
Much Ado about Almost Nothing:
Compilation for Nanocontrollers

LCPC2003

11:40-12:00, Saturday, October 4, 2003

Hank Dietz, Shashi Arcot, and Sujana Gorantla
Electr ical and Computer Engineering Department
University of Kentucky
Lexington, KY 40506-0046
http://aggregate.org/hankd/

Much Ado about Almost Nothing



Slide 2/19

Why Nanocontrollers?

• Nanofabr ication techniques allow:

• Features as small as ˜30 nanometers

• Micrometer-scale devices: sensors, actuators, etc.

• Low-temperature processing (can build over circuitr y)

• How can we intelligently control thousands to millions of
micrometer-scale devices on a single chip?

• LOTS of signals with off-chip processing?

• LOTS of signals multiplexed by an on-chip processor?

• A massively-parallel computer on a chip:
LOTS of tiny nanocontrollers, one per device!

Much Ado about Almost Nothing



Slide 3/19

What Must A Nanocontroller Be Able To Do?

• Minimal Circuit Size

• Predictable Real-Time Behavior

• Localized Input/Output

• Coordination as a Parallel Computer

• Each nanocontroller independently programmable (MIMD)

• Reprogramability

Much Ado about Almost Nothing



Slide 4/19

Nanoprocessor/Nanocontroller Architecture

• No previous architectural model fits:

• Radical new architectures aren’t sufficiently developed

• MIMD is close, but circuit complexity is too high...
especially for program memor y

• SIMD is ver y close...
but PEs are not independently programmable

• SIMD executing MIMD code by inter pretation also needs
too much local memory for programs

• Kentucky Architecture is SIMD-like hardware with compiler
technology that transfor ms MIMD code into pure SIMD
code so control flow is entirely replaced by selection

Much Ado about Almost Nothing



Slide 5/19

Meta-State Conversion (MSC)

• Dev eloped in 1992-1993 for MasPar MP-1 distributed-
memor y SIMD to execute shared-memory MIMD code

• State-space transfor mation, like NFA-to-DFA conversion;
in practice, number of states grows slowly

• A SIMD Meta State corresponds to each set of possibly
temporally co-existant MIMD node states

• Code within a Meta State is executed with processors
enabled only for the code they should execute

• Common Subexpression Induction (CSI) is used to
create common instruction sequences, thereby minimizing
disable time for each processing element

Much Ado about Almost Nothing



Slide 6/19

A Simple MSC Example

if (A) { do {B} while (C); else do {D} while (E); } F

Much Ado about Almost Nothing



Slide 7/19

The Current Paper’s Approach

• Implement nanocontrollers using:

• Simplified Kentucky Architecture design, KITE, which
reduces ALU to a single 1-of-2 Multiplexor

• Compilation of word-level operations directly into bit-
level If-Then-Else (ITE) operations optimized by
techniques borrowed from logic optimization

• Greatly simplified MSC and CSI due to the fact that ITEs
directly implement enable masking

• Disclaimers: no KITE hardware has been built and the
compiler system described is a research proof-of-concept

Much Ado about Almost Nothing



Slide 8/19

KITE: Kentucky If-Then-Else

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

M
ux

TWRW

RN

IW EW
Register File

Nanoprocessor

RN RW

Sequencer

C0 A D

IW TW EW

OUT IN

Control Unit

SITEC1 GOR

SITEC1

ti e

Much Ado about Almost Nothing



Slide 9/19

KITE: Kentucky If-Then-Else

• Only instruction is SITE: Store-If-Then-Else

• Control unit like VLIW multiway branch unit, not SIMD CU:

• No scalar instructions in CU

• Fancy management for fetch and caching of
compressed basic blocks of instructions tagged with
multiway exit arcs

• Clock rate determined by (possibly off-chip) instruction
memor y

• Sequencers fed SITEs at intermediate clock rate, locally
broadcast control signals at full clock rate

• Nanoprocessor/Nanocontroller runs at full clock rate, 4
cycles/SITE

Much Ado about Almost Nothing



Slide 10/19

Programming Language: BitC

• A very small C dialect

• Minor extensions to C data types:

• Explicit precision; e.g., int:3 a;

• I/O and communications; e.g., int:1 adc@5;

• All applicable C operators plus a few others:
?< (min), ?> (max), $ (population count), etc.

• The usual control flow, but no recursive functions

Much Ado about Almost Nothing



Slide 11/19

Transforming Word-Level To Bit-Level

• BitC code:

unsigned int:2 a, b, c;

c = a + b;

• Function on arbitrar y-precision values:
(in fact, a 3-bit result is computed and top bit is ignored)

{c1, c0} = {a1, a0} + {b1, b0}

• Bitwise logic expressions:

c0 = (a0 XOR b0)

c1 = ((a1 XOR b1) XOR (a0 AND b0))

Much Ado about Almost Nothing



Slide 12/19

ITE Equivalents For Familiar Logic Operations

• Like NAND, ITEs are complete

• XORs are not efficiently represented using ITEs

Much Ado about Almost Nothing



Slide 13/19

Transformation Into ITEs

• Bitwise logic expressions:

c0 = (a0 XOR b0)

c1 = ((a1 XOR b1) XOR (a0 AND b0))

• ITE equivalents:

c0 = (a0 ? (b0 ? 0 : 1) : b0)

c1 = ((a1 ? (b1 ? 0 : 1) : b1) ?

((a0 ? b0 : 0) ? 0 : 1) : (a0 ? b0 : 0))

• But those aren’t the ITEs we actually generate...

Much Ado about Almost Nothing



Slide 14/19

Optimization Of ITEs

• Can use Multi-level Multi-value Logic Minimization

• Nor mal form is identical for equivalent circuits

• Bryant Normal For m for BDDs of the for m (a ? b : c):

• Require a is an input, lexically before inputs in b and c

• Kar plus improvements to Bryant’s nor malization:

• More direct production of normal for m...

• Kar plus Nor mal Form:

• Allow NOT of a, b, or c (to make for m more compact)

• Require inputs in a, b, and c to be lexically ordered

Much Ado about Almost Nothing



Slide 15/19

Br yant Normal Form

r0

64(2?0:1) 66(3?0:1)

r1r2

65(4?64:2) 67(3?2:64) 69(3?64:2)

r3

70(4?69:3)

r4

68(4?67:66)

r5

71(5?68:70)

r6=65

r7=71

Much Ado about Almost Nothing



Slide 16/19

A Larger Example: int:8 a; a=a*a;

r0

64(3?2:0)65(4?3:0) 66(2?0:1) 72(3?0:2)75(5?4:0) r3=0

70(3?66:0) 77(3?0:66)85(4?81:0)99(5?98:0)

83(4?68:0) 86(4?0:67)92(4?0:77)

100(5?0:78)

r1

69(3?1:2) 81(3?2:1)98(4?3:1)

68(3?66:1) 79(3?1:66)

r2

87(4?2:3)

67(3?66:2) 88(4?66:2)93(4?2:81)

71(4?67:2)80(4?79:2) 84(4?77:2) 104(5?88:2)

96(5?95:2)105(5?2:82)

r3

74(4?70:3)101(4?77:3)

107(5?106:3) 108(5?3:83)

r4

76(4?72:64)

73(4?69:67)78(4?77:69) 82(4?81:70) 95(4?67:66)106(4?81:67)

r5

91(5?87:65)

89(5?84:85) 90(5?86:71)94(5?92:73)97(5?93:74)102(5?101:67) 103(5?67:80)

r6

109(6?90:91) 110(6?94:96)111(6?97:99)112(6?100:102) 113(6?103:104)114(6?105:107) 115(6?108:75)

r7

116(7?110:111)117(7?112:113)118(7?114:115)

r8

119(8?117:118)

r4=70 r5=76

r6=89

r7=109

r8=116

r9=119

Much Ado about Almost Nothing



Slide 17/19

Predication (Selection) Is Trivial Using ITEs

• Consider :

if (a) { b=c; if (d) e=f; else g=h; i=j; } k=l;

• By simple if-conversion, we get:

b = (a ? c : b);

e = ((a ? d : 0) ? f : e);

g = ((a ? (d ? 0 : 1) : 0) ? h : g); /* typo in paper swaps h, g */
i = (a ? j : i);

k = l;

• This is precisely what MSC+CSI guards look like!

Much Ado about Almost Nothing



Slide 18/19

Preliminar y Results

• Compiler speed is not a problem

• Complexity of high-precision XOR-based arithmetic:
Br yant’s for m for int:12 a,b; a=a*b; has 156,392 ITEs;
use multiple-state sequence for high precision?

• Nor mal form perfectly recognizes word-level identities,
although it wasn’t told about any of them...
e.g., int a,b; a=a+b; a=a-b; generates no ITEs!

• Nor mal form could be used to disambiguate indirect
references...

Much Ado about Almost Nothing



Slide 19/19

Conclusion

• ITE-based multi-level multi-value logic minimization can be
used to optimize compiler’s bit-level coding of word-level
operations, while dramatically simplifying MSC+CSI

• SITE-based KITE architecture viable as a nanocontroller;
circuit complexity potentially ˜100 transistors/processor

• ITE normal for ms have beneficial side-effects in
recognizing equivalence of expressions

• Yet to be done: register allocation, instruction block
encoding, implementation of KITE system

Much Ado about Almost Nothing


