
GPUMC Assignment 2: Kentucky’s Line Extrusion Orderer

Implementor’s Notes

Hank Dietz
Department of Electrical and Computer Engineering

University of Kentucky, Lexington, KY USA
hankd@engr.uky.edu

ABSTRACT
This project involved modifying a serial C program that
uses a genetic algorithm to reorder extrusion of line seg-
ments to minimize print time (total travel time between line
segments). The idea is to speed-up the program by using
OpenMP.

1. GENERAL APPROACH
The key to getting speedup is to parallelize things at the

highest level possible. Here, there were two convenient spots:

• The population initialization loop. It turns out that
greedy() is one of the most expensive operations, so
parallelizing execution across multiple copies of it yields
good speedup.

• The loop over all “generations” in the genetic algo-
rithm. This offers a huge amount of parallelism if the
population is large, but fundamentally hits two prob-
lems. First, the serial steady-state GA only replaces
one population member at a time, but this will replace
multiple ones simultaneously, so we’ll need to ensure
the population members being worked on are disjoint.
Second, there is a subtle change in the search statis-
tics because disjoint sets of members being operated
upon means that a newly-created population member
can be directly involved in no more than one of the
nproc simultaneous creations of new members... this
will slow convergence.

Both of those parts of the code simply turn into OpenMP
parallel for constructs, however, there are a few things
that need to be dealt with for shared access:

• A lot depends on being able to mkorder() in parallel,
so we need to ensure threads use a private (local) order
buffer.

• The standard rand() isn’t thread safe, so we need to
use something else... here, rand_r() with rseed[iproc]

ACM ISBN N.A..

DOI: N.A.

for its state and inital values generated sequentially
calling rand(). It turns out that rand_r() is not very
random in the low bits, so for RANDPLACE, I divide the
value by 13 to help randomize the low bits. Using a
prime population size would also help randomize.

• The update of the best value found so far is protected
by an OpenMP lock: bester.

• To avoid deadlock, each thread needs to pick (and
claim) all the population members for making a new
member in one shot. This is done by claim3() and
they are released by unclaim3(). The array claimed[]

tracks which population members have been claimed,
and the OpenMP lock claimer ensures one one claim
is processed at a time.

Note that both updating the best and claiming members
to work on are done in ways that try to minimize the work
done while locked.

2. PERFORMANCE
Running on 4 procesors, typical speedup is between 2X

and 3X.
The final schedule is now sent to stderr.

3. ISSUES
The modified code will not work without -fopenmp.
Parallel results obtained were often slightly inferior to the

sequential version because of the aversion to reuse of the
best. Perhaps claim3() should prefer picking abest? To
better understand how the search worked, I replaced the
VERBOSE tracking with logic that tracks the history of each
population member in the array by[][]. This revealed that
new best are rarely derived from Random starts, and almost
never combined Original, Greedy, and Random.

There was a bug in rotate() in the distributed version of
kleo.c that made a a rotation of a, not of b. It was fixed
and a comment inserted.


