A Simple Implementation

CPE380, Fall 2024

Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky


http://aggregate.org/hankd

Where Is This Stuff?

* Not in the text per se...
* Primary reference is:

http://aggregate.org/CPE380/refs3F24.html

* Textbook appendix B reviews CPE282 stuff...


http://aggregate.org/CPE380/refs3F24.html

A Dumb Implementation

* A design

* Can be built with a pile of TTL parts

* (Can execute MIPS instructions

* Slow; many clock cycles per instruction
* The key parts:

* Memory

* Processor

* |/O - which we'll ignore for now...



Our Favorite Gates

* |[n CPE282, you never used one of these:

In—’—aut

but they help keep signals digital...
* |In CPE380, we use lots of these:

enable

In—»—nut

to make bus and mux structures...



Tri-State

In enable A B out

In—’—nut

Voo
X q off | off s
] A
Driver
q 1 off | on q
1 1 on | off 1
enable out
B on | on short!
In out
Open Collector replaces A with a resistor
Tri-State Driver —

TTL Input floats high; CMOS doesn't




Processor/Memory Interface

Control

Datapaths

MF

readi~write

strobe

address

data

MEM




A bit Of SRAM
(D Flip Flop)

T

CLK slD;

Ol




In Verilog

module DFF(q, d, clk);
input d, clk;
output reg q;

always @(posedge clk) q <= d;
endmodule



A Simple Memory

Addr 7L D
a




What If Data Is Bidirectional?

Processor ~ Memory

Read/~Write
Dataln —‘ L7 DataOut

DataOut Dataln




In Verilog

module memory(mfc, dread, dwrite, addr, rnotw, strobe);
output reg mfc; output reg [7:0] dread;

input [7:0] dwrite; input [15:0] addr;

input rnotw, strobe;

reg [7:0] m [65535:0];

always @(posedge strobe) begin
mfc = 0;
if (rnotw) begin
dread <= m[addr];
mfc = #4 1; // delay 4 units of simulated time
end else begin
m[addr] <= dwrite;
end
end
endmodule



Parametric Verilog

module memory(mfc, dread, dwrite, addr, rnotw, strobe);
parameter ABITS = 8; parameter DBITS = 16;

output reg mfc; output reg [DBITS-1:0] dread;

input [DBITS-1:0] dwrite; input [ABITS-1:0] addr;

input rnotw, strobe;

reg [DBITS-1:0] m [(1<<ABITS)-1:0];

always @(posedge strobe) begin
mfc = 0;
if (rnotw) begin
dread <= m[addr];
mfc = #4 1; // delay 4 units of simulated time
end else begin
m[addr] <= dwrite:
end
end
endmodule



A bit Of DRAM

Pass Transistor

Word Line (select)

Bit Line (data)

____ Capacitor

Data to Vcc to store 1
Data to Gnd to store O

Read: dump charge, amplify, & threshold

— Analog - slow & noise sensitive
— Destructive (need to refresh value)
Charge slowly leaks (need to refresh)



Inside The Processor

Control




In Verilog

"define WORD [31:0] // size of a data word
"define STATENO [31:0] // size of a state number

module module processor(halt, reset, clk);
output reg halt;

input reset, clk;

reg WORD IR, PC, MAR, MDR, Y, ALUMUX, ALUZ;
reg rnotw, strobe;

wire mfc;

wire "WORD dread;
reg WORD addr;
reg STATENO STATE;

memory mainmem(mfc, dread, MDR, MAR, rnotw, strobe);

endmodule



Something To Run It...

module testbench;
reg reset = 1;
reg clk = 0;

wire halt;

processor PE(halt, reset, clk);
initial begin

#1 reset = 0;
while (!'halt) begin

#1 clk = 1;
#1 clk = 0;
end
end

endmodule



REGISTER
control signal

Effect

ALUadd Configures the ALU to add its inputs

ALUand Configures the ALU to bitwise AND its inputs

|ALUxor ||Conﬂgures the ALU to bitwise eXclusive OR its inputs |

|ALUOr ||Conﬂgures the ALU to bitwise OR its inputs |

|ALUSII [Configures the ALU to shift left logical; the result is (bus << Y) |

IALUSsIt [Configures the ALU to compare its inputs; the result is (Y < bus) |

|ALUSsrl [Configures the ALU to shift right logical; the result is (bus >> Y) |

|ALUsub [Configures the ALU to subtract the bus input from Y |
|

|CONST(value)

[Places the constant value onto the bus

HALT

Halt the machine (stop the simulator without error) at the end of the current state

IRaddrout

Tri-state enables the portion of the Instruction Register that contains the (26 bit, MIPS "]" format) address, along with the top & bits of the
Program Counter, to be driven onto the bus

IRimmedout

Tri-state enables the portion of the Instruction Register that contains the (16 bit, MIPS "I" format) 2's complement immediate value to be sign-
extended to 32 bits and driven onto the bus

IRin Latches the bus data into the Instruction Register at the trailing edge of the clock cycle

IRoffsetout Tri-state enables the Instruction Register's shifted and sign extended value from the offset field to be driven onto the bus (used for branches)

LIUMP[,’abeJJ ||Microc0de jump to labe/ |

hUMPonop ||Microcode jump to label named like the opcode; e.g., if an "Addi" is in the IR, jumps to the microcode label Addi |

[MARin [Latches the bus data into the Memory Address Register at the trailing edge of the clock cycle |

[MARout [Tri-state enables the Memory Address Register's output to be driven onto the bus |

[MDRin [Latches the bus data into the Memory Data Register at the trailing edge of the clock cycle |

