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execution pipeline supporting SWAR operations, and a memory system supporting
the associative behavior of LARs and lazy writeback to memory.
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Chapter 1 Background

This thesis presents a simple computer architecture using Line Associative Reg-

isters (LARs), targeting an existing demonstration Instruction Set Architecture.[7]

This architecture is implemented in Verilog HDL. It utilizes SIMD Within a Register

(SWAR) to increase parallelism and contains a memory system designed to support

the associative updating and lazy writeback to memory required by LARs.

1.1 Von Neumann

For decades, computing has relied upon the architecture model described by John

von Neumann in his First Draft Report on the EDVAC in 1945, which utilized a pro-

cessing unit with registers and communicated with stored data and instructions in a

separate memory.[17] This model endurs since with few changes, even with challenges

from more recent models such as the Harvard architecture which contains separate

memories for instructions and data. Up until about 1980, memory and processor

performance were comparable, allowing the Von Neumann model to utilize both with

minimal bottle-necking.[11] Ultimately, the varying effects of Moore’s Law on sepa-

rate pieces of computer hardware created problems in the Von Neumann architecture.

Processor performance increased far more rapidly than either memory performance

or bus performance. This discrepancy requires modern processors to include com-

plex cache systems sprawling over 30 to 40 percent of the die which attempt to

hide the massive time penalty incurred when the processor retrieves anything from

memory.[25] This particular delay is known as the “memory gap”.[26]

1.2 Current Problems

Ordinarily, the processor fetches data or instructions from memory and stores them

locally in registers. As processors became relatively faster, waiting on memory to
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fetch the desired item cost more and more time. To improve performance, processor

designers interposed a memory cache into the bus between the processor and memory.

Caching

Cache consists of a small, fast piece of memory to serve as a buffer between the

processor and the large, slow main memory. The cache hardware makes predictions

about which data is likely to be requested by the processor based on the location and

time the processor requested previous data. For example, the processor is likely to

request several sequential memory locations if walking through an array. Therefore,

the cache will hold memory locations nearby to a processor request to take advantage

of this spatial locality. The other metric commonly implemented by a cache takes

advantage of repeated requests to a memory location by the processor. Since the

processor is likely to revisit the same memory locations, those locations will be held in

cache to take advantage of temporal locality. Common processor architectures today

incorporate three or more levels of cache to minimize any potential delay between

processor and memory as much as possible.

Branch Prediction

When applied to instructions, this cache system leads to a problem in predicting

branches in a program. In the original model proposed by von Neumann, standard

orders were fetched singly from memory. Once fetched and decoded, they were exe-

cuted and the processor fetched the next standard order. Obviously, this arrangement

would result in a request to memory upon every instruction, which is undesirable due

to the effects of the memory gap. Caches can utilize spatial locality and hold the

sequence of instructions likely to be next requested, but upon a branch occurring,

spatial locality no longer applies. Branch prediction combats this consequence by at-

tempting to predict whether a branch is taken or not, and holding the corresponding

instructions. In modern pipelined architectures, where several instructions can be

in varying stages of execution, missing a branch prediction has the additional effect

of requiring all instructions already being executed to be flushed from the pipeline.
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Therefore most modern processors employ hefty branch prediction hardware, which

may contain “taken”/“not taken” histories for several branches simultaneously.

Ambiguous Aliasing

One additional concern arises from the use of memory-cache systems, known as

the “ambiguous alias” problem.[1, 3] This problem arises when pointers to arrays are

not known at compile time and may point to the same value. If two pointers are

referenced to load array data into registers, the array data for both could be loaded

into registers from the same location in memory. If so, operations on one of the

pointers must be mirrored to the other copy of the array data. As the values of the

pointers are uncertain, after every change this array data must be flushed back into

memory and reloaded into the registers again. Considering the increasing penalty of

the memory gap, eliminating this problem is highly desirable. One approach proposed

by researchers is to incorporate memory-cache behavior into the registers themselves

by associatively updating objects inside the registers. [5]

1.3 Parallel Systems

Aside from cache systems, designers adapted the von Neumann model to be highly

parallel. Methods for increasing processor performance may be broken into two cate-

gories: the speed at which the processor executes operations may be increased or the

number of operations executed simultaneously may be increased.

