we may again conttbenVy(F) = K.

by these two bits to takéd — M + 7 without affecting other Proof: K, by hypothesis, permutes the inputs with a
values. leading 0 amongst themselves. By reversibility, it must permute
Finally, apply N3, ,, and N3, gates, and then Nf\‘f;f inputs with a leading 1 amongst themselves as well. [

circuit. The reader may verify that this completes stage 5. EachDefinition 25: The commutator of permutations and @,
of the first four stages takes, at mostT gates, as we flip, at denoted P, ], is PQP~*Q~!.
most,n bits in each. The final stage uses exaetly 2 T gates.  The commutator concept is useful for moving gates past
We now have a key result to prove. O each other sinc®Q = [P, Q]QP. Moreover, it has reasonable
Theorem 22:Every T-constructible permutation By~ fixes properties with respect to control bits as the following result
zero and2’ for all 4, and is even if» > 3. Conversely, every indicates.
permutation of this form is T-constructible. A T-constructible Corollary 26:
permutation which moves indexes requires, at mosi(s +  [Va(G*), Ve(H)] = Vi, ) 755 (Vi (G7), Vies (HT)]).
1)(3n—7) T gates. There arfd /2)(2" —n—1)! T-constructible Proof: The coroilary provides a circuit equivalent to the
permutations inSsn. commutator of two given gates with arbitrary control bits.
Proof: We have already dealt with the cagse = 3; Namely, such a circuit can be constructed in two steps. First,
hence, suppose > 3. The first statement follows directly identify wires which act as control for one gate but are not
from Lemmas 11 and 18. Now, let € S,» be an arbitrary touched by the other gate. Second, connect the latter gate to
even permutation fixing zer®’. Use the method of Lemmaevery such wire so that the wire controls the gate.
19 to decompose into pairs of disjoint transpositions which By induction, it suffices to show that this procedure can be
fix zero, 2°. We are justified in using Lemma 19 because, fatone to one such wire. Without loss of generality, suppose con-
n > 3, there are at least five numbers between zero2#md  trol bits and only control bits appear on the first wire. Then
which are not of the form zero @. Finally, using the circuits the input to this wire goes through the circuit unchanged. At
implied by Lemmas 20 and 21, we may construct circuileast one of the two gates whose commutator is being computed
for each of these transposition pairs. Chaining these circuitsist, by hypothesis, be controlled by the first wire. Therefore,
together gives a circuit for the permutatian Collecting the on an input of zero to the first wire, this gate (and, therefore, its
length bounds of the various lemmas cited gives the lengtiverse) leaves all signals unchanged. Since the other gate ap-
bound in the theorem. The final claim then follows. O pears along with its inverse, the whole circuit leaves the input
unchanged. Our result now follows from Lemma 24. [
If we are computing the commutator of generalized CNOT
gates, then we may piak?, H’ to be single inverter&'?, N7
Given a (possibly long) reversible circuit to perform a speaith 4,5 having only a single 1 apiece in their binary expansions.
ified task, one approach to reducing the circuit size is to perhen we must have - 5 = 0 or j, andk - i = 0 or 4. The four
form local optimizations using circuit equivalences. The idegases are accounted for as follows:
is to find subcircuits amenable to reduction. This direction is Lemma 27: Let4,j have only a single 1 apiece in their binary
pursued in a paper by Iwane al. [8], which examines circuit expansions. The[Nl N/]= N7, ,[Ni, N7l = N*,[N*, N7] =
transformation rules for generalized-CNOT circuits which only, and[NZ NJ] - NJ
alter one bit of the circuit. In their scenario, other bits may be Proof As these equivalences all involve only 2-bit cir-

altered during computation, so long as they are returned to th@ilits, we may check them far= 0, j = 1 by evaluating both

initial state by the end of the computation. We present a MOERjes of each equi\/a|ence on each of four inputs_ O

general framework for deriving equivalences, from which many

pf the eqU|vaIches from [8] follow as special cases. First, let ys CT|N andC|T Constructible Permutations

introduce notation to better deal with control bits.
Definition 23: Let G be a reversible gate that only affects While an arbitrary CNT-circuit may have the C, N, and T

wires corresponding to the 1's in the binary expansion @fs gates interspersed arbitrarily, we first consider circuits in which

inanN‘ gate). Let the bitwise Boolean productj = 0. Then these gates are segregated by type.

defineV;(G*) as the gate which computég if and only if the Definition 28: For any gate librariesL;...L;, a

wires specified by all carry a 1. Ly|...|Lg-circuit is an Li-circuit followed by an L,-cir-

B. Circuit Equivalences



716 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 6, JUNE 2003

1o 1-3 SRt

Tt :
s 4 g o5 s

(@) (b)