[MDRout [Tri-state enables the Memory Data Register's output to be driven onto the bus |

|MEMread ||Initiate a memory read from the address in the MAR; here, you may assume that the memory will take 2 clock cycles to respond |

MEMwrite Initiate a memory write using the data in the MDR and the address in the MAR; in this simple design, you may assume that a memory write
takes precisely 1 clock cycle

PCin Latches the bus data into the Program Counter at the trailing edge of the clock cycle

PCinif0 Only if the value in £ is zero, latch the bus data into the Program Counter at the trailing edge of the clock cycle

PCout Tri-state enables the Program Counter's output to be driven onto the bus

REGIn Latches the bus data into whichever register is selected by SELrs, SELrt, or SELrd; the value is latched at the trailing edge of the clock cycle

|REGout ||Tri—state enables the output of whichever register is selected by SELrs, SELrt, or SELrd; the selected value is driven onto the bus |

|SELr5 ||Se|ects the rs field of the IR to be used to control the register file's decoder |

SELrt [selects the rt field of the IR to be used to control the register file's decoder |

|SELrd [Selects the rd field of the IR to be used to control the register file's decoder |

UNTILmfc Repe‘?t this state until the memory has issued a memory fetch complete signal, indicating that the fetched value will be valid to read from the
MDR in the next clock cycle

Yin Latches the bus data _intc- the ¥ re:gister at the trailing edge of the clock cycle; this register is needed because, with only one bus, one of the
two operands for a binary operation (e.g., Add) must come from somewhere other than the bus

[Yout [Tri-state enables the Y register's output to be driven onto the bus |

Zin The ALU is always producing a result, but we only make note of that result if we latch the ALU's output into the Z register at the trailing edge
of the clock cycle

Zout Tri-state enables the Z Register's output to be driven onto the bus




Control Logic

* A big state machine (spec. by names)
— Begins by fetching instruction
— Decoding instruction sends us to
particular instruction's state sequence
— Ends by going to fetch next instruction
* |nstruction decode logic
when mask match lab
— Applied in state with JUMPONOP
— if (IR & mask) == match) goto lab:;



Instruction Fetch Sequence

* Not dependent on instruction — can't be
* Also does PC+=4

Start:

PCout,MARin,MEMread, Yin
CONST(4) ,ALUadd, Z1in,UNTILmfc
MDRout, Irin

JUMPONOP, Zout,Pc1n

HALT /* 1llegal inst. */



MIPS Register Add

e add $rd,$rs,$rt
e Means rd=rs+rt

Add: SELrs,REGout,Y1in
SELrt,REGout,ALUadd, Zin
/out,SELrd,REGin,JUMP(Start)



MIPS Register And

e and $rd,$rs,$rt
e Means rd=rs&rt

And: SELrs,REGout,Y1in
SELrt,REGout,ALUand, Z1in
/out,SELrd,REGin,JUMP(Start)



MIPS Load Word

e w $rt,immed($rs)
e Means rt=mem[immed+rs]

Lw: SELrs,REGout,Y1ln
IRIMMEDout,ALUadd, Zin
/out,MAR1n,MEMread
UNTILmfcC
MDRout,SELrt,REG1n,JUMP(Start)



MIPS Store Word

e sw $rt,immed($rs)
e Means mem[immed+rs]=rt
* Don't have to wait for write to complete

Sw: SELrt,REGout,MDR1n
SELrs,REGout,Y1n
IRIMMEDout,ALUadd, Zin
/out,MAR1n,MEMwrite,JUMP(Start)



Timing

* Clock period determined by slowest path
In any state — try to minimize variation
* Number of clock cycles/instruction (CPl) is
determined by counting
— Not just count of states passed through
— Time passed waiting counts (UNTILmfc)
* Clock period and CPI usually trade off;
higher Hz often achieved by higher CPI



Clock Period

 Assume the critical state is:

SELrt,REGout,MDR1in,ALUadd, Zin

* The paths are:

SELrt > REGout > MDR1n
SELrt > REGout > ALUadd > Zin



Reducing Clock Period

* [ncrease clock speed by replacing:
SELrt,REGout,MDR1n,ALUadd,Z1in
* With:

SELrt, REGout,MDR1n
MDRout, ALUadd, Zin



Counting CPI

* |nstruction fetch time counts
* Time between MEMread and UNTILmTfcC

Lw: SELrs,REGout,Yin +1
IRIMMEDout,ALUadd,Zin +1
Zout,MARin,MEMread +1
UNTILmfc +7
MDRout,SELrt,REG1in,JUMP(Start) +1



Cycle-Accurate Simulation

* Custom-built full simulator for CPE380
— Textual state machine specification
— Can define signal delays
— Can define initial & final conditions
— Built-in mini MIPS assembler

http://aggregate.org/CPE380/refss.html

* Actual simulator is live at
http://garage.ece.engr.uky.edu:10043/cgi-bin/simple.cgi


http://aggregate.org/CPE380/refss.html
http://garage.ece.engr.uky.edu:10043/cgi-bin/simple.cgi

A Verilog Implementation

Design for simulation, not rendering HW
Key ideas:

“define control signals & constants
module memory(..);

Models main memory

module processor(halt, reset,clk);
Models the complete processor

module bench;

Drives the simulation



Verilog Simulation

* Don’t have to go low level:
http://aggregate.org/CPE380/multivF24.html

 Don’t have to feed it raw bits either;
here’s a (slightly mutant) MIPS assembler:

http://aggregate.org/CPE380/mipsaik.html

but | don’t expect you to be using AIK yet


http://aggregate.org/CPE380/multivF24.html
http://aggregate.org/CPE380/mipsaik.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