Very Long Instruction Words

Very Long Instruction Word (VLIW) is an architectural method that takes advan-

tage of the latter approach.[4] Instead of executing a single operation per instruction,

VLIW packs several instructions, usually seven to thirty, into a single packet to be

fetched and executed simultaneously. In order to execute in this fashion, the in-

structions must have no interdependencies; simultaneous execution precludes using

the result of one instruction as an operand of another simultaneous instruction. In
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a VLIW architecture, ensuring no interdependencies is accomplished prior to execu-

tion by the complier, a program responsible for converting source code to executable

machine code. This trait distinguishes VLIW from the superscalar architecture com-

monly found in modern processors, which incorporate scheduling hardware to deter-

mine which instructions can be executed at the same time. Maintaining the flow

of these very large instructions into the execution pipeline aggravates the memory

gap problem. One approach suggested by researchers to alleviate this problem is to

compress the instructions before loading them from memory and decompress them

inside the processor. This compression keeps the amount of memory bandwidth used

to a minimum.[15]

SIMD Within A Register

Another method of performing multiple operations simultaneously is via a Single

Instruction Multiple Data (SIMD) type architecture. While SIMD was originally

implemented as entire dedicated machines such as the MasPar MP-1, it is more

commonly found in today’s processors as SIMD Within A Register, commercialized

as AVX and SSE.[2] While VLIW relies on parallelism at the instruction level, SWAR

instead takes advantage of a single instruction executed on several pieces of data in

parallel. While most modern processors take advantage of executing single operations

on several fixed width pieces of data, SWAR as a general model may be applied to data

fields of varying width.[9] SWAR suffers from the memory gap similarly to VLIW,

although the requirements of the instruction fetch are eased, as only one instruction

is valid for many pieces of data.

Copyright c© Matthew Sparks, 2013.
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Chapter 2 Line Associative Registers

The solution proposed by researchers Krishna Melarkode and Henry Dietz to these

standing problems in computer architecture is Line Associative Registers. LARs is

a new memory model derived by Krishna Melarkode and Henry Dietz at the Uni-

versity of Kentucky from CRegs.[14] LARs contain an entire line of data between

256 and 4096 bits instead of the single unit of data held by conventional registers,

and supplement this line of data with meta data tags. These meta data tags hold

information regarding the size and type of data contained in the LAR, along with the

memory address at which the data is located. LARs thus blend the characteristics

of registers and conventional memory caches. Additionally, LARs are associatively

aliased: if two LARs reference the same memory address, both will update if one or

the other is changed. The structure of a LAR is shown in Table 2. In this work, we

implement LARs holding 2048 bits of data. This keeps bus widths inside the design

to a reasonable width while taking advantage of the parallelism inherent in LARs.

Table 2.1: Internal Structure of a Line Associative Register (LAR)

Physical Memory Address Type Size Data
64 bits 2 bits 2 bits 2048 bits

[63:8] Physical Memory Base Address [7:0] Offset within LAR 00 - Reserved 00 - 8-bit objects
01 - Unsigned Int 01 - 16-bit objects
10 - Signed Int 10 - 32-bit objects
11 - Float 11 - 64-bit objects

The compiler loads a LAR staticly, instead of requiring hardware to dynamically

load cache. For example, a LAR for holding instructions, known as an ILAR, must

be loaded directly from memory using a FETCH instruction instead of conventional

hardware predicting which branch is likely to next run. Similarly, a LAR for data,

known as a DLAR, must be loaded from memory via a LOAD instruction. Once a line

of data or instructions is loaded into a LAR, individual pieces of data or instructions

may be addressed by offset with the LAR.

