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ABSTRACT

Quantum computers use quantum physics phenomena to create spe-
cialized hardware that can efficiently execute algorithms operating
on entangled superposed data. That hardware must be attached to
and controlled by a conventional host computer. However, it can be
argued that the main benefit thus far has been from reformulating
problems to make use of entangled superpositions rather than from
use of exotic physics mechanisms to perform the computation -
such reformulations often have produced more efficient algorithms
for conventional computers. Parallel bit pattern computing does
not simulate quantum computing, but provides a way to use non-
quantum, bit-level, massively-parallel, SIMD hardware to efficiently
execute a broad class of algorithms leveraging superposition and
entanglement.

Just as quantum hardware needs a conventional host, so to does
parallel bit pattern hardware. Thus, the current work presents Tan-
gled: a simple proof-of-concept conventional processor design in-
corporating a tightly-coupled interface to an integrated parallel
bit pattern co-processor (Qat). The feasibility of this type of in-
terface between conventional and quantum-inspired computation
was investigated by construction of an instruction set, building
complete Verilog designs for pipelined implementations, and by
observing the effectiveness of the interface in executing simple
quantum-inspired algorithms involving operations on entangled,
superposed, values.
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1 INTRODUCTION

Current quantum computers are not particularly practical devices,
nor does it help that overenthusiastic claims often are made about
what such machines are capable of doing. However, the concepts
that underlie quantum computing already have demonstrated con-
siderable value using conventional computer hardware implementa-
tions. Various quantum-inspired classical algorithms have obtained
significant performance increases over the previously best classical
algorithms. Quantum algorithms also have the interesting property
that they are optimized at the gate level rather than the word level.
As was observed in a 2017 paper at the Languages and Compilers
for Parallel Machines workshop[2], extensive application of com-
piler optimization of programs at the gate level may be able provide
orders of magnitude reductions in both the total number of gate
actions needed to perform a computation and the total power used.
The basic model for quantum-like computation here is the par-
allel bit pattern model[4], hence referred to as PBP. Without using
any exotic quantum phenomena, PBP efficiently supports versions
of both superposition and entanglement. This is done using the con-
cept of pattern bits, or pbits, substituting symbolic computation
on a compressed bit vector representation — a bit pattern - for the
quantum phenomena. In effect, entangled superposition is trans-
formed into operations on bit vectors, and those operations can
be efficiently performed using bit-level SIMD-parallel computer
hardware constructed entirely from conventional digital logic.

1.1 The AoB Representation

The value of a qubit is commonly modeled as a real-valued, two-
dimensional, probability density function, shown graphically as
the Bloch Sphere[10]. Instead of using that model, here an E-way
entangled pbit value is represented as an array of 2F bits (AoB).
These two very different representations are shown in Figure 1. The
ordering of bits within an AoB vector is significant, determining
how those bit values are paired with bit values of other pbits with
which it is entangled. In effect, each position within an AoB vec-
tor is an entanglement channel - a concept not found in quantum
computing.
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The example shown in Figure 1 gives the AoB vectors for two,
two-way entangled, pbits. Either pbit has a 50% probability of 0
or 1, however, entanglement channel 0 pairs {0,0}, 1 pairs {1,0}, 2
pairs {0,1}, and 3 pairs {1,1}. If the top vector is taken to be the
least significant pbit of a two-pbit value, the vectors encode the
decimal values {0,1,2,3} as four equiprobable values, each having
a probability of 1/4. In effect, this is defining a probability density
function in which all probabilities are measured in integral parts
per 2F For example, if the pbit vectors were {0,0,1,0} and {0,0,1,1},
the two-bit values encoded would be {0,0,3,2}, which implies a 50%
chance the value is 0, 0% it is 1, 25% it is 2, and 25% it is 3.

1.2 The RE Representation

The complete PBP model does not directly use an AoB representa-
tion, but takes advantage of the fact that AoB representations often
have very low entropy. By recognizing relatively simple repeating
patterns in the AoB vector, the data structure can be compressed
and represented as a regular expression (RE). In the AoB example
above, {0,1,0,1} can reduce to (01)% and {0,0,1,1} is 0?12 by simple
run-length encoding. By storing and operating directly on REs, par-
allel bit pattern computing reduces both storage requirements and
computational complexity by as much as an exponential factor... es-
sentially the same goal sought by quantum computing, but achieved
using partially symbolic parallel execution on conventional hard-
ware.

Although the RE encoding is clearly beneficial, each symbol
within an RE corresponds not to an individual bit, but to a fixed-
size sub-vector of the AoB representation. For example, in the PBP
software prototype[3], each AoB representation was broken into
4096-bit chunks that became the symbols in the RE representation.
Thus, creating an efficient hardware implementation of AoB op-
erations on vectors of relatively modest length not only allows
directly executing algorithms that do not exceed the maximum
supported entanglement, but also facilitates implementation of RE
encodings for constructs having greater entanglement. The hard-
ware implementation described here directly implements 65,536-bit
AoB for up to 16-way entanglement, and it is assumed that higher
degrees of entanglement would be implemented in software using
65,536-bit chunks as RE symbols. The methodology for that RE pro-
cessing would be identical to that described in the software-only
prototype[3], and thus is not discussed further in the current work.

It is noteworthy that the RE-based PBP model is neither a simu-
lation of quantum computing nor a fully compatible replacement
for quantum hardware. It offers new high-level programming and
execution models that can efficiently use superposition and entan-
glement to implement a large class of quantum-inspired algorithms.
As is detailed later in this paper, the PBP model is arguably stronger
than quantum models because it allows non-destructive measure-
ment and values may be maintained for arbitrarily long without
decoherence.

1.3 Tangled and Qat

The current work represents the first attempt to devise and evaluate
a conventional hardware implementation of the AoB processing
within the PBP model. Like quantum computer models, AoB is
not a general-purpose model of computation, nor is it likely to
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become one: rather, it is a type of specialized attached processor.
In this case, the AoB processing is very tightly integrated with the
host processor so that it appears as a coprocessor with instructions
fetched and decoded by the conventional host processor.

The host processor is called Tangled, partly because it manages
a coprocessor supporting entangled superposition, but also reflect-
ing the fact that it is designed to operate in a way that is tightly
intertwined with that coprocessor. For example, processor pipeline
interlocks and forwarding are determined in part by coprocessor op-
erations. The coprocessor itself is called Qat (pronounced “k-ha-t”),
a TLA standing for Quantum-like Accelerator for Tangled.

Although the author created Tangled and Qat primarily as a re-
search prototype, the research followed a somewhat unusual path
because this work was done during the peak of the COVID-19 pan-
demic. The University of Kentucky campus continued to be open
throughout Summer and Fall of 2020, but many precautions were
taken against spread of the virus, including restricting use of phys-
ical research laboratory spaces to only emergency maintenance for
Summer 2020. Thus, to allow students to become involved in the
research, the design of Tangled and Qat was crafted so that it also
would be appropriate as the basis for student Verilog implementa-
tion projects in the CPE480 Computer Engineering undergraduate
Computer Architecture course taught in Fall 2020. For example,
the incorporation of bfloat16 arithmetic in Tangled is primarily
to better serve the goals of that course; floating-point arithmetic
is not necessary for most quantum-inspired algorithms. In that
course, four projects involved Tangled and Qat: a project with each
student individually determining the instruction set encoding and
building an assembler for it using AIK (the Assembler Interpreter
from Kentucky)[5] and then a sequence of three team projects, done
in groups of 3-4 students, creating synthesizable Verilog implemen-
tations of a multi-cycle Tangled, a pipelined Tangled, and finally a
pipelined version implementing both Tangled and Qat. The teams
were also randomly shuffled so that no two students were on the
same team for more than one project, a technique that helps spread
experience-based knowledge across teams more effectively.

The remainder of the current work describes the design, imple-
mentation, and evaluation of Tangled and Qat.

2 INSTRUCTION SET ARCHITECTURE

Although the Qat coprocessor instructions are fetched and decoded
by the Tangled processor, it is useful to consider the Qat instructions
as a separate group because they have access to additional resources
not present in Tangled.

2.1 Tangled ISA

The basic Tangled instruction set, as described in Table 1, is very
straightforward. In some sense, nearly any conventional instruction
set would suffice. However, this was designed not only to be a
research proof-of-concept implementation of the tight integration
of a quantum-like coprocessor, but to also serve pedagogical goals
involving having students build Verilog implementations in the
course. For example, the 16-bit word size was selected because:

e This instruction word size only has space for a 4-bit fixed
opcode field, but there are more than 16 different types of in-
structions; thus, students needed to be slightly clever about
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Table 1: Tangled Base Instruction Set
Instruction Description Functionality
add $d, $s int add $d+=$s
addf $d,$s  bfloat16 add $d+=$s
and $d,$s bitwise AND $d=AND($d,$s)
brf $c,lab  branch false tolab if (!$c) PC+=offset
brt $c,lab  branch true tolab  if ($c) PC+=offset
copy $d,$s  copy $d=$s
float $d int to bfloat16 $d=(bfloat16)$d
int $d bfloat16 to int $d=(int)$d
jumpr $a jump to register PC=$a
lex $d,imm8 load sign extended $d={{8{imm8[7]}},imma8}
lhi $d,imm8 load high $d[15:8]=imm38
load $d,$s  load $d=memory[$s]
mul $d,$s int multiply $d*=$s
mulf $d,$s  bfloatl6 multiply  $d*=$s
neg $d int negate $d=(-$d)
negf $d bfloat16 negate $d=(-$d)
not $d bitwise NOT $d=NOT($d)
or $d,$s bitwise OR $d=0OR($d,$s)
recip $d bfloat16 reciprocal ~ $d=1.0/$d
shift $d,$s shift left/right $d=$d<<$s
slt $d,$s set less than $d=($d<$s)
store $d,$s store memory[$s]=$d
sys system call
xor $d,$s bitwise XOR $d=XOR($d,$s)

picking an encoding. Students in the course needed to de-
termine how to encode the instructions, and they then used
an assembler construction tool to implement the assembler.
That tool makes it easy to change the encoding, and students
were permitted to change the instruction encoding for each
project as they learned more about implementation of the
system.

o A 16-bit word size allows for efficient implementation of both
integer and floating-point arithmetic. In particular, bfloat16
has been used in this course for several years, and there are
ALU implementations of all the basic floating-point oper-
ations that can be treated as single-cycle delay in FPGA
renderings of a pipelined processor’s Verilog design. Use of
bfloat16 also is convenient in that values can be treated
as standard 32-bit float values by simply catenating a 16-bit
value of 0.

e Relative to current quantum computers, even 16-bit val-
ues are relatively high precision. Thus, the small word size
keeps simulations manageable without compromising the
quantum-like aspects of the system.

Tangled only has 16 conventional general-purpose registers. Reg-
isters 0-10 are for general use. Register 11 is $at, reserved for use as
an assembler temporary in implementing assembler macros — such
as those listed in Table 2. The remaining four registers are used for
function/subroutine call handling: return value $rv, return address
$ra, frame pointer $fp, and stack pointer $sp. In other words, none
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Table 2: Tangled Pseudo-Instructions (Macros)

Instruction Description Functionality
br lab branch to lab PC+=offset
jump lab jump to lab PC=lab

jumpf $c,lab
jumpt $c,lab

load $d,imm16

jump false to lab
jump true to lab
load immediate

if (!$c) PC=lab
if ($c) PC=lab
$d=imm16

Table 3: Qat Coprocessor Instructions

Instruction Description Functionality

and @a,@b,@c AND @a=AND(@b,@c)

ccnot @a,@b,@c controlled- @a=XOR(@a,
controlled NOT AND(@b,@c))
(Toffoli gate)

cnot @a,@b controlled NOT @a=XOR(@a,@b)

cswap @a,@b,@c controlled swap where (@c)
(Fredkin gate) swap(@a,@b)

had @a,imm4 Hadamard initializer ~@a=H(imm4)

meas $d,@a entanglement $d=@a[$d]
channel measure

next $d,@a entanglement $d=next($d,@a)
channel of next 1

not @a NOT (Pauli-X gate) ~ @a=NOT(@a)

or @a,@b,@c OR @a=0OR(@b,@c)

one @a 1 initializer @a=1

swap @a,@b swap swap(@a,@b)

xor @a,@b,@c XOR @a=XOR(@b,@c)

zero @a 0 initializer @a=0

of the Tangled registers has any special meaning relative to the Qat
COProcessor.

2.2 QatISA

Table 3 lists the Qat coprocessor instructions. These instructions
are not very closely related to the instruction sets discussed for
quantum computers[12][7]. Some of these instructions obviously
echo the basic gate operations used in quantum computers. How-
ever, others appear completely classical, and several are essentially
neither quantum gates nor classical operations.

While Tangled operates on 16-bit values, all Qat operations act
upon 65,536-bit AoB values - each sufficient to hold the 16-way
entangled superposed value of a single pbit. This provides a type of
symmetry in that any value that Tangled can directly process is only
16 bits long, and all 16-bit values are representable using a set of 16
properly entangled Qat AoB values. As is the norm for quantum
computers, Qat does not have any method by which it can access
the host system memory. Thus, all AoB values are exclusively held
in Qat coprocessor registers, named @0 through @255. The lack of
external storage is also why a relatively large number of registers
was selected for Qat: 256. The use of 8-bit Qat register numbers does
force some Qat instructions to be two 16-bit words long, but only
16 registers could be named within a single-word Qat instruction
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encoding, and that would have made it nearly impossible to have a
Qat computation produce a 16-bit value result.

It might seem obvious that quantum gate operations could be
expressed as assembly language instructions acting on qubits iden-
tified by register numbers, but that is not how the Qat ISA is struc-
tured. Fundamentally, the semantics of operations on pbits are quite
different from those working on qubits. In a quantum computer,
there are three distinct phases of operation:

(1) Initialize all qubits to their desired initial state, which for
each is strictly 0 or 1 (i.e.,, it is not a superposition).

(2) Perform the computation. The computation is typically writ-
ten as a series of thermodynamically reversible gate oper-
ations on qubits, but may actually be implemented with
modest parallelism in that operations on unrelated qubits
need not be ordered if the quantum computer’s hardware
supports such parallel control. The computation itself creates
entangled superpositions, generally by applying a Hadamard
gate at an early point in the computation. There also are a
few interference operations that can be used to sample some
aspect of the distribution of possible values within a super-
position without collapsing it, and these operations play a
critical role in potential applications such as Shor’s factoring
algorithm[11].

(3) Measure the result of the computation. Unfortunately, this
measurement collapses any entangled superposition, so only
a single value is returned per qubit. The values returned
are often described as “randomly selected” from among the
possible values, but it would be more accurate to say that they
are not selected at all. The value returned is intended to be
consistent with a random sampling, but might be somewhat
biased by noise, manufacturing variation, etc.

The parallel bit pattern model, and hence the Qat coprocessor,
does not require this type of phased operation. This is primarily
due to the fact that measurement of a pbit is inherently non-
destructive. Superposition and entanglement can be sampled in
arbitrary ways without terminating the computation. However,
this fundamental difference has many other significant implica-
tions. For example, since the value of an entangled superposition
can be non-destructively measured, it is also possible to refresh
and maintain that value arbitrarily long without degradation: in
contrast, all values in quantum computers accumulate noise over
time, eventually resulting in errors and/or decoherence. Immune
to such errors, Qat can freely mix initialization, computation,
and measurement over arbitrarily long periods. Given that
freedom, there also is no need for pbit operations to be thermody-
namically reversible.

What the quantum computing field calls thermodynamically
reversible gates is better known in computer engineering circles
as adiabatic logic[8]. Unfortunately, the quantum annealing mod-
els for quantum computer hardware[9], as used by D-Wave, are
also referred to as adiabatic quantum computing, causing some
ambiguity with use of that term. By whatever name, adiabatic logic
has been well studied, and entire processors have been built us-
ing conventional circuitry to implement adiabatic logic that can
significantly reduce power consumption per computation[15][13].
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Figure 2: Quantum initialization to 0, 1; Hadamard gate.

Fundamentally, adiabatic logic reduces power consumption by bal-
ancing every logic 1 with a logic 0; thus, power is neither created
nor absorbed, but merely re-routed. Alternatively, the balancing can
be done in the time domain, having a logic circuit that apparently
generates a 1 output, in the following cycle, recover the energy
from its outputs. In general, a thermodynamically reversible gate
cannot destroy information, so overwriting a qubit, as is done in
initialization, is not permitted in quantum computers.

2.3 Qat Initialization Instructions

In a quantum computer, the operations associated with initializing
a value are symbolically shown in Figure 2. However, initialization
of qubits is done as a separate phase, and not as part of the quan-
tum computation per se. Given that, no value can be initialized
to a superposed state, and the only true initializers for a quan-
tum computation are 0 and 1. Superposition is created by applying
the Hadamard gate during quantum computation to a qubit that
was earlier initialized to 0 or 1. It is appropriate to note that the
Hadamard gate can also be used in quantum computing as its own
inverse, thus preserving the reversibility property required of all
quantum gates.

In contrast, Qat does not require reversibility nor a separate
initialization phase; initialization of a pbit is an operation that may
be performed at any time. In effect, this means that initialization to
0, 1, or a “standard” entangled superposition is essentially a “load
immediate” instruction that can be applied to any AoB register at
any time. The zero @a instruction sets @a to 0 and the one @a sets
@a to 1, but the Hadamard initialization in Qat is complicated by the
notion of entanglement channels. The default Hadamard pattern for
the k% set of entanglement channels would be created by had, @a, k.
The pattern generated within @a is a repeating sequence of 2k 0 bit
values followed by 2k 1 bit values. Thus, entanglement channel e
in @a would be the value of bit k within the binary representation
of the 16-bit number e. For example, had @a, @ would make every
even-numbered entanglement channel 0 and every odd-numbered
channel 1. The AoB value created by had @a, 15 would consist of
32,768 0 bits followed by 32,768 1 bits.

2.4 Reversible Not-based Instructions

The common notation for the standard quantum gates involving
logical negation (not) is shown in Figure 3. The way to interpret
this notation is that each horizontal line represents the value of a
qubit evolving over time. A quantum gate is not really a physical
thing, but the imposition of external stimuli at a point in time that
interacts with the values of one of more qubits. For the not gate,
which is also known as the Pauli-X gate, that interaction simply flips
the sense of all bit values in the superposition. The controlled not
flips the sense of the superposition values only where the entangled
value of the control qubit would be a 1; in other words, the gate
passes the control qubit unchanged, but replaces the second qubit
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Figure 3: Quantum not, cnot, and ccnot gates.

Figure 4: Quantum swap and cswap gates.

with the XOR of the two qubit values. Similarly, the controlled-
controlled not, which is also known as the Toffoli gate, passes the
two control qubit values unchanged, but replaces the value of the
third qubit with the XOR of its value and the AND of the the two
control qubit values. These operations are all trivially reversible in
that each is it’s own inverse; a second application of any of these
gates will restore the original qubit values.

In Qat, these three gate operations are modeled as instructions in
which the potentially altered value is the first named and any addi-
tional registers named are the controls. Thus, not @a has no control,
cnot @a, @b has the single control @b, and ccnot @a,@b,@c uses
@b and @c as controls. All input values to the gates are examined,
which implies that the ccnot operation requires three inputs — a
poor match for the standard ALU symbol, which shows only two
inputs, but all that is needed for an efficient implementation is that
the register file provide three read multiplexors. In all three instruc-
tions, the control inputs are unchanged; only a single register has a
potentially new value written.

2.5 Reversible Swap-based Instructions

Another common class of reversible gates is based on swap: ex-
change of values. The common quantum notation for the standard
quantum gates involving swap is shown in Figure 4. The potential
exchange of values is indicated by an “X” across the qubits that
would be exchanged. For cswap, also known as a Fredkin gate[6],
the exchange occurs only for the superposed values where the con-
trol signal would be 1. As for the not-based quantum gates, swap
and cswap are trivially reversible because each is its own inverse. In
fact, the reversibility of swap is stronger than that of the not-based
gates because the number of 0s and 1s is trivially preserved passing
through the gate — a property sometimes called “billiard-ball con-
servancy” which can lead to simpler non-quantum adiabatic logic
implementation. It is interesting to note that cswap can be viewed
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Figure 5: Quantum measurement gate.

as a generalization of a 1-of-2 input multiplexor, which also are
used to construct binary decision diagrams (BDDs)[1], and are the
universal gates commonly applied in formal verification of logic
designs.

In Qat, the swap operations are modeled as instructions in which
the potentially swapped values are the first two operands, and
cswap’s third operand is the control. Thus, the ALU performing
cswap also needs input from three registers. However, the swap
requires that two results be written into registers, thus the ALU
should have two outputs and the register file should be capable of
three reads and two writes per cycle. While this is feasible, it is
not clear that the performance gained by adding this hardware is
sufficient to justify its use in Qat.

2.6 Irreversible Logic Instructions

Either ccnot or cswap alone constitutes a universal logic family,
such that no other gate types are needed. However, Qat does not
require that instructions be reversible, and it is in many ways more
convenient if the usual irreversible logic gate types can be provided.
For example, many logic optimization tools directly generate de-
signs using AND, OR, and NOT; similarly, computer arithmetic
is often most conveniently expressed using XOR. Thus, Qat also
implements the familiar irreversible gates: and, or and xor.

Interestingly, implementation of these instructions is simpler
than ccnot or cswap - only two registers are read and only one
result is written. One of the questions this work hoped to answer
was: is it worthwhile directly implementing the more-complex
reversible gate operations?

2.7 Measurement Instructions

There are only two Qat instructions remaining to be discussed,
and both of them relate to the concept of measurement. There was
also a potential third sampling operation, which was specified but
omitted from the class project versions.

The only measurement mechanism in quantum computers is
that shown in Figure 5. The paired lines leaving the measurement
gate signify that the result is not a superposed value, but a digital bit
that is valued either 0 or 1. It is a fundamental property of quantum
computation that measuring a superposed qubit’s value collapses it
to a simple state of 0 or 1. Further, any qubits entangled with a qubit
measured also become locked into their values at that moment. The
probability-weighted “random selection” of a measured value from
among the set of possible values in an entangled superposition is
the only way to obtain output from a quantum computation. Thus,
although an entangled superposition at the end of a computation
might contain all answers, only one can be examined per run. Fur-
ther, the inability to deterministically pick which answer is sampled
means that there is no number of runs sufficient to guarantee that
all values in the entangled superposition have been seen.
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Figure 6: Simplified single-cycle Tangled/Qat.

Measurement in PBP computing does not collapse the superposi-
tion — which should give PBP a huge advantage in any computation
that may produce more than one result. However, a different con-
cept of measurement is needed.

In an LCPC 2020 paper[3], pbit measurement is defined as an
operation that returns all values in the entangled superposition.
However, there were also operations that could be used to test
properties of the entangled superposition:

e ANY reduction, replacing a pbit that has a non-zero proba-
bility of being a 1 with the value 1.

e ALL reduction, replacing a pbit that has zero probability of
being a 0 with the value 1 and otherwise with the value 0.

e POPulation count, returning an integer count of how many
of the 2% bits in an entangled superposition are 1 — essentially
the probability of that pbit being a 1 in parts per 2E.

In designing Tangled, it immediately became clear that having
Qat return all values within an entangled superposition would
be a very awkward operation to directly implement in hardware.
What was needed was a way to incrementally obtain any sampling
of the entangled superposition desired. The key new concept for
this was to explicitly select the entanglement channels to be
examined.

The first new PBP operation in Qat is meas $d,@a. It simply
returns the value of the bit at entanglement position $d in the en-
tangled superposed value in @a - essentially @a[$d]. This operation

is very efficient to implement, yet allows very high-quality random
sampling of entangled superpositions by simply using Tangled in-
structions to place a random number in $d. The meas instruction
even could be used to read-out every element in an entangled su-
perposition by looping through all all 65,536 entanglement channel
numbers. The catch is that operations like the ANY, ALL, and POP
described in earlier work provide a way to summarize an entangled
superposition in as little as O(1) time, whereas meas would take
0(2F) time enumerating the values.

For Qat, rather than implementing ANY, ALL, and POP, the new
solution was the creation of an instruction that used entanglement
channels in a way that could flexibly and efficiently summarize the
entangled superposition. The next $d,@a instruction is given an
initial entanglement channel number in $d, and then returns the
lowest entanglement channel number in @a larger than $d where a
bit value of 1 is located. If there is no 1 in the remainder of the AoB
vector, the value returned is 0. For example, the sequence:

had @123,4
lex  $8,42
next $8,@123

would result in the value 48 being placed in $8. This is because
had @123,4 creates a repeating pattern of sixteen 0 followed by
sixteen 1, and the first non-0 bit after position 42 in that pattern is
in entanglement channel 48.
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Consider implementing ANY using next. if next is used to search
for the next 1 after entanglement channel 0 and returns a non-0
value, ANY is true. However, if that returned 0, we would still need
to test entanglement channel 0, which can be done using meas.
Essentially the same logic can be used to test for ALL, except ALL
of @a would essentially be computed as not of the result of applying
ANY to not @a.

A POP operation was omitted primarily to simplify the class
projects, and easily could be added. However, there is again the
issue that the number of 1 bits in a 16-way entangled superposi-
tion ranges from 0 to 65,536, which is one greater range than fits
in a 16-bit Tangled register. The more general solution that was
developed, but not explored in the class projects, was to have a pop
instruction that counted the population of 1 bits after the specified
entanglement channel - sharing that logic with the implementation
of next. The true POP value would thus be the sum of pop starting
after 0 and meas of entanglement channel 0, but the separation into
two operations would allow for easy detection of overflow.

3 VERILOG IMPLEMENTATION

The pipelined Verilog implementation of Tangled/Qat proved to be
surprisingly straightforward. As a starting point, Figure 6 diagrams
a simplified single-cycle design. It is significant that all functions
implemented in the Tangled and Qat ALUs can be treated as fully
combinatorial for FPGA implementation. The only operation for
which purely combinatorial execution might be problematic is mul
- the Tangled 16-bit integer multiply instruction.

3.1 General Properties of the Pipelined Design

There were eight teams for each of the class projects, so in addi-
tion to several versions produced by the author, there are eight
independent Verilog implementations of the full pipelined imple-
mentation of the Tangled/Qat processor with a simplified memory
interface. To speed-up simulation, which was largely done using a
WWW-form interface to a server running Icarus Verilog[16] and
the Covered[17] test coverage analysis tool, students also were
permitted to restrict the AoB values to 256 bits. Although team
scores on the multi-cycle design ranged from 57.5% to 100%, the
shuffling of team members helped spread and enhance expertise.
All eight final team projects were highly functional, with grades
ranging from 83.5% to 99%, with an average of 89.7%.

Implementations ranged from 633 to 1006 lines of Verilog code,
with an average of 742 lines. Those numbers include approximately
127 lines for the Verilog bfloat16 floating-point library provided to
the students. The floating-point code also required a small VMEM
file initializing a lookup table for computing fraction reciprocals,
but that is not included in the Verilog line count. Six of the eight
pipelines the students implemented used four stages; two used five
stages. All implementations were capable of sustaining completion
of one instruction every clock cycle, provided there were no pipeline
interlocks encountered.

Overall, despite the strangeness of Tangled/Qat (and the pan-
demic), these Verilog implementations were at least comparably
successful to those from the more mundane processor design as-
signments given in previous offerings of this course. Students
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module gathad(aob, h);
parameter WAYS=16;

input [WAYS-1:0] h;

output [(1<<WAYS)-1:0] aob;

genvar i;
generate
for (i=0; i<(1<<WAYS); i=i+1) begin
assign aob[i] = (i >> h);
end
endgenerate
endmodule

Figure 7: Verilog had for WAYS-way entanglement.

seemed to have surprisingly little difficulty creating efficient imple-
mentations of Qat. Difficulties tended to center on pipeline handling
of conditional control and data dependences. The most common stu-
dent questions involved the fetch and decode handling of variable-
length instructions (recall that some Qat instructions encode as two
16-bit words).

The only apparently difficult-to-implement operations are the
Qat instructions had and next. The student teams did not create
scalable parametric designs for these operations, but such designs
were created by the author and are described in the following
subsections.

3.2 Verilog Implementation of Qat had

Figure 7 shows a surprisingly straightforward parametric Verilog
computation of the Qat had instruction AoB result. This imple-
mentation directly uses the correspondence between entanglement
channel e and the binary value of e, as was described earlier. How-
ever, the actual circuit implementation of this would be somewhat
more complex than simply constructing a complete pre-computed
lookup table of each of the Hadamard initializers. In fact, the stu-
dent solutions generally used a lookup table expressed as a Verilog
combinatorial always selecting the appropriate constant pattern
using a case statement (multiplexor).

Given that there is already a relatively large Qat register file,
this suggests a better implementation structure would simply re-
place some of the registers with the pre-computed constants. The
software-only implementation of PBP[3] actually placed the con-
stants 0, 1, H(0), H(1), H(2), etc., in the first pbit descriptors, and it is
now clear that making @@ be 0, @1 be 1, @2 be H(0), @3 be H(1), etc.,
would be more efficient than having zero, one, and had instructions.
In retrospect, those operations were made instructions because the
qubit prohibition on copying a value would have required it — but
PBP has no such restriction.

3.3 Verilog Implementation of Qat next

As shown in Figure 8, the Verilog implementation of the Qat next
instruction ALU operation is significantly less straightforward than
any of the other Qat ALU functions. The underlying logic for the
Verilog design can be described as consisting of two steps:

(1) Make a (wire) copy of the AoB value, but with entanglement
channels from 0 to the channel specified by $d all set to 0.



ICPP Workshops °21, August 9-12, 2021, Lemont, IL, USA

module gatnext(r, aob, s);
parameter WAYS=16;

input [(1<<WAYS)-1:0] aob;
input [WAYS-1:0] s;
output [WAYS-1:0] r;

genvar pow2;
generate
wire [WAYS-1:0] tr;
for (pow2=WAYS-1; pow2>=0; pow2=pow2-1) begin:t
// wires named as t[pow2].v
wire [(2<<pow2)-1:0] v;
end
assign t[WAYS-1].v =
{((aob[(1<<WAYS)-1:1] >> s) << s), 1'b0};
for (pow2=WAYS-1; pow2>0; pow2=pow2-1) begin
assign {trlpow2], t[pow2-1].v} =
((|tLpow2].v[(1<<pow2)-1:0]1) ?
{1'b0, tlpow2].v[(1<<pow2)-1:0]%} :
{1'b1, tlpow2].v[(2<<pow2)-1:(1<<pow2)1});
end
assign tr[@0] = ~t[@].v[0];
assign r = ((t[QJ].v) ? tr : Q);
endgenerate
endmodule

Figure 8: Verilog next for WAYS-way entanglement.

This can be done using a barrel shifter to right-shift-out the
original bits in these positions and then left-shift back in 0s.
A barrel shifter generally requires O(logaN) gate delays for
N bits, or O(WAYS) gate delays for AoB supporting up to
WAYS-way entanglement.

(2) Implement a combinatorial count-trailing-zeros operation.
This operation is very similar to the count-leading-zeros
operation used in floating-point adders to determine the
shifting needed for normalization. It can be expressed as
a recursive decomposition in which each bit of the next
1’s entanglement channel number is computed in one step
examining 2K bit positions to determine bit k in the result.
The circuit delay really depends on the delay in testing for 2%
bits being non-zero, | t[pow2].v[(1<<pow2)-1:0@], as there
would be O(WAYS) such steps with varying k.

Thus, this operation might be performed with O(WAYS) gate de-
lays, but could approach O(WAYS?) gate delays if the hardware
implements the OR-reductions of step 2 using a tree of very narrow
(e.g., 2-input) OR gates. If OR-reduction is inefficient, the next ALU
function for 16-way entanglement might more appropriately be
split into several pipeline stages rather than executing within a
single clock cycle, but that transformation would be easy to imple-
ment and would not significantly affect pipeline throughput. It is
appropriate to note that the student versions limited WAYS to 8,
which is easily viable within a single pipeline stage.
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pint a = pint_mk(4, 15); // a=15

pint b = pint_h(4, oxof); // b=0..15

pint ¢ = pint_h(4, 0xf@); // c=0..15

pint d = pint_mul(b, c); // d=b*c

pint e = pint_eq(d, a); // e=(d==a)

pint f = pint_mul(e, b); // make non-factors @
pint_measure(f); // prints @, 1, 3, 5, 15

Figure 9: Word-level prime factoring of 15.

