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Abstract — In MIMD (Multiple Instruction stream, Multi-
ple Data stream) execution, each processor has its own state.
Although these states are generally considered to be indepen-
dent entities, it is also possible to view the set of processor
states at a particular time as single, aggregate, “Meta State.”
Once a program has been converted into a single finite automa-
ton based on Meta States, only a single program counter is
needed. Hence, it is possible to duplicate the MIMD execution
using SIMD (Single Instruction stream, Multiple Data stream)
hardware without the overhead of interpretation or even of hav-
ing each processing element keep a copy of the MIMD code. In
this paper, we present an algorithm for Meta-State Conversion
(MSC) and explore some properties of the technique.

1. Introduction

The differences between data parallelism (SIMD execu-
tion) and control parallelism (MIMD execution) are at least
superficially quite large. In a data parallel program, parallelism
is specified in terms of performing the same operation simulta-
neously on all elements of a data structure; this naturally fits the
SIMD execution model. It is also easy to see that, because the
abilities of a MIMD are a superset of the abilities of a SIMD,
the data parallel model can be extended to MIMD targets [11]
[7]. However, the control parallel model suggests that each pro-
cessor can take its own path independent of all others, and this
characteristic seems to require the multiple instruction streams
possible only in MIMD execution. Control parallelism is
impossible on a SIMD with only one instruction stream... or is
it?

There are two basic approaches that might allow SIMD
hardware to efficiently support a control parallel programming
model: “MIMD emulation” and “meta-state conversion.”

1.1. MIMD Emulation

Perhaps the most obvious way to make SIMD hardware
mimic MIMD execution is to write a SIMD program that will
interpretively execute a MIMD instruction set. In the simplest
terms, such an interpreter has a data structure, replicated in each
SIMD PE, that corresponds to the internal registers of each
MIMD processor. Likewise, each PE’s memory holds a copy of
the MIMD code to be executed. Hence, the interpreter structure
can be as simple as:
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Basic MIMD Interpreter Algorithm

1. Each PE fetches an “instruction” into its “instruction regis-
ter” (IR) and updates its “program counter” (PC).

2. Each PE decodes the “instruction” from its IR.

3. Repeat steps 3a-3c for each “instruction” type:

3.a Disable all PEs where the IR holds an “instruction” of a
different type.

3.b Simulate execution of the “instruction” on the enabled
PEs.

3.c Enable all PEs.

4. Go to step 1.

The only difficulty in implementing an interpreter with the
above structure is that the simulated machine will be very ineffi-
cient.

A number of researchers have used a wide range of
“tricks” to produce more efficient MIMD interpreters [9], [12],
and [3]. However, some overhead cannot be removed:

1. Instructions must be fetched and decoded.

2. Instructions must be accessible to all PEs, hence, each PE
typically will have a copy of the entire MIMD program’s
instructions. In a massively-parallel machine, this wastes a
huge amount of memory.

3. There will be some overhead associated with the interpreter
itself, e.g., the cost of jumping back to the start of the inter-
preter loop.

Although problems 1 and 3 merely slow the execution, the sec-
ond severely restricts the size of MIMD programs. For exam-
ple, the Purdue University School of Electrical Engineering has
a 16K processing element MasPar MP-1 [1] with only 16K
bytes of local memory for each PE. Even with very careful
encoding, 16K bytes cannot hold a very large MIMD program.

Although meta-state conversion is more difficult to imple-
ment and more restrictive in its abilities, it can eliminate even
these three overhead problems.

1.2. Meta-State Conversion

In MIMD execution, each processor has its own state.
Although these states are generally considered to be indepen-
dent entities, it is also possible to view the set of processor
states at a particular time as single, aggregate, “Meta State.”
Using static analysis based on the timing described in [6], a
compiler can convert the MIMD program into an automaton
based on meta states.

Once a program has been converted into the form of a
meta-state automaton, it is no longer necessary for each PE to
fetch and decode instructions, nor is it necessary that each PE



have a copy of the program in local memory. Only the SIMD
control unit needs to have a copy of the meta-state automaton;
PEs merely hold data. Further, because there is no interpreter,
there is no interpretation overhead. Literally, the meta-state
automaton is a SIMD program that preserves the relative timing
properties of MIMD execution.

However, just as interpretation has drawbacks, so too
does meta-state conversion:

1. If there are N processors each of which can be in any of S
states, then it is possible that there may be as many as S!/(S-
N)! states in the meta-state automaton. Without some
means to ensure that the state space is kept manageable, the
technique is not practical.

2. In execution, meta-state transitions are based on examining
the aggregate of the MIMD state transitions for all proces-
sors.

3. Meta-state transitions are N-way branches keyed by the
aggregate of the MIMD state transitions.

4. Dynamic creation of new processes is difficult to accommo-
date, since construction of the meta-state automaton
requires that all possible MIMD states can be predicted at
compile time.

Fortunately, we hav e developed a number of techniques that can
control the state space explosion suggested above. Making
meta-state transitions based on aggregate information is concep-
tually simple, but requires some hardware support, e.g., the
“global or” of the MasPar MP-1 [1]. The efficient implementa-
tion of N-way branches is a difficult problem, but can be
accomplished using customized hash functions indexing jump
tables [5]. Unfortunately, the fully dynamic creation of pro-
cesses seems to be impractical — but that is exactly the case in
which the interpretation scheme works best. Consequently, this
paper focuses on techniques to control the state explosion, and
restricts the input MIMD code to be formulated as an SPMD
program.

The second section of this paper presents the meta-state
conversion algorithm, using an example to clarify the process.
Section 3 discusses issues involving how the resulting meta-
state automaton can be efficiently encoded for SIMD execution.
In section 4, we discuss how the prototype implementation was
constructed, and give a simple example of the output generated.
Finally, section five summarizes the contributions of this work
and directions for future study.

2. Meta-State Conversion

The meta-state conversion algorithm is surprisingly
straightforward; perhaps it would be more accurate to say that it
is familiar. The process of converting a set of MIMD states that
exist at a particular point in time into a single meta state is strik-
ingly similar to the process of converting an NFA into a DFA,
as used in constructing lexical analyzers.

To begin, the code for the MIMD processes is converted
into a set of control flow graphs in which each node (MIMD
state) represents a basic block [2]. Each of these MIMD states
has zero, one, or two, exit arcs. A MIMD state with no exit arcs
marks the end of that process. A single exit arc represents
unconditional sequencing (e.g., an unconditional branch),

whereas two exit arcs respectively represent the “TRUE” and
“FALSE” successors of that MIMD state (e.g., targets of a con-
ditional branch). In addition, it is assumed that we know in
which particular MIMD state each process begins execution;
these states are called MIMD start states.

The set of MIMD start states forms the start state of the
meta-state automaton. Since each MIMD start state may have
up to two successors, each process may pick either of its two
possible successors. If we further assume that there may be
multiple processes in each MIMD state, it is further possible
that both successors might be chosen. Hence, for a meta state
that consists of one MIMD start state, there may be as many as
three meta-state successors. In general, from n MIMD start
states, there could be as many as 3n meta-state successors.

To clarify the operation of the algorithm, we will trace the
algorithm’s actions on a simple example. The framework for
the example is the following SPMD code:

if (A) {
do { B } while (C);

} else {
do { D } while (E);

}
F

Listing 1: Example MIMD (SPMD) Code

It is assumed that all processors begin executing this code
simultaneously and that processors computing different values
for the parallel expressions A, C, and E are the only sources of
asynchrony (i.e., there are no external interrupts).

2.1. Construction of the MIMD Control-Flow Graph

Before meta-state conversion can be applied, the program
must be converted into a form that facilitates the analysis. The
most convenient form is that of a traditional control-flow graph
in which each node represents a maximal basic block. Con-
structing the control-flow graph in the usual way, code straight-
ening [2] and removal of empty nodes are applied to obtain the
simplest possible graph. The result of this is figure 1. State 0
corresponds to block A, state 2 corresponds to B followed by C,
state 6 corresponds to D followed by E, and state 9 corresponds
to F.

0

2 6

9

Figure 1: MIMD State Graph for Listing 1



2.2. Handling Of Function Calls

Although our example case does not contain any function
calls, it is important that meta-state conversion be applicable to
codes that contain arbitrary function calls — perhaps including
recursive function invocations. Thus, we need some way to rep-
resent function call/return directly using control flow arcs in the
MIMD state graph.

In the case of non-recursive function calls, it is sufficient
to use the traditional solution of in-line expansion of the func-
tion code (i.e., of the MIMD state graph for the function body).
Surprisingly, recursive function calls also can be treated using
in-line expansion — and an additional “trick” that converts
return statements into ordinary multiway branches.

Consider the following C-like code fragment in which the
main program invokes the recursive function g:

main()
...

a: g();
b: ...
c: g();
d: ...
}

g()
{

...
g();

e: ...
}

Listing 2: Example Recursive Function Call

The only difficulty in in-line expanding g is that the target of
any return statements in g is not known until runtime. How-
ev er, at compile time we can compute the set of all possible
return targets given that g was initially invoked from a par-
ticular position.

When in-line expanding the call to g from position a, we
know that any return statements within g must return to
either position b or e, and can replace the return statements
with the appropriate multiway branch. Likewise, when in-line
expanding g called from position c, return statements are
translated into multiway branches targeting d or e. The result
is a call-free control flow graph for the entire program; thus, the
meta-state conversion algorithm can ignore the direct handling
of function calls without loss of generality.

2.3. Base Conversion Algorithm

The following C-based pseudo code gives the base algo-
rithm for meta-state conversion.

meta_state_convert(x)
set x;
{
/* Given the start meta state x,

generate the rest of the automaton
*/

do {
/* Mark this meta state as done */
mark_meta_state_done(x);

/* Add arcs to meta states y| x→y */
reach(x, x, ∅);

/* Get another meta state */
x = get_unmarked_meta_state();

/* Repeat for that meta state */
} while (x != ∅);

}

int
reach(start, s, t)
set start, s, t;
{
/* Make entries for all meta states

t| start→t
*/
if (s == ∅) {
/* All MIMD state transitions from

within start have been considered,
hence, t must be a meta state

*/
make_meta_state_transition(start, t);
} else {
/* Select a MIMD state and process

its transition(s), recursing to
complete the meta state

*/
element e, next, fnext;

e = [e| e ∈ s];
s = s - {e};
next = next_MIMD_state(e);
fnext = next_MIMD_state_if_false(e);

/* Take each path and both paths */
if (next) {
reach(start, s, t ∪ next);
if (fnext) {
reach(start, s, t ∪ fnext);
reach(start, s, t ∪ next ∪ fnext);
}

} else {
reach(start, s, t);

}
}
}

Applying the above algorithm to our simple example, the
resulting meta-state graph is given in figure 2.
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Figure 2: Meta-State Graph for Listing 1

2.4. MIMD State Time Splitting Algorithm

In the base conversion algorithm, we made the assump-
tion that each MIMD state took exactly the same amount of
time to execute. However, such an assumption is unrealistic:

• If each instruction is treated as a separate MIMD state, then
reasonable size programs will generate unreasonably large
automata. This makes the analysis for meta-state conversion
much slower and also can result in an impractically large
meta-state automaton. In addition, some computers have
instruction sets in which even the execution time of different
types of instruction varies widely.

• If instead we simply treat each maximal basic block as a
MIMD state and ignore the differences in execution time
between these blocks, this can result in very poor processor
utilization. For example, if a block that takes 5 clock cycles
to execute is placed in the same meta-state as one that takes
100 cycles, then the parallel machine may spend up to 95%
of its processor cycles simply waiting for the transition to the
next meta state.

In other words, the meta-state automaton embodies an execution
time schedule for the code, and it is necessary that the execution
time of each block be taken into account if a good schedule is to
be produced.

There are many possible ways in which timing informa-
tion could be incorporated, but our overriding concern must be
keeping the state space manageable, and this greatly restricts
the choice. Clearly, the smallest MIMD state automaton results
from treating each maximal basic block as a MIMD state;
hence, this will be our initial assumption. As the conversion is
being performed, we may be fortunate enough to have all the
MIMD states merged into each meta state happen to have the
same cost. If the costs differ, but do not differ by a significant
enough amount, we can ignore the difference.

This leaves only the case of a meta state that contains
MIMD states of widely varying cost, for example, the 5 and 100
cycle MIMD states mentioned above. The solution we propose
is a simple heuristic that will break the 100 cycle MIMD state
into an approximately 5 cycle MIMD state which is uncondi-
tionally followed by the remaining portion of the original 100
cycle state. Since this change might also affect the construction
of other meta states that had incorporated the original 100 cycle
MIMD state, the construction of the meta-state automaton is
restarted to ensure that the final meta-state automaton is consis-
tent.

The following pseudocode gives the algorithm for per-
forming MIMD state splitting based on the variation in timing
within a meta state. It would be invoked on each meta state as it
is created.

flag
time_split_state(s)
set s;
{
/* Determine if time imbalance between

MIMD states within the meta state s
is sufficient to time split the more
expensive MIMD states to get better
balance; this assumes that each MIMD
state already has an execution time
associated with it

*/
flag didsplit;

/* Ignore zero time components because
you can’t do anything about them

*/
s = s - {e| e ∈ s, time(e) == 0};

/* Get min and max MIMD state times */
min = min_MIMD_state_time(s);
max = max_MIMD_state_time(s);

/* Is enough time wasted to be worth
splitting? Not if the difference
between times is already at noise
level (split_delta) or if the
utilization is already sure to be
greater than an acceptable
percentage (split_percentage)

*/
if ((min + split_delta) > max) {
return(FALSE);
}
if (min > ((split_percent*max)/100)) {
return(FALSE);
}

/* Splitting seems useful... do it */
didsplit = FALSE;
while (s != ∅) {
element e;

e = [e| e ∈ s];
s = s - {e};
if (time(e) > min) {
/* If possible, split this node into

two nodes, the first with time



≈ min, the second with the
remaining time...

*/
...
didsplit = TRUE;

}
}

return(didsplit);
}

The splitting of a state is illustrated in the next two fig-
ures. The relevant portion of the initial MIMD state graph is:

α β

tα tβ

Figure 3: MIMD States Before Time Splitting

Suppose that meta-state conversion would combine states α and
β and that β takes much longer to execute than α, i.e., tα<tβ.
The state splitting algorithm would attempt to convert this por-
tion of the state graph into:

β’

β’’

tα

tβ—tα

tα

α

Figure 4: MIMD States After Time Splitting

Thus, states α and β’ would be merged — without any idle time
being introduced for either thread of execution.

2.5. Meta State Compression Algorithm

Despite the reduction in state space possible using maxi-
mal basic blocks and time splitting, the automata created can be
very large. Hence, it is useful to find a way to reduce the upper
bound on the number of meta states created.

Because MIMD nodes with zero or one exit arc can only
increase the state space linearly, the explosion in meta state
space is related to the occurrence of MIMD states that have two

exit arcs. Each such MIMD state could contribute three meta
states: the TRUE successor, FALSE successor, and both succes-
sors. However, if there are many processes in any giv en MIMD
state, it is easy to see that the most probable case is that of both
successors. Further, the case of both successors can always
emulate either successor, since it has the code for both. Thus, a
very dramatic reduction in meta state space can be obtained by
simply assuming that both successors are always taken.

int
reach(start, s, t)
set start, s, t;
{
/* Make entries for all meta states

t| start→t
*/

if (s == ∅) {
/* All MIMD state transitions from

within start have been considered,
hence, t must be a meta state

*/
make_meta_state_transition(start, t);
} else {
/* Select a MIMD state and process

its transition(s), recursing to
complete the meta state

*/
element e, next, fnext;

e = [e| e ∈ s];
s = s - {e};
next = next_MIMD_state(e);
fnext = next_MIMD_state_if_false(e);

/* Always take all possible paths... */
if (next) {
if (fnext) {
reach(start, s, t ∪ next ∪ fnext);

} else {
reach(start, s, t ∪ next);

}
} else {
reach(start, s, t);
}
}

}

Returning to our example code, the meta-state compres-
sion algorithm results in a graph with only two meta-states,
compared to eight for the uncompressed graph:
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Figure 5: Compressed Meta-State Graph for Listing 1

Notice that meta-state transitions into compressed portions of
the graph are unconditional; i.e., there is no need to use a
globalor to determine what states are present. The disad-
vantage is that the average meta-state is wider, which implies
that the SIMD implementation will be less efficient.

2.6. Barrier Synchronization Algorithm

While the above compression scheme produces very
small automata, it does increase overhead somewhat in that
each meta state becomes much more complex. Hence, it is use-
ful to seek yet another method to reduce the state space — with-
out adding to the complexity of each meta state. Careful use of
barrier synchronization provides such a mechanism.

set
barrier_sync(s)
set s;
{
/* If s is a meta state that contains a

MIMD state which is a barrier
synchronization point, then the
barrier should prevent any
transitions past that MIMD state.
Hence, unless all processors have
reached the barrier (i.e., every MIMD
state within s is a barrier state),
simply remove barrier states from s

*/
set waits;

/* Construct the set of MIMD barrier
wait states within s

*/
waits = {e| e ∈ s, is_barrier_wait(e) == TRUE};

/* Has everyone reached the barrier? */
if (waits == s) {
/* Yes; go into all barrier state */
return(waits);

} else {
/* No; remove barriers from s */
return(s - waits);

}
}

For example, consider modifying the code framework of
listing 1 to contain a barrier sync at the end of the if:

if (A) {
do { B } while (C);

} else {
do { D } while (E);

}
wait; /* barrier sync. of all threads */
F

Listing 3: Listing 1 + Barrier Synchronization

The barrier synchronization does not result in a runtime opera-
tion, but rather constrains the asynchrony as defined by the
above algorithm. The result is a meta-state graph of the form:
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Figure 6: Meta-State Graph for Listing 3

3. SIMD Coding of the Meta-State Automaton

Given a MIMD program that has been converted into a
meta-state graph, it is not trivial to find an efficient coding of
the meta-state automaton for a SIMD architecture. The meta-
state graph does reduce control flow to a single instruction
stream, but that instruction stream would appear to execute dif-
ferent types of instructions in parallel — the meta-state graph
employs a variation on VLIW semantics.

There are two aspects of the graph that mirror VLIW
constructions1: the apparently simultaneous execution of differ-
ent types of instructions and the use of multiway branches gen-
erated by merging multiple (binary) branches. Thus, we must
efficiently implement these VLIW-like execution structures on
SIMD hardware.

3.1. Common Subexpression Induction

Any meta state that merged two or more MIMD states
effectively contains multiple instruction sequences that are

1 The meta-state graph is not suitable for execution on a tradi-
tional VLIW because which processing elements execute which
instructions is determined statically for VLIW, but dynamically in
the graph. I.e., the graph would be appropriate for a VLIW in which
each processing element could select at runtime which instruction
field it would execute, rather than having each processing element
statically associated with a particular instruction field.



supposed to execute simultaneously. Giv en that it is impossible
for a traditional SIMD machine to simultaneously execute dif-
ferent types of instructions on different processing elements, it
would appear that these operations will have to be serialized.
However, it is quite possible and practical that any operations
that would be performed by more than one sequence can be
executed in parallel by all processors. Common subexpression
induction (CSI) [4] is an optimization technique that identifies
these operations and “factors” them out.

The CSI algorithm analyzes a segment of code containing
operations executed by any of multiple threads (enabled sets of
SIMD PEs). From this analysis, it determines where threads
can share the same code and what cost is associated with induc-
ing that sharing. Finally, it generates a code schedule that uses
this sharing, where appropriate, to achieve the minimum execu-
tion time. Unfortunately, this implies that the CSI algorithm is
not simple.

The algorithm can be summarized as follows. First, a
guarded DAG is constructed for the input, then this DAG is
improved using inter-thread CSE. The improved DAG is then
used to compute information for pruning the search: earliest and
latest, operation classes, and theoretical lower bound on execu-
tion time. Next, this information is used to create a linear
schedule (SIMD execution sequence), which is improved using
a cheap approximate search and then used as the initial schedule
for the permutation-in-range search that is the core of the CSI
optimization.

3.2. Multiway Branch Encoding

At the end of each meta-state’s execution, a particular
type of multiway branch must be executed to move the SIMD
machine into the correct next meta state. Before discussing the
encoding of these multiway branches, it is useful to specify the
precise semantics of meta-state transitions, so that an optimal
coding can be achieved. The following defines the possible
types of meta-state transitions.

3.2.1. No Exit Arc

A meta state without an exit arc is a terminal node, i.e., it
represents the end of the program’s execution. Thus, it is
implicitly followed by a return to the operating system. There
is no difficulty in generating code to implement this.

3.2.2. Single Exit Arc

If there is a single exit arc from a meta state, the code for
that meta state is is followed by a goto (aka, jump) to the
code for the target meta state. Again, it is simple to generate an
efficient coding.

Notice that all entries to compressed meta states fall into
this category.

3.2.3. Multiple Exit Arcs

If there are multiple exit arcs from a meta state, then the
aggregate of the “pc” values for each of the processing elements
must be used to determine the next state. For example, when, at
the end of executing a meta state, some processing elements
have “pc” value 2 and others have “pc” value 6, meta state

{2,6} is the next state. In order to efficiently collect this aggre-
gate, each possible “pc” value is assigned a bit; thus, a glob-
alor of the “pc” values from all processors determines the
aggregate.

3.2.4. Multiple Exit Arcs Involving Barriers

The treatment of multiple exit arcs must be slightly
adjusted if some, but not all, of the processing elements have
reached a barrier at the time a meta state’s execution completes.
For example, in figure 6 the transitions from meta states 2,
{2,6}, and 6 into 2, {2,6}, and 6 would not be sufficient if even
one processing element had reached the barrier (i.e., meta state
9). Consequently, the processing elements are allowed to set
their “pc” value to 9, but they are not permitted to enter meta
state 9 unless all “pc”’s are 9.

This is accomplished by a simple check to see if (glob-
alor pc) is contained within the set of all barrier states. If it is,
then the state transition proceeds normally. Otherwise, the next
meta state is determined by subtracting the set of all barrier
states from the result of the globalor.

3.2.5. Restricted Dynamic Process Creation

Although the completely static nature of meta-state con-
version makes it impossible to efficiently support forking of
new processes to execute different programs, a minor encoding
trick can be used to implement a restricted form of dynamic
process creation. This restricted type of spawn instruction
looks just like a conditional jump, except the semantics are that
both paths must be taken (i.e., the compressed meta state transi-
tion rule). One exit is taken by the original processes, the other
by the newly created processes.

Initially, processing elements that are not in use would be
given a “pc” value indicating that they are not in any meta state.
When a spawn(x) instruction is reached by N processing ele-
ments, the original N processing elements do not change their
pc values, but N currently-disabled processing elements are
selected and their pc values are set to x. No other changes are
needed, provided that the number of processes requested does
not exceed the number of processors available.

Note further that processors that complete their processes
early can be returned to the pool of free processors by simply
executing a halt instruction to set their pc value to indicate
that they are not in any meta state.

3.3. Allocation of Bits for “pc” Values

Although it is easy to implement each “pc” value by
assigning a different bit to each MIMD state, this would result
in impractically long bit strings for large meta state automata.
Thus, although conceptually a different bit is used to represent
each MIMD state, bits actually can be reused without changing
the basic conversion algorithm. This bit allocation problem is
similar to that of allocating registers to values where the number
of values can be larger than the number of registers. However,
unlike register allocation, there is no concept of “spilling” a bit
position; if an allocation is not found using maxbit bits, we must
increase the number of bits. Fortunately, it is unlikely that
maxbit will need to be large; in our preliminary experiments, it
never was necessary to use more than 8 bits.



Intuitively, there are just two rules that govern the reuse
of a bit to represent multiple MIMD states:

1. No two MIMD states contained within the same meta state
can be allocated the same bit. If this were violated, it would
be impossible to tell which code within that meta state
should be executed by each processing element.

2. No two meta states which are successors of the same meta
state (i.e., which are sibling meta states) can be allocated the
same bit pattern. If two siblings had the same bit pattern,
the meta state automaton would not be able to decide which
of these sibling meta states to execute.

The algorithm which we have implemented is given below. It
applies rule 1 directly, but uses a safe approximation to rule 2.
The approximation is simply that no two distinct MIMD states
that appear in sibling meta states are allocated the same bit.

allocate_bits(maxbit)
int maxbit;
{
/* Allocate bits to "pc" values, using at

most maxbit bits. Returns with ERROR
if need more than maxbit bits.

*/
set M, C, S;
int pos, pat, n, c_n, bit[];

M = {m| m ∈ meta states};

/* Assign start state bit 0 */
m0 = (start meta state ∈ M);
bit[m0] = 20;

for (m| m ∈ (M - m0)) {
/* Set of all next meta states of m */
C = {c| c ∈ M, m→c };
S = {s| s ∈ C, bits of s have been allocated };
C = C - S;

/* OR patterns of all members of S */
pat = OR(p| p is a pattern of some s ∈ S);
n = # of distinct MIMD states in S;
if (# of 1 bits in pat ≠ n) {
/* Some MIMD states have same bit pattern */
return(ERROR);

}

if (C != ∅)) {
/* There are some MIMD states whose

bit patterns need to be allocated
*/
for (c| c ∈ C) {
if (c has more than 1 MIMD state) {
bit[c] = OR(p| p is pattern of MIMD state∈c);
c_n = # of MIMD states in c;
if (# of 1 bits in bit[c] ≠ c_n) {
return(ERROR);

}
pat = OR(pat, bit[c]);

} else {
/* If only 1 MIMD state, assign pattern */
if (# of 0 bits in pat == 0) {
/* No free bit to allocate */
return(ERROR);

}
pos = position of first 0 bit in pat;
bit[c] = 2pos;

}
}
}

}

return(NO_ERROR);
}

4. Implementation

The current prototype meta-state converter does not
directly generate executable SIMD code from a MIMD-oriented
language. Instead, it simply outputs a set of meta-state defini-
tions. Each of these meta states must then be common subex-
pression inducted and the meta-state transitions (multiway
branches) must be encoded using hash functions. However,
these last two steps are implemented by two software tools
developed earlier:

• A common subexpression inductor, described in [4].

• A hash function generator, described in [5].

Thus, in this paper we will confine the discussion to the imple-
mentation of the prototype meta-state converter. The meta-state
converter was written in C using PCCTS [10] and is actually a
modified version of the mimdc compiler described in [3].

4.1. The Input Language

The language accepted by the meta-state converter is a
parallel dialect of C called MIMDC. It supports most of the
basic C constructs. Data values can be either int or float,
and variables can be declared as mono (shared) or poly (pri-
vate) [11].

There are two kinds of shared memory reference sup-
ported. The mono variables are replicated in each processor’s
local memory so that loads execute quickly, but stores involve a
broadcast to update all copies. It is also possible to directly
access poly values from other processors using “parallel sub-
scripting”:

x[||i] = y[||j] + z;

would use the values of i, j, and z on this processor to fetch
the value of y from processor j, add z, and store the result into
the x on processor i. In addition to allowing use of shared
memory for synchronization, MIMDC supports barrier synchro-
nization [6] using a wait statement.

4.2. The Conversion Process

A brief outline of the prototype implementation is:

1. As the PCCTS-generated parser reads the source code, a tra-
ditional control-flow graph whose nodes are expression
trees is built. This control-flow graph is constructed in a
“normalized” form that ensures, for example, that loops are
all of the type that execute the body one or more times,
rather than zero or more (e.g., by replicating some code and
inserting an additional if statement).



2. The control-flow graph is straightened and empty nodes are
removed. This maximizes the size of the nodes.

3. The meta-state conversion algorithm is applied. Except for
the handling of function calls, the prototype implements the
full algorithm.

4. The resulting meta-state graph is straightened and output.

The current prototype implementation does not perform the
final encoding of the meta-state automaton. Hence, a CSI tool
[4] and a tool for finding hash functions [5] are applied by hand
to produce the final SIMD code in MPL.

4.3. An Example

To illustrate how the prototype meta-state converter
works, consider the MIMDC program presented in listing 4.
This example has the same control structure given in listing 1,
but is a complete program, so that the actual code generated can
be given.

main()
{

poly int x;

if (x) {
do { x = 1; } while (x);

} else {
do { x = 2; } while (x);

}

return(x);
}

Listing 4: Example MIMDC Program

Without compression or time cracking, the resulting
meta-state SIMD automaton, written in MPL [8] for the MasPar
MP-1 [1], is given in listing 5 (note that the algorithm in section
3.3 was not applied). The code within each meta state is simple
SIMD stack code using MPL macros for each operation. The
only surprising stack operation is JumpF(x, y), which simply
sets each processing element’s pc equal to 2x if the top-of-stack
value is “FALSE” or to 2y if it is “TRUE.” The apc is simply
the aggregate obtained by oring the values of all the individual
pcs; the switch at the end of each meta state simply employs a
customized hash function to ensure that the multiway branch is
implemented efficiently. For example, at the end of meta state 0
(i.e., ms_0), instead of a switch on apc with cases for
BIT(2)|BIT(6), BIT(6), and BIT(2), a hash function is
applied to make the case values contiguous so that the MPL
compiler will use a jump table to implement the switch.

