Parallel Bit Pattern Computing

Computing with Unconventional Technologies, IGSCC, Oct. 21, 2019

Henry (Hank) Dietz
Professor and Hardymon Chair, Electrical & Computer Engineering
I Want It All.

- Reduce power / computation... while getting speedup... while leveraging standard engineering practices... which requires CUT

- UTs we propose to use include:
 - Implement using low-power gates
 - Operate only on active bits
 - Apply compiler optimization at gate level
 - Amortize control logic overhead
 - N-way parallel without $O(N)$ hardware
Implement Using Low-Power Gates

- Traditional digital logic wastes power
 - Inputs are absorbed
 - Outputs are generated from Vcc/Gnd

- Adiabatic (thermodynamically reversible) logic could avoid that waste
 - Can recover energy
 - Can use “billiard ball conservancy”
E.g., **CSWAP (Fredkin) Gate**

- Functionally complete adiabatic gate
- All signals must be **unit-fanout**
- Efficient circuit & quantum implementations

![MUX and CSWAP Gates](image)
Operate Only On Active Bits

• How big is an int?
 – Typically, 32 bits
 – E.g., a value ∈ [0..100] only needs 7 bits
 – Why store, copy, & process inactive bits?

• SWARC (SIMD Within A Register C) operates on packed fields, saving space & operations

• BitC targets bit-serial nanocontrollers

• Specify floating-point accuracy, not precision
Apply Compiler Optimization At The Gate Level

- Compiler optimization applied at word level:

a=4; b=a-3; c=c+b; d=a*c; e=c*a*b;

 Becomes:

 a=4; b=1; ++c; d=c<<2; e=d;

- At gate level, improvement can be huge
unsigned int:4 a, b;
c = a + b;

- Unoptimized, 35 single-gate operations:

\[
c_0 = (a_0 \oplus b_0);
c_1 = ((a_0 \& b_0) \oplus (a_1 \oplus b_1));
c_2 = (((a_1 \& b_1) \mid ((a_0 \& b_0) \& (a_1 \oplus b_1))) \oplus (a_2 \oplus b_2));
c_3 = (((a_2 \& b_2) \mid (((a_1 \& b_1) \mid ((a_0 \& b_0) \& (a_1 \oplus b_1))) \& (a_2 \oplus b_2))) \oplus (a_3 \oplus b_3));
c_4 = (((a_3 \& b_3) \mid (((a_2 \& b_2) \mid (((a_1 \& b_1) \mid ((a_0 \& b_0) \& (a_1 \oplus b_1))) \& (a_2 \oplus b_2))) \& (a_3 \oplus b_3))));
\]
unsigned int:4 a, b;
c = a + b;

- Optimized, 17 single-gate operations:

 c0 = (a0 ^ b0);
 t0 = (a0 & b0);
 t1 = (a1 ^ b1);
 c1 = (t0 ^ t1);
 t2 = (a1 & b1);
 t3 = (t0 & t1);
 t4 = (t2 | t3);
 t5 = (a2 ^ b2);
 c2 = (t4 ^ t5);
 t6 = (a2 & b2);
 t7 = (t4 & t5);
 t8 = (t6 | t7);
 t9 = (a3 ^ b3);
 c3 = (t8 ^ t9);
 c4 = (((a3 & b3) | (t8 & t9)));
unsigned int:4 a, b;
c = a + b;

- Optimized, 17 single-gate operations:
unsigned int:4 a, b;
b = 1; c = a + b;

- Optimized, 7 single-gate operations:

c0 = \sim a0; c1 = (a0 \sim a1); t0 = (a0 & a1);
c2 = (a2 \sim t0); t1 = (a2 & t0); c3 = (a3 \sim t1);
c4 = (a3 & t1);

- By value forwarding, constant folding, algebraic simplification, and CSE... standard compiler optimizations!
```c
unsigned int:4 a, b;
b = 1; c = a + b;
```

- Optimized, 7 single-gate operations:
unsigned int:4 a, b;
b = a; c = a + b;

• Optimized, **ZERO** single-gate operations:
c0=0; c1=a0; c2=a1; c3=a2; c4=a3;