4 SAMPLE ALGORITHM

Although the focus of the current work is not use of the PBP model,
but efficiently implementing it, the Verilog implementations were
subjected to fairly extensive testing. None of the designs were
rendered to FPGAs nor ASICs, but all student projects were required
to show that their simulation testing constituted 100% line coverage
of the Verilog code they wrote. In addition, a simple algorithm
demonstrating the utility of the PBP model was given as a test
case. That algorithm is presented here as evidence that the PBP
model is capable of implementing interesting quantum-inspired
computations using the Tangled/Qat implementations.

4.1 Word-level Prime Factoring Algorithm

The word-level algorithm given in Figure 9 is a version of the prime
factoring algorithm discussed in the earlier software-only PBP
implementation[3], and that software was slightly modified to out-
put the gate-level operations rather than to perform them. In order
to fit the problem to the 8-way entanglement supported by the
student implementations, the problem was simplified to factoring
15, rather than 221.

The pint (pattern integer) algorithm begins by creating the
4-pbit value 15. It then creates two Hadamard-initialized 4-pbit
entangled superpositions, called b and c in the code. Note that the
entanglement channels used by b and c are disjoint; b uses H(0)
through H(3) and ¢ uses H(4) through H(7). Thus, when b*c is
computed, the result is actually 8-way entangled rather than 4-way.
Had b and c used the same entanglement channels, that multiplica-
tion would only have computed 4-way entangled squares. The next
step of the computation is to create an 8-way entangled single-pbit
value, e, which is 1 only where the multiplication produced the
value 15. Finally, multiplying e*b zeros the values of all non factors.
When the non-destructive measurement of f is made, the values 0,
1,3, 5, and 15 are printed: 0 because the non-factors were made 0,
1 and 15 because they are factors however trivial, and the desired
results 3 and 5.

4.2 Tangled/Qat Prime Factoring Algorithm

Converting this word-level algorithm into Tangled/Qat code was
done by modifying the software-only PBP implementation, but
some changes had to be made. The Tangled/Qat non-destructive
measurement mechanisms produce a single result at a time, and the
0, 1, and 15 results from the software implementation are effectively
irrelevant. Beyond that, Tangled/Qat allows explicit access to the
entanglement channels — because channel k would be representing
the fact that k%16==b, it is thus also unnecessary to perform the
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had @o,3 and @30,@9,@23 and @60,@58,@59
had @1,5 and @31,@29,@30 or @61,@49,@60
and @2,@0,@1 xor @32,@15,@16  xor @62,@43,@45
had @3,4 and @33,@13,@23 and @63,@61,@62
and @4,@0,@3 and @34,@32,@33 or @64,@46,@63
had @5,2 xor @35,@29,@30 xor @65,@61,@62
and @6,@5,@1 and @36,@34,@35 xor @66,@58,@59
and @7,@4,@6 or @37,@31,@36 xor @67,@55,@56
and @8,@5,@3 xor @38,@26,@27 xor @68,@53,@54
had @9,1 and @39,@37,@38 xor @69,@32,@33
and @10,@9,@1 or @40,@28,@39 and @70,@13,@3

and @11,@8,@10 xor @41,@22,@24 xor @71,@12,@14
and @12,@9,@3 and @42,@40,@41 and @72,Q@70,@71
had @13,0 or @43,@25,@42 and @73,@69,@72
and @14,@13,@1 had @44,7 and @74,@68,@73
and @15,@12,@14 and @45,@0,Q44 or @75,Q@Q74,@74

xor @16,@8,@10  and @46,@43,@45 not @75

and @17,@15,@16 xor @47,@40,@41 or @76,@67,@75
or @18,@11,@17 and @48,@5,@44  or @77,@66,@76
xor @19,@4,@6 and @49,@47,@48 or @78,@65,@77
and @20,@18,@19 xor @50,@37,@38 or @79,@64,@78
or @21,@7,20  and @51,@9,@44  or @80,@79,@79

and @22,@2,@21 and @52,@50,@51 not @80

had @23,6 xor @53,@34,@35 lex $0,31
and @24,@0,@23 and @54,@13,@44 next $0,@80
and @25,@22,@24 and @55,@53,@54 copy $1,%0
xor @26,@2,@21 xor @56,@50,@51 next $1,@80
and @27,@5,@23 and @57,@55,@56 lex $2,15
and @28,@26,@27 or @58,@52,@57 and $0,$2 ;5
xor @29,@18,@19 xor @59,@47,@48 and $1,%$2 ;3

Figure 10: Code prime factoring 15 (3 columns).

multiplication of e*b; the result is really encoded in the 1-valued
entanglement channels of e.

Figure 10 gives the complete Tangled/Qat code to place the prime
factors of 15 in registers $0 and $1. The operations up to not @80
were generated by the software-only system, and leave the value
of e in @80. To obtain the first prime factor, the remaining (hand
written) code simply looks for the first 1-value entanglement chan-
nels after the 1 and 15 factors. The last two and operations are
implementing the k%16 operation mentioned above.

It is useful to note that the operations used by the software-
only implementation use entirely conventional gates, and there
is no penalty for doing that in the Tangled/Qat version. Further,
the register allocation scheme greedily uses registers so that every
intermediate computation’s value is still available in a register at
the end of the computation; in fact, the system performed extra
operations just to preserve intermediate results. For example, the or
@80,@79,@79 operation is simply making a copy of @79 into @80 so
that the not will not destroy the value in @79. These inefficiencies
were maintained in the interest of more faithfully modeling the
software-only implementation’s computation, but far fewer regis-
ters, and fewer instructions, could have been used to obtain the
same results with Tangled/Qat.
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5 CONCLUSIONS

The primary conclusion on the current work must be that Tan-
gled/Qat was found to be a highly feasible bit-serial, massively-
parallel, SIMD computer architecture for Verilog implementation.
The work described also has demonstrated that, using the array
of bits (AoB) data structure, none of the parallel bit pattern (PBP)
concepts requires excessively complex conventional hardware to
provide an interesting, and flexible, implementation of entangled
superposition and operations on such values. This was shown by
pipelined synthesizable Verilog designs created and tested for 8-
way entanglement by eight separate 3-4 person student teams, as
well as by 16-way implementations created by the author.

Although the design of the Tangled instruction set was appro-
priate for this work, it proved to be surprisingly orthogonal to
the problems encountered in integrating the Qat PBP coprocessor.
Tight coupling of Qat, or a very similar design, should be relatively
simple with nearly any base instruction set. Qat’s lack of main
memory interface, instead focusing on a large set of AoB registers,
proved highly effective — and that facilitates separation between
the host processor and Qat.

However, it also was observed that Qat’s design was needlessly
complicated in various ways simply to make it seem more like a
quantum computer. Despite being “quantum-inspired” and having
many similar capabilities, Qat is very explicitly NOT a quan-
tum computer nor a simulation of quantum computation,
but implements a very different model that supports entangled
superposition. Most notably, the PBP model does not suffer the
quantum problems of limited coherence time, “no copying,” nor
requiring all operations to be reversible. PBP does have the extra
complication of explicitly managing entanglement channels, but
this did not result in implementation difficulties.

Relative to the Qat instructions summarized in Table 3, the fol-
lowing simplifications now seem justified:

e The swap and cswap instructions are the only instructions
requiring two AoB datapaths out of the Qat ALU and a sec-
ond write port on Qat’s register file. However, swap does
make some algorithms more efficient because it replaces
a three-instruction sequence, and cswap’s multiplexor-like
functionality also is useful. The “billiard-ball conservancy”
of these gates also could simplify reducing Qat’s power con-
sumption by using a (conventional) adiabatic logic imple-
mentation. Without using adiabatic logic, the performance
benefits seem to be outweighed by the hardware complexity,
and it would probably make better sense to implement these
operations as assembler macros rather than single instruc-
tions.

e The ccnot and cswap instructions are the only instructions
requiring a third read port on Qat’s register file and input
datapath to Qat’s ALU. This extra hardware does not ap-
pear to be justifiable on performance grounds, which argues
against including these as instructions. Both easily could be
implemented as assembler macros.

e The cnot @a,@b operation is actually equivalent to xor
@a,@a, @b, which makes it also an excellent candidate for
implementation as an assembler macro.
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o The initialization instructions, zero and one, were signifi-
cant in that quantum computers distinguish initialization
from quantum execution — but Qat does not. Since copying
is easy, it seems most reasonable to simply use two registers
to hold these constant values. The obvious choices would be
@0 for 0 and @1 for 1.

e In quantum computers, the Hadamard gate is used to create
superposition that cannot be specified as an initial state —
but that is not really a requirement in the PBP model. The
Qat instruction set thus treated had as an initialization in-
struction. While that proved feasible, the gate-level hard-
ware needed to generate a standard entangled superposi-
tion (for each of the WAYS-way possible entanglements)
is greater than that required to simply reserve constant-
initialized registers to hold these values. Thus, for the 16-way
entanglement in Qat, it would make sense to simply reserve
16 registers as @Ho, @H1, ..., @H15. Note that a quantum-like
reversible Hadamard operator can be implemented by XOR
with a Hadamard constant register.

In sum, the most important instructions for PBP are the meas and
next instructions. Viewing Qat as a bit-serial, massively-parallel,
SIMD, meas is recognizable as the relatively common SIMD ability
for the control unit (in this case, essentially Tangled) to sample
data from a single enabled processor. The next instruction is a new
concept created as part of the work reported here, but even it is
recognizable as closely related to parallel prefix operations. The
result is that Tangled/Qat have largely revealed that, by combining
the new PBP programming model with aggressive bit-level compiler
optimization and mostly conventional-looking, bit-serial, massively-
parallel, SIMD hardware, a surprisingly quantum-like system can
be constructed without using any exotic physics. It is not difficult
to imagine 1980s SIMD supercomputers[14] obtaining reasonable
efficiently executing a PBP model.

Of course, although Tangled/Qat works well implementing 16-
way entanglement, there is still the question of how large this ar-
chitecture can scale and how much power savings it will provide. It
appears that 16-way entanglement is near the practical scaling limit
for AoB representations. However, the PBP model does not sug-
gest representing higher degrees of entangled superposition using
AoB, but instead using regular expressions compressing patterns
in which AoB representations are treated as individual symbols.
It remains to be seen if the manipulation of regular patterns of
AoB blocks will effectively scale to very high entanglements while
keeping efficiency high and power consumption manageable.

Additional future work is expected to involve rendering an im-
proved version of the Tangled/Qat Verilog design to an FPGA to
directly measure qualities of a hardware implementation.
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