
GPUMC, Spring 2022

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

References

• OpenMP primary WWW site
http://openmp.org/

• The latest reference “card” (16 pages!)
https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5-2-web.pdf

• Various links at the course WWW site

https://www.openmp.org/wp-content/uploads/OpenMPRefCard-5-2-web.pdf

What Is OpenMP?

• Took a while to develop: started in 1997
• Not a library, but also not a language

– Compiler directives for Fortran, C, C++ …
– Ignoring directives gives sequential code,

except where it doesn’t ;-)
– Associated libraries, some explicitly used

• Compilers supporting include:
GCC, LLVM/Clang, Intel, Microsoft

What Is OpenMP?

• Mostly SPMD (Single Program, Multiple Data)
programming model, execution using threads

• Intended to target shared memory multi-core
and multi-processor systems, now also
– Logically-shared memory systems
– SIMD and GPUs

• Designed to make it easy to parallelize an
existing sequential program

Hello, World
• Make hello.c contain:

#include “omp.h”
void main() {
#pragma omp parallel
{ int iproc=omp_get_thread_num();
 printf(“I am PE%d\n”, iproc); } }

• Compile and run by:
gcc -fopenmp hello.c -o hello

What OpenMP Does

• Makes threads for you
• Handles assigning work to each thread for you

(does scheduling)
• Lets threads communicate via shared access

to memory, but also can make local variables
• Provides means for synchronization

– Avoid races
– Enforce desired orderings

Thread Creation

• A sequential master thread always working
– Spawns a team of threads as needed
– Threads may be forked/joined for each

parallel code region or may be idled between
• Can request a specific number of threads:

– OMP_NUM_THREADS environment variable
nproc=omp_get_num_threads();

– omp_num_procs() gives physical PE count
– omp_set_num_threads(nproc);

A Bit About Hello, World

#include “omp.h”
void main() {
#pragma omp parallel
{ int iproc=omp_get_thread_num();
 printf(“I am PE%d\n”, iproc); } }

• Each thread has its own stack (own iproc)
• Team activates for each parallel region
• Barrier syncs implicitly bracket each region

Mutual Exclusion

• A single memory update can be made atomic:

#pragma omp atomic
a += 1;

• Critical protects a larger operation or block:

#pragma omp critical
myfunction(a, &b);

Explicit Locking
• Can use locks to force general exclusion

omp_lock_t m;
omp_init_lock(&m);
#pragma omp parallel private(t,iproc)
{
 iproc=omp_get_thread_num();
 omp_set_lock(&m);
 for(t=-1;t<iproc;++t) write(1,“.”,1);
 write(1,”\n”,1);
 omp_unset_lock(&m);
}

Parallel Sections

• Can embed MIMD code in a parallel region
without specifying who does each section

#pragma omp parallel sections
{
#pragma omp section
/* Thing 1 */ ...
#pragma omp section
/* Thing 2 */ ...
}

Parallel Loops

• A for loop can be made parallel:

#pragma omp parallel for private(i)
for (i=0; i<N; ++i) { a[i] = f(i); }

• Loop can’t have loop-carried dependences
• The loop index (i above) is replaced by a local

copy (even without private(i) clause)
• N doesn’t have to match nproc

Loop-Carried Dependences
• Accessing a value from another iteration:

for (i=0; i<N; ++i) a[i]=(++j);
for (i=0; i<N; ++i) sum+=a[i];
for (i=1; i<N; ++i) a[i]=i+a[i-1];
for (i=0; i<N-1; ++i) a[i]=i+a[i+1];

• Various ways to fix:

for (i=0; i<N; ++i) a[i]=(j+1+i);
#pragma omp parallel for reduction(+:sum)
for (i=0; i<N; ++i) sum+=a[i];

Reductions

• Associative operations that reduce dimension:
– Sum is +
– Product is *
– Bitwise AND &, OR |, XOR ^
– Logical AND (all) &&, OR (any) ||

• Reduction order can vary across runs
• Note that sum isn’t really associative for floats,

but this is one of the most common reductions

Sequential Ordered Reductions

• Since sum isn’t really associative for floats,
can force reduction part of loop to be ordered

#pragma omp parallel private(t)
#pragma omp for ordered reduction(+:sum)
for (i=0; i<N; ++i) {
 t=evil_computation(i);
#pragma omp ordered
 sum+=t;
}

Loop Scheduling

• Many options, effects overhead & load balance
• Assign work equally in fixed-size chunks:
schedule(static)

• Assign work from a queue in fixed-size chunks:
schedule(dynamic)

• Assign work from a queue in decreasing size
chunks: schedule(guided)

• Optional min chunk size as second argument

Barrier Synchronization

• Can be explicitly invoked:

#pragma omp barrier

• Implied at end of each parallel construct,
but can be overridden to allow overlap

#pragma omp parallel for nowait
for (…) { … }

Sequential Code
• It’s all master only outside of parallel
• Can be explicitly invoked inside parallel:

#pragma omp master
{ /* only master does this */ ... }

• Can also explicitly say it’s any one process:

#pragma omp single
{ /* only one does this */ ... }

Shared Memory Model

• shared by default:
– Global and static variables
– Heap memory, e.g., malloc()

• private by default:
– auto and register variables

• firstprivate initializes with shared value
• lastprivate sets final value into shared
• threadprivate, copyin, copyout
• volatile isn’t used; can explicitly flush(v)

Conclusion

• That’s everything about OpenMP?
• Nope. We’ve ignored:

– Nested parallelism
– Tasks
– SIMD
– ~11 pages of that 16-page reference card.…

We will discuss at least the SIMD stuff later

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