• Compiler simplified addition into a shift
• Shift left by one is literally changing where each bit of \(c \) is found, **doesn’t even copy bits**
unsigned int:4 a, b;
b = a; c = a + b;

- Optimized, **ZERO** single-gate operations:
Amortize Control Logic Overhead

• Much of a conventional machine’s **power** is spent implementing control logic
 – Dominates in conventional processors
 – Here, e.g., 1-bit ALU vs. increment the PC

• **Virtualized SIMD can hide overhead**
 – M-bit wide machine given $M \times N$ work
 – Cycling thru N can hide $O(N)$ overhead
 – Same trick used in CM1/2/200, GPUs, ...
N-way Parallel Execution Without N Units Of Hardware

- Parallel processing has been the primary way to obtain speedup, but N-way parallelism conventionally implies $O(N)$ hardware... and $O(N)$ power consumption

- The best known way to avoid this is Quantum computing... which is NOT what we’re doing, but understanding it clarifies our method
Quantum Computers at SC18

(Left: D-Wave, Center, right: IBM Q)
Bloch Sphere Qubit Model

\[|\psi\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle \]

\[= \cos(\theta/2) |0\rangle + (\cos \phi + i \sin \phi) \sin(\theta/2) |1\rangle \]

where \(0 \leq \theta \leq \pi\) and \(0 \leq \phi < 2\pi\)

- Value of a **Qubit** is a wave function
- Probability by coordinates on sphere surface
Parallel processing *without* parallel hardware.

- **Qubits** instead of bits
 - Each qubit can be 0, 1, or *superposed*
 - A “gate” operates on superposed values
 - *Entangled* qubits maintain values together
 - Measuring a qubit’s value picks 0 or 1

- Quantum computers are *not state machines*; all they implement is *combinatorial logic*

- Gates are implemented *in sequence*
KREQC: Kentucky’s Rotationally Emulated Quantum Computer

- 6 qubits simultaneously encode 2^6 6-bit values

“Spooky action at a distance via USB and servos”

Run it at http://aggregate.org/KREQC/
KREQC Program

// 1-bit full adder
p=; q=; carry=; parity=0;
g=1;
CSWAP(p, parity, g);
CSWAP(q, parity, g);
CSWAP(carry, parity, g);
CSWAP(parity, carry, g);
CSWAP(q, carry, g);

Simulation Output

<table>
<thead>
<tr>
<th>QUBIT</th>
<th>g</th>
<th>parity</th>
<th>carry</th>
<th>q</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>64</td>
<td>0</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>CSWAP</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>CSWAP</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>CSWAP</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>CSWAP</td>
<td>32</td>
<td>48</td>
<td>32</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>CSWAP</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

8/64
8/64
8/64
8/64
8/64
8/64
8/64

<table>
<thead>
<tr>
<th>g</th>
<th>parity</th>
<th>carry</th>
<th>q</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
How Does KREQC Work?

On **pattern bits**, **pbits**, not exactly qubits...

- **Superposition:**
 Each **pbit** is an **ordered** set of bit values
- Each gate is applied to all bits in the set
- **N-way entanglement:**
 The set of 2^N bit values is ordered such that each **position** is entangled across **pbits**
Addition Of Two 2-pbit Values

Superposed state of a pbit is a set of bits

N-way entangled pbit is ordered 2^N bits

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
\end{array}
\quad + \quad
\begin{array}{cccc}
3 & 1 & 3 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
\end{array}
= \begin{array}{cccc}
3 & 2 & 5 & 3 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{array}
\]
Parallel Bit Pattern Computing

- Provides `pint` interface as well as `pbit`
- Ordered bit set is compressed by coding a generative Regular Expression (RE):
 \[\{0, 0, 1, 1, 0, 0, 1, 1\} \rightarrow (0^2 1^2)^2\]
- Finding minimal RE is hard, but can just use Run Length Encoding (RLE) subset of REs:
 \[\{1, 0, 0, 0, 0, 1, 1, 1\} \rightarrow 1^1 0^4 1^3\]
- Operates on REs without expanding them
Parallel Bit Pattern Computing

- Can use symbols larger than 1 bit; prototype uses 4096-bit symbols (12-way entanglement) in patterns with up to 32-way entanglement