5. Conclusions

Although meta-state conversion is a complex and slow
process, it does provide a mechanical way to transform control-
parallel (MIMD) programs into pure SIMD code. Further, the
execution of the meta-state program can be very efficient. In
particular, fine-grain MIMD code is generally inefficient on
most MIMD machines due to the cost of runtime synchroniza-
tion, but synchronization is implicit in the meta-state converted
SIMD code, and hence has no runtime cost.

While the prototype implementation demonstrates the
feasibility and correctness of the meta-state conversion algo-
rithm, it does not yet automate the process of generating the
final SIMD code. Future work will integrate the code genera-
tion process and will benchmark performance on “real” pro-
grams.
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ms_0:
if (pc & BIT(0)) {
Push(0) LdL JumpF(6,2)

}
apc = globalor(pc);
switch (((-apc) >> 5) & 3) {
case 1: goto ms_2_6;
case 2: goto ms_6;
case 3: goto ms_2;
}

ms_2:
if (pc & BIT(2)) {
Push(1) Push(0) LdL Push(12) StL
Pop(2) Push(4) LdL JumpF(9,2)

}
apc = globalor(pc);
switch (((-apc) >> 8) & 3) {
case 1: goto ms_2_9;
case 2: goto ms_9;
case 3: goto ms_2;
}

ms_9:
if (pc & BIT(9)) {
Push(4) LdL Ret(3)

}
/* no next meta state */
exit(0);

ms_2_9:
if (pc & BIT(2)) {
Push(1) Push(0) LdL
Push(12) StL Pop(2)

}
if (pc & (BIT(2) | BIT(9))) {
Push(4) LdL

}
if (pc & BIT(2)) JumpF(9,2)
if (pc & BIT(9)) Ret(3)
apc = globalor(pc);
switch (((-apc) >> 8) & 3) {
case 1: goto ms_2_9;
case 2: goto ms_9;
case 3: goto ms_2;
}

ms_6:
if (pc & BIT(6)) {
Push(2) Push(0) LdL Push(12) StL
Pop(2) Push(4) LdL JumpF(9,6)

}
apc = globalor(pc);
switch (((-apc) >> 8) & 3) {
case 1: goto ms_6_9;
case 2: goto ms_9;
case 3: goto ms_6;
}

ms_6_9:
if (pc & BIT(6)) {

Push(2) Push(0) LdL
Push(12) StL Pop(2)

}
if (pc & (BIT(6) | BIT(9))) {

Push(4) LdL
}
if (pc & BIT(6)) JumpF(9,6)
if (pc & BIT(9)) Ret(3)
apc = globalor(pc);
switch (((-apc) >> 8) & 3) {
case 1: goto ms_6_9;
case 2: goto ms_9;
case 3: goto ms_6;
}

ms_2_6:
if (pc & BIT(2)) Push(1)
if (pc & BIT(6)) Push(2)
if (pc & (BIT(2) | BIT(6))) {

Push(0) LdL Push(12) StL
Pop(2) Push(4) LdL

}
if (pc & BIT(2)) JumpF(9,2)
if (pc & BIT(6)) JumpF(9,6)
apc = globalor(pc);
switch (((apc >> 6) ˆ apc) & 15) {
case 5: goto ms_2_6;
case 8: goto ms_9;
case 9: goto ms_6_9;
case 12: goto ms_2_9;
case 13: goto ms_2_6_9;
}

ms_2_6_9:
if (pc & BIT(2)) Push(1)
if (pc & BIT(6)) Push(2)
if (pc & (BIT(2) | BIT(6))) {

Push(0) LdL Push(12) StL Pop(2)
}
if (pc & (BIT(2) | BIT(6) | BIT(9))) {

Push(4) LdL
}
if (pc & BIT(2)) JumpF(9,2)
if (pc & BIT(6)) JumpF(9,6)
if (pc & BIT(9)) Ret(3)
apc = globalor(pc);
switch (((apc >> 6) ˆ apc) & 15) {
case 5: goto ms_2_6;
case 8: goto ms_9;
case 9: goto ms_6_9;
case 12: goto ms_2_9;
case 13: goto ms_2_6_9;
}



Listing 5: Meta-State Converted Example
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