Fig. 7. Equivalences between reversible circuits used in our constructions.
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cuit, . .., followed by anL-circuit. A permutation computed Proof: Letr be an arbitrary permutation.4fis T|C-con-
by anL|...|Lg-circuitis L1]| ... |Lg-constructible. structible, then images of the inputsare unaffected by the T
A CNT-circuit with all N gates appearing at the right end isubcircuit; by Lemma 7, they must be mapped to linearly inde-
called aCT|N circuit. pendent values by the C subcircuit. This mapping of basis vec-
Theorem 29:Let 7 be CNT-constructible. Them is also tors completely specifies the permutationcomputed by the
CT|N-constructible. Moreover; uniquely determines the per-C subcircuit, and, therefore, also the permutatipn= 7r !
mutationsrcr andwy computed by the CT and N subcircuitscomputed by the T subcircuit. Conversely, suppnsis even
respectively. and fixes 0, and the images2fare linearly independent. Then,
Proof: We move all the N gates toward the outputs of ththere is some C-circuit taking the valuigo their images under
circuit. Each box in Fig. 7(a) indicates a way of replacing am. Let it compute the permutation,; then, 77! fixes the
N|CT circuit with a CT|N circuit. The equivalences in thisvalues 0 an@®‘ by construction. Theorem 22, therefore, guar-
figure come from Corollary 26. Moreover, every possible wagntees thatr_ ! is T-constructible.
for an N gate to appear to the immediate left of a C or a T is ac-We will later use this result to show the existence of CT-con-
counted for, up to permutating the input and output wires. Nostructible permutations which are ri6tC constructible.
number the non-N gates in the circuit in a reverse topological
order starting from the outputs. In particular, if two gates appear
at the same level in a circuit diagram, they must be independe'ﬂt,

and one can order them arbitrarily. Lébe the number of the With the results of the previous two subsections, we are now

highest-numbered gate with an N gate to its immediate left. Agady to prove Theorem 12. According to Lemma 20, zero-
N gates past theth gateG can be reordered with the gate fixing even permutations afg|C-constructible if they map in-

w@thout _introduc_ing new N gates on the other sidethfand puts of the forn2? in a certain way. This suggests tHBC-cir-

without introducing new gates between the N gates and the 0yfits account for a relatively large fraction of such permutations.

puts. In any event, as there are no remaining N gates to the leffegrem 31: Every zero-fixing permutation ifi,s and every

of G, d decreases. This process terminates when all the N 93J8fo-fixing even permutation iflo» for n > 4 is T|C|T-con-

are clustered together at the circuit outputs. If we always Ca”%ﬁluctible, and, hence, is CT-constructible. None requires more

redundant pairs of N gates, then no more than two new gajggn,2 C gates and(2" + n + 1)(3n — 7) T gates.

will be introduced for each noninverter originally in the circuit; Proof: Letr be any zero-fixing permutation. Note that if

additionally, there will be, at most, N gates when the processthe images o’ underr were linearly independent, Lemma 20

is complete. Thus, if the original circuit hddgates, then the ould imply thatr wasT|C constructible. So, we will build a

new circuit has, at moss(! — 1) + n gates. Note that C and T permutationr, with the property that the images 2f under

gates (and, hence, CT-circuits) fix 0. Thug0)) = 7x(0), SO 77, are linearly independent, ensuring that, is T|C-con-

7y = Nr®, andrer = nN™O), U structible. Given &'|C-circuit for 777 and a T-circuit forry,
Thus, if we want a CNT-circuit computing a permutation we can reverse the circuit far and append it to the end of the

we can quickly compute v, then simplify the problem to that T|C-circuit for 771 to give atT|C|T-circuit for 7. All that re-

of finding a CT-circuit forrz . By Theorem 29, we know that mains is to show we can build one sueh.

a minimal-gate circuit of this form has roughly three times as The basis vector&® must be mapped either to themselves,

many gates as the gate-minimal circuit computing to other basis vectors, or to vectors with at least two 1's. Let
The next natural question is whether an arbitrary CT-circuit . ., be the indexes of basis vectors which are not the im-

is equivalent to som#'|C circuit. The equivalences in Fig. 7(b)ages of other basis vectors, and jet . . j, be the indexes of

suggest that the answer is yes. However, the proof of Theorggsis vectors whose images have at least two 1 §; Let7,,_,

29 requires that many N gates be able to simultaneously meugdj; . .. j,_, be the indexes which are not in the andj,,,

pasta C or T gate, while Fig. 7 only shows how to move a singlespectively. Consider the matri¥. in which theith column

C gate past a single T gate. is the binary expansion of(2%). We take the entries af7,. to
Lemma 30: The permutationr, computed by &'|C-circuit, be elements of . Our indexing system divides/,. into four

determines the permutations: andz computed by the sub- submatricesM (i, j), M (i,5), M« (i,7), and M, (i, j). By

circuits. An even permutation is TC-constructible if and only i€onstruction,M, (i, j) and M, (i, 7) are squareM, (i, ) is a

it fixes 0 and the images of inputs of the fozhare linearly permutation matrix, andZ, (i, j) is a zero matrix. Therefore,

independent ovdF,. det M. = det M, (i,5), and M, is invertible if and only if

T|C|T|N-Constructible Permutations
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M, (i, j) is. Moreover, there is an invertible linear transforma- So, for long CNT-circuits, the algorithm implied by The-
tion, computable by column reduction, which zeroes out the marem 33 is asymptotically suboptimal by, at worst, a logarithmic
trix M, (i, 7) without affecting M, (4, j) or M, (i, ). As this factor, as it produces circuits of lengftn2"). This is remark-
transformationL is invertible, it corresponds to a permutatiorably similar to the result of Corollary 9, in which we found that
75, and the matrix\/ L is the matrix of images df* under the using row reduction to build C-circuits is asymptotically subop-
permutationr,.7. In particular, the columns ¢f\/ L)x must all timal by a logarithmic factor in the case of long C-circuits. How-
be different, which implies that the columnsif, (4, j) mustall ever, even a constant improvement in size is very desirable, and
be different. Moreovers, is linear and is, therefore, zero-fixing; circuits for practical applications are almost never of the worst
hence M. (i, j) can have no zero columns. Taken together, thesase type considered in Corollaries 9 and 34.
facts imply that fork = 1, 2, M, (¢, 7) is invertible, hence, so is
Mﬂ—, thUS,Tl' iS T|C'C0nstructib|e. V. OPT”\/IAL &NTHES|S

Supposé: > 3, and consider the family of matricep) de-

fined as follows A(p) is ap x p matrix with 1's on the diagonal, We will now switch focus, and seek optimal realizations for

ermutations we know to be CNT-constructible. A circuit is op-

|1nstrl1r(]a t(rlelf;r(seilifw,wahr:ghliss gnn';hﬁ 2:]35 g?]||u$?s' gggegowsrz'_blﬁmal if no equivalent circuit has smaller cost; in our case, the
; Y: y ' cost function will be the number of gates in the circuit.

Shucgg theAi totl_g\llvefr t”alrl],gl:\;lar matrlcefs gu;ck?!y tihows that Lemma 35: (Property of Optimality) IfB is a subcircuit of
e 4; are invertible for alli. Moreover, fori > 3, there are ., o yimal circuitd, then B is optimal.

at least two 1's in every column. Therefore, there is a T-con-  p . Suppose not. Then I8’ be a circuit with fewer

structible permutatiomr; such thatMrr. (i, j) = Ai. ThUS,  gates than3, but computing the same function. If we replace
T IS T|C-constructible, ane is T|C|T constructible. B by B', we get another circuitt’ which computes the same
Finally, we know from Corollary 9 that no more thaff  fynction asd. But since we have only modifieHl, A’ must be as
gates are necessary to compute At most, 2 indexes need mych smaller thast asB’ is smaller thar3. A was assumed to
be moved byry, and no more tha@™ — n — 1 can be moved pe optimal, hence, this is a contradiction. (Note that equivalent,
by the T-constructible part of. Thus, by Theorem 22, we needoptimal circuits can have the same number of gates.) O
no more thard(2n + 1)(3n — 7) gates forrr and no more than  The algorithm detailed in this section relies entirely on the
3(2" —n)(3n—7) gates forr. Adding these gives the gate-counproperty of optimality for its accuracy. Therefore, any cost

estimate above. O function for which this property holds may, in principle, be
Corollary 32: There exisfT'|C|T-constructible permutations used instead of gate count.
which are nofl'|C-constructible. Lemma 35 allows us to build a library of small optimal cir-

Proof: The permutationr = (2,6)(4,7) fixes 0 and is cuits by dynamic programming because the firsgates of an
even and, hence, i8|C|T-constructible inSy. for all » > 3 optimal(m + 1)-gate circuit form an optimal subcircuit. There-
by Theorem 31. However;(1) & n(2) = 1@ 6 = 7 = «(4), fore, to examine all optimalm + 1)-gate circuits, we iterate
hence, by Lemma 20; is not T|C-constructible. O through optimaln-gate circuits and add single gates at the end

Theorem 33:Every permutation irf,- forn = 1, 2, 3 and in all possible ways. We then check the resulting circuits against
every even permutation if,- for n > 3 is T|C|T|N-con- the library, and eliminate any which are equivalent to a smaller
structible, and, hence, CNT-constructible. None requires mdtécuit. In fact, instead of storing a library of all optimal cir-
thann? C gatesp N gates, and(2" +n +1)(3n — 7) T gates. CUits, we store one opt|mal circuit per synt'he5|zed permutation

Proof: Let = be any permutation; them;, = =N7(®) and also store optimal circuits of a given size together.
fixes 0. Forn = 1, 7/ must be the identity; fon = 2/ per- One way to find an optimal CI_I’CUI_'[ for a given permutatmn
mutes 1,2,3, any such permutation is linear, hentis C-con- S to gene_rate_all opum@i—ga_te circuits fo_r increasing value_s of
structible. Fom = 3, 7' is T|C|T-constructible; fom > 3, 7’ k until a circuit cpmputlngfr is found.. This procedure requires
is T|C|T-constructible if and only if it is even, which happens ip@n!) memory in the worst casez(l; the r_1umber of wires)
and only ifw is even. Thus, in all cases there [$'gC| T-circuit, and may require more memory than is av_eula_ble. Therefore, we
I’ computingr’; thenIl’ N™(©) is aT|C| T|N-circuit computing stop growing the circuit library at:-gate circuits, when hard-

- o \Wware limitations become an issue. The second stage of the algo-

. o rithm uses the computed library of optimal circuits and, in our
We note that the size of a truth table for a circuit withn- b y P

PR | implementation, starts by reading the library from a file. Since
puts andn outputs isn2" bits. The synthesis procedure useqyie aqditional memory is available, we trade off runtime for

in the theorems above clearly runs in time proportional to tnﬁemory.
number of gates in the final circuit. This@(n2"), hence, the  \e yse a technique known as depth-first search with iterative
synthesis procedure detailed in the theorems has linear runtig@pening (DFID) [10]. After a given permutation is checked
in the input size. against the circuit library, we seek circuits with= m + 1
Just as in Corollary 9, we may ask how far from optimajates that implement this permutation. If none are found, we
the foregoing construction is for long circuits. There 2f&/2  seek circuits withj = m + 2 gates, etc. This algorithm, in gen-
even permutations ifi;-, and these are all CNT-constructibleeral, needs an additional termination condition to prevent infi-
Using Stirling’s approximationiog(k!) ~ klog k, and Lemma nite looping for inputs which cannot be synthesized with a given
8 gives: gate library. For eaclj, we consider all permutations optimally
Corollary 34: Worst case CNT-circuits on wires require synthesizable im: gates. For each such permutatjgrnve mul-
Q(n2"/logn) gates. tiply m by p~1 and recursively try to synthesize the result using
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CIRCUIT find_circ (COST, PERM) TABLE |
// assumes circuit library stored in LIB NUMBER OF PERMUTATIONS COMPUTABLE IN AN OPTIMAL L-CIRCUIT
\ USING A GIVEN NUMBER OF GATES. L C C'NT'S.RUNTIMES ARE
if (COST < k) IN SECONDS FOR A2-GHz PENTIUM 4 XEON CPU
//'1f PERM can be computed by a circuit with < k gates,
//'such a circuit must be in the library Size | N C| T| NC| CT NT | CNT | CNTS
return LIB[DEPTH] .find (PERM) 1210 ol o 0 0 47 0 0
else 110 0| 0 0 0 1690 0 0
// Try building the goal circuit from <k-gate circuits 10| 0 0 0 0 0| 8363 0 0
for each C in LIBI[Kk] 9] 0 ol o 0 ol 12237 0 0
// Divide PERM by permutation computed by C gl o0 ol o 0 61 9339 577 32
PERM2 PERM * INVERSE (C.
- (C.perm) 700| o| o 14| 38| 5007 | 10253 | 6817
// and try to synthesize the result
2262 | 17049 | 17531
TEMP_CCT «+ find circ(depth-k, PERM2) 610 2| 0 215 1688
if (TEMP_CCT != NIL) return TEMP.CCT * C 510| 24| 0\ 47411784 | 870 | 8921 | 11194
// Finally, if no circuit of the desired depth can be found 410] 601 5| 393 845 296 | 2780 | 3752
return NIL 311 51 9 187 | 20l 88 625 844
. - N . 213 24| 6 51 60 24 102 134
Fig. 8. Finding a circuit of cost<COST that computes permutation
PERM (NIL returned if no such circuit exists). TEMP_CCT and records in 113 6| 3 9 9 6 12 15
LIB represent circuits, and include a field “perm” storing the permutation ol 1 1 1 1 1 1
computed. Thex character means both multiplication of permutations and ‘
concatenation of circuits, aidIL*(anything = NIL. Total | 8 | 168 | 24 | 1344 | 5040 | 40320 | 40320 | 40320
Time | 1 1 1 30| 215 97 40 15

j — m gates. Whenj — m < m, this can be done by checking

against the existing library. Otherwise, the recursion depth in-

creases. Pseudocode for this stage of our algorithm is giverf@tly reduce circuit size, but further adding the S gate does not
Fig. 8. help as much. To illustrate this, we show sample worst case cir-

In addition to being more memory-efficient than straight_CUit$ on three wires for the NT, CNT, and CNTS gate libraries
forward dynamic programming, our algorithm is faster tha Fig. 9. ) _ _
branching over all possible circuits. To quantify these im- The totals in Table | can be independently determined by the
provements, consider a library of circuits of size or less, following arguments. Every reversible function on three wires
containingl,,, circuits of sizem. We analyze the efficiency c@n be synthesized using the CNT gate library [20] and there
of the algorithms discussed by simulating them on an inp@fe8' = 40320 of these. All can be synthesized with the NT
permutation of costk. Our algorithm requireslkgk_l)/mJ library because the C gate is redundant in the CNT library; see
references to the circuit library. Simple branching is no bett&/9- 3(&)- On the other hand, adding the S gate to the library
than our algorithm withn = 1, and, thus, takes at leat C2nnot decrease the number of synthesizable functions. There-
steps, which ig]f/lan(‘k—l)/mJ times more than our algorithm.fore’ the totals in the NT and CNTS columns must be 40 320

A speed-up can be expected becalse< 1, but specific as well. On the other side of the table, the number of possible
= 1

R 3 ) )
numerical values of that expression depend on the numbersNo?IrCUItS Is just2” = 8 since there are three wires, and there

suboptimal and redundant optimal circuits of lengthindeed, can be, at most, one N gate Per wire in an optimal circuit (else
Table 1 lists values of,,, for various subsets of the CcNTsWE can cancel redundant pairs.) By Theorem 29, the number

; - . of CN-constructible permutations should be the product of the

gaf ilg ra[z Ein%n/ﬂ_l i gj)flfxil”gi":h;?f th:e QIST .?ﬁgere“grzry’ number of N-constructible permutations and the number of C

' k=1 /m] 12 j0ad ' constructible permutations, since any CN-constructible permu-

the pe_rformance_ ratio 'l.%/lm =6 /8_8 ~ 3194.2. ation can be written uniquely as a product of an N- and a C-con-
Yet, .th's comparison Is ”?C"r.r‘p.'e‘e pecause It ploes not accqgﬂhctible permutation. So, the total in the CN column should be
for time spent building circuit libraries. We point out that th'%he product of the totals in the C and N columns, which it is.

chargg is amortized over mglhp_le_synthe&s operations. In 0§fmi|ar|y, the total in the CNT column should be the product of
experiments, generating a circuit library on three wires of up [Re totals in the CT and N columns; this allows one to deduce

three gate¢m = 3) from the CNTS gate library takes less thalye total number of CT-constructible permutations from values

a minute on a 2-GHz Pentium 4 Xegn. Usmg such “bra”evq(/e know. Finally, we showed that there were 24 T-constructible
all of Table | can be generated in minutegut it cannot be

. . . permutations on three wires in Section lll, and Corollary 9 states
generated even in several hours using branching.

Let us now see what additional information we can alean frothat the number of permutations implementableianires with
US NOWseew " information w glean rom ates isﬂ?__ol(Q” —2"). Forn = 3, thisyields 168 and agrees

Table I. Adding the C gate to the NT library appears to S'gn'f\ivith Table |

1Although complete statistics for all 16! four-wire functions are beyond our We can also add to the discussioniC constructible cir-
reach, average synthesis times are less than one second when the input funcifits we began in Section Ill. By Lemma 30, the number of
can be implemented with eight gates or fewer. Functions requiring nine or m C-constructible permutations can be computed as the pI’OdUCt
gates tend to take more than 1.5 hours to synthesize. In this case, memory cgh- . .
straints limit our circuit library to 4-gate circuits, and the large jump in runtim@! the numbers of T- and C-constructible permutations. Table |

after the 8-gate mark is due to an extra level of recursion. mentions 24 T-circuits and 168 C-circuits on three wires. The
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(b)

Fig. 9. Worst casd -circuits whereL is (a) NT, (b) CNT, and (c) CNTS.

product (4032) is less than 5040, the number of CT constructibbteeasurement nondeterministically collapses the state onto some

permutations on three wires, as we would expect from Corollavgctor in a basis corresponding to the measurement being per-

32. formed. The probabilities of outcomes depend on the measured
Finally, the longest C-circuits we observed on 3, 4, and diate. Basis vectors [nearly] orthogonal to the measured state

wires merely permute the wires. Such wire-permutations onare least likely to appear as outcomes of measuremeHtlf

wires never require more thatn — 1) gates. However, from were measured in the computational basis, it would be seen as

Corollary 9, we know that for a large, worst case C-circuits |o) half the time, and1) the other half.

requireQ2(n®/log(n)) gates. Identifying specific worst case Cir- "pespite this limitation, quantum circuits have significantly

cuits and describing families with worst case asymptotics rgiore computational power than classical circuits. In this paper,

mains a challenge. we consider Grover’s search algorithm, which is faster than any

Finally, we note that while the exact runtime complexity ofnq\yn nonquantum algorithm for the same problem [6]. Fig. 10
this algorithm is dependant on characteristics of the gate librg{yjines 1 possible implementation of Grover's algorithm. It

chosen, for a complete gate library it is obviously exponentialEgins by creating a balanced superposition2®f n-qubit

in the number of input wires to the circuit (this is guaranteed t§fates which correspond to the indexes of the items being

Corollary 34), gnd in f"."Ct must t?e atleast dqub_ly expopentlal Barched. These index states are then repeatedly transformed
the number of input wires (that is, exponential in the size of the'.

truth table). Scalability issues, therefore, restrict this approalcj:fﬁ:Ing a Grover operator circuit, which incorporates the search

to small problems. On the other hand, given that the statec(ﬂ’terla in the form of a search-specific predicater). This

the art in quantum computing is largely limited by ten qubit§|rcuit systematically amplifies the search indexes that satisfy

such small circuits are of interest to physicists building quantufﬂx) = 1 until a final measurement identifies them with high

computing devices. probability. .
A key component of the Grover operator is a so-called “or-

acle” circuit that implements a search-specific predigite).
This circuit transforms an arbitrary basis sti¢ to the state
Quantum computation is necessarily reversible, and quantgml )/ (*)|z). The oracle is followed by: 1) several Hadamard
circuits generalize their reversible counterparts in the classiggtes; 2) a subcircuit which flips the sign on all computational
domain [14]. Instead of wires, information is stored on qubitbasis states other thda); and 3) more Hadamard gates. A
whose states we write d8) and|1) instead of 0 and 1. There sample Grover-operator circuit for a search on two qubits is
is an added complexity—a qubit can be in a superposition stateown in Fig. 11 and uses one qubit of temporary storage [14].
that combine$0) and|1). Specifically,|0) and|1) are thought of The search space here{8, 1,2, 3}, and the desired indexes
as vectors of the computational basis, and the value of a qudnieé zero and 3. The oracle circuit is highlighted by a dashed
can be any unit vector in the space they span. The scenaritine. While the portion following the oracle is fixed, the or-
similar when considering many qubits at once: the possible caele may vary depending on the search criterion. Unfortunately,
figurations of the corresponding classical system (bit-stringsjost works on Grover’s algorithm do not address the synthesis
are now the computational basis, and any unit vector in tlé oracle circuits and their complexity. According to Bettelli
linear space they span is a valid configuration of the quantuhal. [4], this is a major obstacle for automatic compilation of
system. Just as the classical configurations of the circuit péigh-level quantum programs, and little help is available.
sist as basis vectors of the space of quantum configurations,emma 36:[14] With one temporary storage qubit, the
so too classical reversible gates persist in the quantum cpneblem of synthesizing a quantum circuit that transforms
text. Non-classical gates are allowed, in fact, any (invertiblepmputational basis statés) to (—1)/(*)|z) can be reduced
norm-preserving linear operator is allowed as a quantum gaiea problem in the synthesis of classical reversible circuits.
However, quantum gate libraries often have very few nonclas- Proof: Define the permutation s by w¢(z,y) = (z,y ®
sical gates [14]. An important example of a nonclassical gaf¢x)), and define a unitary operatdf; by letting it permute
(and the only one used in this paper) is the Hadamard Hate the states of the computational basis accordingoThe ad-
It operates on one qubit, and is defined as follod§0) = ditional qubit is initialized to—) = H|1) so thatUy|z, —) =
(1/3/2)(|0)+ 1)) andH|1) = (1/v/2)(]0)— |1)). Note thatbe- (—1)/(*)|z, —). If we now ignore the value of the last qubit, the
causeH is linear, giving the images of the computational bastsystem is in the state—1)7(*)|z), which is exactly the state
elements defines it completely. needed for Grover's algorithm. Since a quantum operator is
During the course of a computation, the quantum state candmmpletely determined by its behavior on a given computa-
any unit vector in the linear space spanned by the computatiotiahal basis, any circuit implementing; implementsU;. As
basis. However, a serious limitation is imposed by quanturaversible gates may be implemented with quantum technology,
measurement, performed after a quantum circuit is executedwa can synthesizE as a reversible logic circuit. O

V. QUANTUM SEARCH APPLICATIONS
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Initialization: Gr OIV er Op e;‘ator : Measurement:
Form balanced trat:;?ct)lrr'rfl: t);le Detect and
0) —»| superposition . _ output the
| ) of search mde)_( §tateﬁ to indexes of the
index states increase the target states
amplitude of
the target states
Workspace Oracle: >
qubits ™ |1 fx)y=1?

Search criteria

Fig. 10. High-level schematic of Grover's search algorithm.

TABLE I
OPTIMAL 3 4+ 1 ORACLE CIRCUITS FORGROVER'’S SEARCH

Circuit Size 0(1] 2 31 4 5 |67 | Total
No. ofcircuits || 1 |7 [ 21 [ 35 (35|24 |4 |1 | 128

Fig. 11. Grover-operator circuit with oracle highlighted.

Quantum computers implemented so far are severely lim-Lemma 38: Ref. [21]. There exists a reversible 2-bit ROM-
ited by the number of simultaneously available qubits. Whileased CNT-circuit computingz, a,b) — (z,a,b & f(z)),

n qubits are necessary for Grover’s algorithm, one should twherez is ak-bit input. If a function’sxor decomposition con-
to minimize the number of additional temporary storage qubitsists of only one term, lét be the number of literals appearing
One such qubit is required by Lemma 36 to allow classical réwithout complementation). I > 0, then3 - 2¢~1 — 2 gates
versible circuits to alter the phase of quantum states. are required.

Corollary 37: For permutationsr¢(z,y) = (z,y & f(z)), Proof: Assume we are given afor sum-of-products de-
such that{z : f(x) = 1} has even cardinality, no more tem-composition off. Then, it suffices to know how to transform
porary storage is necessary. For the remainipgwe need an (z,a,b) — (z,a,b®p) for an arbitrary product of uncomple-
additional qubit of temporary storage. mented literalg, because then we can add the terms ix@ar

Proof: The permutation 7=, swaps §,y) with decomposition term by term. So, without loss of generality,
(r,y @ f(z)), and, therefore, performs one transpositioletp = =1 ...xn,. Denote byl'(a,b;c) a T gate with controls
for each element ofx : f(z) = 1}. Therefore, it is exactly ona,b and an inverter or. Similarly, denote byC(a;b) a C
even when this set has even cardinality. The lemma follow&te with control oma and inverter onb. Number the ROM
from Corollary 13. O wiresl...k, and the non-ROM wireg +1 andk + 2. Let us

Givenr ¢, we can use the algorithm of Section IV to construdirst suppose that there is at least one uncomplemented literal,
an optimal circuit for it. Table Il gives the optimal circuit sizes ofnd put aC(1; k + 2) on the circuit; note that’(1;k + 2)
functionsr ; corresponding to three-input one-output functiongpplied to the inputa,a,b) gives &, a, b® ;). We will write
f (“3 + 1 oracles”), which can be synthesized on four wire¢his asC(1;k + 2) : (z,a,b) — (v,a,b ® 21), and denote
These circuits are significantly smaller than many optimal cithis operation byi/;. Then, we define the circuitV; as the
cuits on four wires. This is not surprising, as they perform lese¢quence of gateB(2, k + 2; k + 1)WoT'(2, k + 2; k + 1)Wy,
computation. and one can check th&} : (z,a,b) — (z,a ® z122,b). We

In Grover oracle circuits, the main input lines preserve thegiefine W» by exchanging the wires + 1 and k + 2; clearly,
input values and only the temporary storage lines can chariffe : (z,a,b) — (z,a,b @ z122). In general, given a circuit
their values. Therefore, Travagliom al. [21] circuits where Wi : (z,a,0 @ x1...21-1) — (7,0 ® z1...17), we define
some lines cannot be changed even at intermediate stageVgf, = 7'(I+1,k+2;k+1)W,T(I+ 1,k +2;k+1)W;; one
computation. In their terminology, a circuit withlines that we can check thaW;,, : (z,a,b) — (z,a ® z1 ... 7141,b). De-
are allowed to modify and an arbitrary number of read-only lindige W1 by exchanging the wirels+ 1 andk +2; then clearly,
is called ak-bit ROM-based circuit. They show how to comWi41 : (z,a,b) — (2,a,b® x1...2141). By induction, we
pute permutationr ; arising from a Boolean functiofi using a can get as many uncomplemented literals in this product as
1-bit quantum ROM-based circuit, and prove that if only clae like. O
sical gates are allowed, two writable bits are necessary. Two bitsThe heuristic presented above has the property that none of
are sufficient if the CNT gate library is used. The synthesis dts gates has more than one control bit on a ROM bit. Indeed,
gorithms of Travaglionet al.[21] rely onxOR sum-of-products Travaglioneet al. [21] had restricted their attention to circuits
decompositions of . We outline their method in a proof of thewith precisely this property. However, they note [21] that their
following result. results do not depend on this restriction.
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TABLE I
CIRCUIT SIZE DISTRIBUTION OF 3 + 2 ROM-BASED CIRCUITS
SYNTHESIZED USING VARIOUS ALGORITHMS

require little or no temporary storage. In particular, we have
proven that every even permutation function can be synthe-
sized without temporary storage using the CNT gate library.

Size |01 314 |5 |67 8 o |10]1]12]13 Similarly, any permutation, even or odd, can be synthesized
XOR || 14 1211812 1210 16| 10]8 with up to one bit of temporary storage. Recently, De Vos[5]
OPTT I 114 4 14 1212112412033 4446|2215 has independently demonstrated this result; however, his proof
opT 1117 21135136128 128 13613512117 |1 |o |o  relies on nontrivial group-theoretic notions and resorts to a
computer algebra package for a special case. We give a much
Size ml1slie]1718]19]20|21]22]23]24]25]026 more elementary analysis, and, moreover, our proof techniques
XOR 1110116119 | 12 2l1gl12l4 14 |6 |4 |1 are sufficiently constructive to be interpreted as a synthesis
opTT 1 1o 1o 1o 1o lo lo heuristic. We have also derived various equivalences among
ort o CNT-circuits that are useful for synthesis purposes, and given

a decomposition of a CNT-circuit intoB|C|T|N-circuit.

) _ _ To further investigate the structure of reversible circuits,
We applied the construction of Lemma 38 to all 256 functionge developed a method for synthesizing optimal reversible

implementable in 1-bit ROM-based circuits with three bits qfjrcyits. While this algorithm scales better than its counterparts
ROM. The circuit size distribution is given in the line labeledq; jreversible computation [11], its runtime is still exponen-
XOR in Table lll. In comparison with circuit lengths resultingsjs| Nonetheless, it can be used to study small problems in
from our synthesis algorithm of Section IV, we consider tW@etail, which may be of interest to physicists building quantum
cases. First, in the OPT T line, we only look at circuits satisfyingsmputing devices because the current state of the art is largely
the restriction mentioned above. Then, in the OPT line, we relgxited to ten qubits. One might think that an exhaustive search
this restriction and give the circuit size distribution for Opt'm%rocedure would suffice for small problems, but in fact, even
creuits? _ ~ for three-input circuits, an exhaustive search is nowhere near
Most functions computable by a 2-bit ROM-based circuit agmished after many hours; our procedure terminates in minutes.
tually require two writable bits [21]. Whether or not a giveryyr experimental data about all optimal reversible circuits on
function can be computed by a 1-bit ROM-based CNT-circUifiyree wires using various subsets of the CNTS library reveal
can be determined by the following constructive procedure. Ofsme interesting characteristics of optimal reversible circuits.
serve that gates in 1-bit ROM circuits can be reordered arkjych statistics, extrapolated to larger circuits, can be used in
trarily, as no gate affects the control bits of any other gate. Thyge future to guide heuristics, and may suggest new theorems
whether or nota C or T gate flips the controlled bit, depends only, ot reversible circuits.
on the circuit inputs.. Furthermore, multiple copies of the same Finally, we have applied our optimal synthesis tool to the de-
gate on the same wires cancel out, and we can assume thag & of oracle circuits for a key quantum computing application,
most, one is present in an optimal circuit. A synthesis procedyfgoyer’s search algorithm, and obtained much smaller circuits
can then check which gates are present by applying the perin previous methods. Ultimately, we aim to extend the pro-
tation on every possible input combination with zero, one, @fsed methods to handle larger and more general circuits, with

two I's in its binary expansion. (Again, we have relaxed the rgse eventual goal of synthesizing quantum circuits containing
striction that only one control may be on a ROM wire). If thgjysens of qubits.

value of the function is one, the circuit needs an N, C, or T gate
controlled by those bits.

Observe that adding the S gate to the gate library durind
ROM synthesis will never decrease circuit sizes, no two wiresm
can be swapped since at least one of them is a ROM wire. In the
case oft + 2 ROM synthesis, only the two non-ROM wires can [2]
be swapped, and one of them must be returned to its initial valu§3]
by the end of the computation. We ran an experiment comparin
circuit lengths in the 3+ 2 ROM-based case and found no im-
provement in circuit sizes upon adding the S gate, but we have?4!
been unable to prove this in the general case.

(5]

[6
We have explored a number of promising techniques for

synthesizing optimal and near-optimal reversible circuits that[’]
(8]

VI. CONCLUSION

2Using a circuit library with< six gates (191-Mb file, 1.5 min to generate),
the OPT line takes 5 min to generate. The use of a five-gate library improves
the runtimes by at least 2x if we do not synthesize the only circuit of size
11. For the OPT T line, we first find the 250 optimal circuits of sige
12 (15 min) using a six-gate library (61 Mb, 5 min). The remaining six
functions were synthesized in 5 min with a seven-gate library (376 Mb,[10]
10 min). This required more than 1 Gb of RAM.

(9]
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