- Duplicate symbols are recognized (FBP – Factored Bit Parallel chunks)
 - Only keep one copy (with reference count)
 - Applicative caching of chunk operations

- Just-in-time optimizing compiler translates pint ops into optimized pbit ops
4 Fully-Entangled pbits
4 Fully-Entangled pbits

0 1 0 1
1 1 0 0
0 0 0 0
0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1
1 0 1 0
1 1 1 1
1 0 1 0
Complexity Of FBP Operations

<table>
<thead>
<tr>
<th>Operation Name</th>
<th>Operation Functionality</th>
<th>$O(\cdot)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, Hadamard</td>
<td>$a=$superposition of 0/1</td>
<td>R</td>
</tr>
<tr>
<td>NOT</td>
<td>Adiabatic $a = \text{NOT } a$</td>
<td>N</td>
</tr>
<tr>
<td>SWAP</td>
<td>Adiabatic exchange values of a and b</td>
<td>1</td>
</tr>
<tr>
<td>CCNOT, Toffoli</td>
<td>Adiabatic if a AND b, $c = \text{NOT } c$</td>
<td>N</td>
</tr>
<tr>
<td>CSWAP, Fredkin</td>
<td>Adiabatic if c, SWAP(a, b)</td>
<td>N</td>
</tr>
<tr>
<td>Duplicate</td>
<td>$a = b$</td>
<td>R</td>
</tr>
<tr>
<td>AND</td>
<td>$a = b$ AND c</td>
<td>N</td>
</tr>
<tr>
<td>OR</td>
<td>$a = b$ OR c</td>
<td>N</td>
</tr>
<tr>
<td>XOR</td>
<td>$a = b$ XOR c</td>
<td>N</td>
</tr>
<tr>
<td>All</td>
<td>Reduction, true if a is 1</td>
<td>1</td>
</tr>
<tr>
<td>Any</td>
<td>Reduction, true if a contains a 1</td>
<td>1</td>
</tr>
<tr>
<td>Population</td>
<td>Reduction, count of 1s in a</td>
<td>R</td>
</tr>
<tr>
<td>Simplify</td>
<td>Internal simplify regular expression</td>
<td>R</td>
</tr>
</tbody>
</table>

- R is # of symbols in the regular expression
- N is # of bits in the entangled value
An Example: Find $\sqrt{29929}$

- Initialize `pbit` (thus, also `pint`) system
  ```c
  pbit_init();
  ```

- Create a 16-`pbit` value of 29929
  ```c
  pint a = pint_mk(16, 29929);
  ```

- Create 8-way entangled Hadamard value, the superposition of 0, 1, 2, ... 255
  ```c
  pint b = pint_h(8, 0xff);
  ```

- Square all 256 possible values
  ```c
  pint c = pint_mul(b, b);
  ```
An Example: Find $\sqrt{29929}$

- Make an entangled value that’s 1 only where the squared value is equal to 29929
 \[
 \text{pint } d = \text{pint_eq}(c, \ a);
 \]

- Multiply entangled values of original guesses by the mask so only the solution is not 0
 \[
 \text{pint } e = \text{pint_mul}(d, \ b);
 \]

- Measure the result, printing all unique values
 \[
 \text{pint_measure}(e);
 \]
An Example: Find $\sqrt{29929}$

- The complete C program, prints 0 173

```c
int main(int argc, char **argv) {
    pbit_init();
    pint a = pint_mk(16, 29929);
    pint b = pint_h(8, 0xff);
    pint c = pint_mul(b, b);
    pint d = pint_eq(c, a);
    pint e = pint_mul(d, b);
    pint_measure(e);
}
```
An Example: Find $\sqrt{29929}$

- **310** single-gate operations:
Conclusions

• Green & sustainable computing isn’t just
 – Better power management
 – More efficient gates ...

• Use UTs to reduce power/computation

• Parallel Bit Pattern Computing might work
 – C laptop prototype: 32-way, ≥1024 pbit
 – Lots to fully implement & improve:
 architecture, C++ wrappers, pfloat, etc.
An Example: Find $\sqrt{29929}$

- Only 159 single-gate operations for BitC: