MIMD Interpretation on a GPU

Hank Dietz and Dalton Young

LCPC, Oct. 8, 2009

University of Kentucky
Electrical & Computer Engineering
GPUs?

- Graphics Processing Units
- Lots of PEs, each with FP hardware
- Cheap & scalable hardware...
 - SIMD-ish multi-threaded execution using multiple, simplified, narrow SIMD engines
 - The host does all the messy stuff
- Programming model is quirky and dominated by vendor-dependent languages
MIMD on a GPU?

- Hide the quirks & improve portability
- Use MIMD programs & programming tools
- Hardware isn't converging on a simple design: Intel Larabee & AMD Fusion
- MIMD execution on SIMD was done before; why not MIMD on a GPU?
Basic MIMD Interpreter

1. $IR = \text{mem}[PC++]$
2. Decode instruction from IR
3. Repeat for each instruction type:
 1. Disable PEs where IR=instruction
 2. Simulate instruction
 3. Enable all PEs
4. Goto 1
Performance Issues

- Interpretation overhead
 - Coding of `switch` statement
 - Sum of instruction simulation times
- Indirection – each PE from its own address
 - Banking, caching, & “owner writes”
 - `mem[N/W][M][W]` memory layout
- Masking overhead
 - Divergent flow (within a warp)
 - Predication
 - Skipping (warps)
Assembler (mogasm)

- Multi-pass assemble to binary image coded as initialized data structures for mogsim
- Can combine multiple related/independent programs/libraries with conditional assembly; supports multi-lingual MIMD, not just SPMD
- Instruction bit patterns & field layout (8, 16, or 32-bit instruction words) can be automatically customized per application
Simulator (mogsim)

- About 2,500 lines of C/CUDA source code (compiler, assembler, etc. ~70,000 lines)
- C code repeatedly calls CUDA `emulate()`, which runs until timeout or SYS
- Can be a generic interpreter or automatically recoded to optimize a specific application
- Currently runs on any NVIDIA CUDA GPU
Sequence of Single-Instruction Subinterpreters (SIS)

- Subinterpreter handles just 1 instruction type
- Order subinterpreters to minimize cycles
- Frequency bias subinterpreter execution
- Consider the code: `PUSH LD ADD ADD`
 - `ADD LD PUSH` takes 4 cycles
 - `PUSH ADD LD` takes 3 cycles
 - `PUSH LD ADD` takes 2 cycles
 - `PUSH LD ADD ADD` takes just 1 cycle
Determining the Subinterpreter Sequence for SIS & Opt-SIS

• Analysis based on instruction and instruction digram frequencies from application runs
• Instruction frequencies determine mix
• Genetic algorithm evolves best order by minimizing sum of frequency-weighted digram spans
• Order using a generic application is SIS, using the selected application is Opt-SIS
Selection of a Present Instruction to Interpret (SIR)

- Method ensures fairness & progress
- Each PE fetches an instruction into his IR
- The designated PE within each warp copies his IR into the warp-shared IR (SIR)
- All PEs decode SIR, but only those where IR==SIR perform the instruction
- Opt-SIR uses decoder tree optimized using application statistics
Divergent Factored Decoding (DFD)

- Decoding is slow; why not let each PE decode the instruction in its IR, diverging, but partially factoring decode?
- Decode is accomplished via an optimized decode tree with the opcodes remapped for the application in Opt-DFD
Factoring using **Common Subexpression Induction (CSI)**

- The most effective method for MasPar MP1
- Break each instruction into microinstructions
- Maximally factor the microinstructions, inducing common subexpressions
- Minimizes cost of PE memory references & other expensive micro-ops, but increases conditionals & per-PE state
The SW Variants (Opt-SIR-SW, Opt-DFD-SW, Opt-CSI-SW)

- Opt variants rebuild mogasm and mogsim for the particular application (profiling)
- SW variants use `switch` instead of a decode tree:
 - Opt-SIR-SW
 - Opt-DFD-SW
 - Opt-CSI-SW
Experiments

• GPU MOG vs. GPU Native (not vs. CPU)
• Two simple per-PE benchmark codes:
 • `perf`: 1M SIMD multiply-accumulates
 • `fact`: 10K recursive, divergent, MIMD!
• Executed on various NVIDIA CUDA GPUs with various host processors
• All 11 approaches tested everywhere...
Benchmark System Configurations

<table>
<thead>
<tr>
<th>Feature</th>
<th>“Laptop”</th>
<th>“Desktop1”</th>
<th>“Desktop2”</th>
<th>“Desktop3”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Processor</td>
<td>Intel T8300</td>
<td>AMD 4200+</td>
<td>Intel 920</td>
<td>AMD 4200+</td>
</tr>
<tr>
<td>NVIDIA GPU (CC)</td>
<td>8600M GT (1.1)</td>
<td>8800 GTS (1.0)</td>
<td>9800 GT (1.1)</td>
<td>GTX 280 (1.3)</td>
</tr>
<tr>
<td>GFLOPS: Host/GPU</td>
<td>9.2 / 91.2</td>
<td>10.5 / 345.6</td>
<td>21.36 / 544.3</td>
<td>10.5 / 933</td>
</tr>
<tr>
<td>Power: Host/GPU</td>
<td>35 / 22</td>
<td>89 / 146</td>
<td>130 / 125</td>
<td>89 / 236</td>
</tr>
<tr>
<td>GPU Cores/PEs</td>
<td>32 / 1,024</td>
<td>96 / 2,304</td>
<td>112 / 3,584</td>
<td>240 / 10,560</td>
</tr>
<tr>
<td>Best Time: perf/fact</td>
<td>9.63 / 10.55</td>
<td>7.77 / 7.7</td>
<td>6.66 / 7.2</td>
<td>8.33 / 9.76</td>
</tr>
</tbody>
</table>
Experimental Results

• Difference between GPUs was small and trends were very similar on every target (remember work scales with # of PEs)
• For perf (best native 1.46s):
 • Worst-case MOG slowdown ~6.6X
 • SYS calling native slowdown ~1.7%
• For fact (not natively possible):
 • No recursion support in CUDA
 • Making CUDA interruptable ~4X
Performance for perf & fact

GPU Runtime in Seconds

Type of Interpreter

sis
opt sis
sir
opt sir
dfd
opt dfd
opt dfds w
opt csi
opt csis w
opt csi

1 Warp
2 Warps
3 Warps
4 Warps
5 Warps
6 Warps
7 Warps
8 Warps