5



2.1 Solutions to Existing Problems

This combination of long data lines, associative behavior, and static prediction

presents a unique solution to the memory-gap problem. Ordinarily, cache hardware

predicts which data are likely to be next accessed, and will sometimes miss, leading

to increasingly expensive accesses to memory at unpredictable points in program

execution. A LAR-based architecture instead relies on the compiler scheduling these

accesses at points in the program where the least delay will be incurred. For example,

in a conventional modern architecture, if a program jumps to accessing a second set

of data at a different point in memory, the initial access to that address will likely not

be predicted, and the program will have to wait while the requested data loads from

memory. While modern compilers attempt to shuffle instructions to minimize such

delays, such optimizations rely on assumptions about how the architecture makes

cache predictions. In a LAR-based architecture, loading the second set is an explicit

instruction in the hardware, and can be scheduled by the compiler well before that

data is required by the processor.

Branch Prediction

Similar benefits apply to branch prediction. If branch prediction hardware misses,

a modern pipelined architecture not only must wait for the new branch of instruc-

tions to LOAD, but must flush the pipeline of incorrect instructions. In a LAR-based

architecture, branch instructions do not reference memory directly, but instead point

to locations in ILARs. The compiler fetches both branches of instructions, and pro-

gram execution is simply directed into one ILAR or another based on the result of

the branch instruction.

Ambiguous Aliasing

The associative behavior of LARs address the “ambiguous alias” problem. This

problem arises by loading addresses from memory which are not known at compile

time. In a conventional architecture, this uncertainty might result in resolving the
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same memory address into multiple registers, potentially causing loss of changes to

one register or the other. However, LARs contain an address tag. If two mem-

ory references resolve to the same memory address, the corresponding LARs will be

associated and updated simultaneously.

2.2 Parallelism

There are two primary methods of increasing performance in computing. The first

method is simply to increase the speed at which tasks are executed. The second

is parallelism, which in computing refers to running several tasks simultaneously as

a method of increasing performance. Within the past decade, transistors within a

processor chip became dense enough that increasing clock speed created more heat

than could be dissipated, resulting in chip failure. Parallelism is increasingly common

in modern architectures to avoid the so-called “thermal wall”.

SIMD Within A Register

Since a data LAR holds an entire line of data consisting of many individual words,

a LAR-based architecture can support vector operations on entire LARs. This char-

acteristic allows a LAR-based architecture to perform vector operations similar to

those specified by SSE and AVX in modern architectures. Since LARs contain type

and size tags, a LAR-based architecture can also perform these vector operations

on multiple word sizes although this resizing requires significant support within the

execution pipeline.

Multiple Instruction Fetch

An additional facet of parallelism in a LAR-based architecture is found in the in-

struction pipeline. Since an entire line of instructions can be held in a single ILAR,

a LAR-based architecture displays many of the characteristics of a Very Long In-

struction Word (or VLIW) system. Both architectures fetch an entire sequence of

instructions from memory with each access. To avoid starving the pipeline, a LAR-

7



based architecture should also perform some kind of instruction compression as is im-

plemented in many VLIW architectures.[15] This method would need to decompress

relatively quickly and decompress to the fixed size of an ILAR. Finding a suitable

method remains an open topic of research and is not addressed in this work.[13]

Copyright c© Matthew Sparks, 2013.
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Chapter 3 History of LARs

Line Associative Registers are a combination of several separate pieces of work, heav-

ily associated with Dr. Henry Dietz during his tenure at Purdue University and the

University of Kentucky. The associative and cache replacement characteristics of

LARs originated from the idea of Cache Registers, while SIMD Within A Register

provided the vector arithmetic integral to LARs.

3.1 Precursors to LARs - CRegs and SWAR

LARs evolved out of Cache Registers (CRegs) originally proposed by Henry Dietz

and Chi-Hung Chi in 1988.[6] CRegs were proposed as a solution to ambiguously

aliased values, and consisted of a conventional single-datum register tagged with a

memory address. CRegs update associatively based on the memory address, just

as LARs do. However, they still only hold a single word, thus lacking the vector

arithmetic and instruction prefetch provided by LARs.[5]

SIMD Within A Register

In computing, a SIMD architecture allows for a single instruction to operate on

many words at once. Such architectures were originated in the 1970s and became

common in the 1980s, allowing a single instruction to be distributed to many cores

operating on different data. However, computers based on this architecture could

be difficult to program efficiently due to the difficulty of keeping as many processors

as possible doing useful work when limited to one instruction at a time. Randall

Fisher explored the concept of allowing this behavior in a single register in 2003 in

his dissertation as a way to allow some of the benefits of SIMD in a more traditional

architecture.[9] Instruction extensions such as SSE and AVX later commercialized

SIMD Within a Register, which is now commonplace in modern processors.
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3.2 Line Associative Registers

Following the concepts of SWAR and CRegs, Krishna Melarkode first proposed

Line Associative Registers in 2004, with the explicit purpose of combining the ideas of

“Vector Registers”, “tagged memory architectures”, and “aliasing, register allocation,

and solutions in hardware”.[14] This work explored both instruction LARs and data

LARs and provided a simple simulator written in C. Melarkode focused on the effects

of LARs on accessing memory and proposed an instruction set architecture with load,

store, and fetch instructions for moving the contents of DLARs and ILARs into and

out of memory.

Instruction LARs

In 2009, Nien Lim implemented the first HDL version of ILARs in his master’s

thesis at the University of Kentucky. His work provided some insight into the work-

ings of the FETCH instruction which is required in any LAR-based architecture to

fetch instruction blocks from memory into ILARs. He also examined the SELECT

instruction, the LAR-based equivalent to a branch instruction. Lim also investigated

various compression algorithms for fetching instructions and concluded that com-

pression methods suitable for ILARs need to be lossless, and need to decompress in

constant or near constant time.[13]

Data LARs

Lim’s work tied in closely with an HDL implementation of DLARs by Kalyan Pon-

nala in 2010, also as a master’s thesis.[20] His work explored the SWAR characteristics

of DLARs, including executing both scalar and vector operations upon a LAR, and

the associated type conversions necessary due to the type tagging present in DLARs.

Ponnala also explored some of the data and structural hazards caused by using a

DLAR bank versus a traditional register file.
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Figure 3.1: Larry the Loon, mascot of the LOON architecture[24]

LARK Compiler

Ultimately, LARs require significant support from the assembler and compiler to

function, since conventional tools do not handle manual instruction fetches and data

loads. At the University of Kentucky, Paul Eberhart proposes designing a toolchain

based on the LLVM compiler architecture specifically for LARs.[7] This compiler

targets a viable instruction set architecture known as LARs at Kentucky (LARK)

which supports all necessary memory and branching operations for LARs, as well as

both scalar and vectorized arithmetic operations.

Comprehensive Model

To date, no comprehensive model incorportating LARs throughout the design ex-

ists. Lim’s work utilized conventional registers in the datapath, while Ponnala im-

plemented a relatively standard instruction fetch procedure. This work presents a

comprehensive, fully LAR-based, six-stage pipelined logical design implementing the

LARK ISA supporting LARs in both the instruction and data paths. My implemen-

tation of this processor architecture, known as LOON, is written in the Verilog-2001

hardware design language. It provides examples of fetching and accessing instructions

in an ILAR-based bank along with branching within that bank. It utilizes a two-part

DLAR bank, storing tag information and stored data respectively, and demonstrates

11



loading from memory, “lazy” writebacks to memory, and storage of both vector and

scalar results. Finally, the execution pipeline shows the polymorphic conversion hard-

ware necessary to execute on LARs of different data types and sizes and the vectorized

execution units necessary to operate on LARs, including multiplication and division.

Copyright c© Matthew Sparks, 2013.
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Chapter 4 Implementation of LARs

The concept of LARs can be implemented in a variety of ways, particularly their

associative behavior. They can be implemented as individual registers, which means

each LAR has a one-to-one relationship with the data stored in that LAR. They

can be implemented as a separate namespace, where aliased LARs point to only one

physical copy of the data. These two techniques can also be hybridized, where each

LAR keeps an individual copy, but some copies exist only for redundancy if the main

copy changes address.

4.1 Associative Behavior

The LARK ISA elaborates on several aspects of the associative behavior of LARs.

Association of LARs is based on the high-order bits of the memory address. The

address field may contain an offset within a LAR, which is referenced for pointer

behavior handled by the compiler. This address field also provides the offset of LAR

data used in address calculations. However, this offset is represented in the low-order

bits, which are ignored by the associative update mechanism. The high-order bits

indicate the memory block contained within a LAR. The LOON memory system

forces alignment to avoid separate LARs containing overlapping blocks.

The memory address is the only LAR information that affects associativity. As-

sociated LARs may differ in size or type tags, which affects how the LOON pipeline

executes operations on the contained data.

4.2 One-to-One Data Method

First, there can be as many copies of the data as there are aliases. Under this

method, upon assignment of a new alias, a copy of the data is made from an existing

alias. Any operation writing to any aliased register must immediately update other
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aliased registers, resulting in increased delay on writeback from arithmetic or shift

instructions. However, LOAD and STORE operations suffer no delay. If another

value is loaded into an aliased register, the old value can be removed immediately

as all other aliases are already up to date. If the aliased value is stored to another

address, meta data may be immediately updated without concern for other aliased

values.
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Figure 4.1: One-to-One Copy Method Example

LOON implements ILARs using this one-to-one method since write-back delays

are not applicable in the instruction pipeline. An initial FETCH instruction loads

an ILAR with a given memory address and the corresponding data. If a subsequent

FETCH instruction loads another ILAR with the same memory address, the data in

both ILARs will be refreshed. An example of this behavior is shown in Figure 4.1

4.3 Single Copy of Data Method

The second method is to maintain a single copy of the data, and to point all

aliased values at this single copy. Upon assignment of a new alias, the new meta data

is pointed at the existing copy. As there is only one copy, any changes are immediately

reflected by all aliases. LOAD and STORE operation become more complex under

this model. If a LOAD operation is conducted, a fresh “data slot” must be assigned

to the register, and if there were no other aliases, the old “data slot” must be freed.

On a STORE operation, a copy of the existing data must be made into a fresh “data

slot”, at which the meta data is then pointed.
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Figure 4.2: Single Copy Method Example

The LOON architecture implements DLARs in this manner. Reference counts are

kept for each line of data, and lines are considered free when their reference count

is zero. LOAD and STORE are the only instructions that affect these reference

counters. Both a LOAD and a STORE instruction will increment the reference count

of the newly assigned line of data, while decrementing the reference count of the

previously used line of data. An example showing aliased LARs is shown in Figure

4.2.

4.4 Lazy Copy of Data Method

A hybridization of the two previously described methods may also be implemented.

This method conducts “lazy copies”. There are as many copies of the data as there

are aliases; however, the strict requirement to have all copies up to date at all times is

lifted. Instead, a “current” bit is added to track the current state of the copy relative

to the original, and a lazy copy mechanism updates aliased copies in its own time.

When a new alias is created, a slot for its copy of the data is made and flagged as not

“current”. If an operation writes to aliased data, only the master copy is updated

immediately and all other copies are merely flagged as not “current”. LOAD and

15



STORE operations remain complex under this schema. A LOAD operation on any

aliased copy other than the original may execute immediately. However, if the register

containing the original data is loaded, the hardware must ensure that at least one

aliased copy is “current” and flag that copy as the new original. Similar guards must

be implemented for a STORE operation; if the original is stored to a new address, a

new original must be selected. Additionally, if an aliased copy is stored, it must be

“current” before the meta data is changed to a new address.

Copyright c© Matthew Sparks, 2013.
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Chapter 5 The LOON Architecture

The LOON architecture pipeline takes a similar structure to that of other proof-of-

concept architectures such as the original MIPS design.[10] This pipeline contains a

total of six stages: Instruction Fetch/Decode (ID/IF), Meta Data Fetch (MDF), Line

Data Fetch (LDF), Shift and Convert Data (SH/CD), Execute (EX), and Writeback

(WB). The memory system is decoupled from the pipeline, and runs independently.

The pipeline is not interlocked but can be stalled by some conditions, such as refer-

encing an ILAR or DLAR that is not fully loaded yet. Control signals are stacked

into the pipeline in the Instruction Fetch/Decode stage, and are passed through the

pipeline similarly to data. An overview of the LOON pipeline may be found in Figure

5.1.

17



I
D
/
I
F

P
I
p
e
l
I
n
e

R
e
g
I
s
t
e
r

M
D
F

P
I
p
e
l
I
n
e

R
e
g
I
s
t
e
r

L
D
F

P
I
p
e
l
I
n
e

R
e
g
I
s
t
e
r

C
D
/
S
H

P
I
p
e
l
I
n
e

R
e
g
I
s
t
e
r

E
X

P
I
p
e
l
I
n
e

R
e
g
I
s
t
e
r

� � � �

� � � 	 
 � �

 � � � 	 � � 
 � � �

� � � � � � � � �

� � �  � � �

� � � �

� � � 	 
 � �

 � � � 	 � � 
 � � �

� � � � � � � � �

� � �  � � �

� � � � � � � � � �

� � � � � � � � � �

��
 !"

#
$
%&

' � � � � � � �

' � � � ( � � )

' � � � * � � �

' � � � ( � � )

+ , - . / 0

1 2 3 4

5 6 7 8 9

:
�
;
"
# <
$
=
=
#�
>>
$
=
=�
#

?
# @
A
 B
:
C
D

E � � � ( � � )

F G H . 7 8 I J K L M N O

P � � � � Q � � )

� � � � � R * � S )

� � � �

� � � �

' � � � � � � T

� � � � � � ' � �

UVWX
UVWY

M Z L J 0

J Z + [ \ 8 7 / 3

+ Z K 7 6 3 ] ^ /

_
�
>C
`!
a�
`�
 !

�
�
 !"

#
:
C
`!bc

`b�
#

�
�
 !"#

d
be
b =�

#

��
 !"

#
a
B
bf!
&
A
b!

g
h

g
h

g
h

g
h

i � * � 	 � � �

� � S � � 	

i � * � 	 � � �

� � S � � 	

i � * � 	 � � �

� � S � � 	

Figure 5.1: LOON Pipeline Overview
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5.1 Instruction Path

The instruction path in LOON is relatively conventional. Instructions are fetched

from memory and stored into ILARs. Once in the ILAR bank, the Program Counter

(PC) selects an instruction to be decoded and sent down the pipeline.

ILAR Bank

The ILAR bank itself is where LOON most differs from other architectures. The

ILAR bank consists of 256 LARs, which only contain a memory address field and a

data field. Since instructions are implicitly 64 bits long under the LARK ISA, the

type and size fields usually found within a LAR are omitted. Instructions are fetched

from memory in a block of 32 instructions, which fills one ILAR. A single FETCH

instruction can specify for up to sixteen of these blocks to be loaded from memory,

which is executed in by the memory subsystems and takes place decoupled from the

pipeline. As instructions are loaded into the ILAR bank, any memory addresses

loading are checked against addresses already in ILARs. Any aliased addresses will

also latch the fetched instructions, thus ensuring that aliased ILARs remain identical.

Since this operation is the only action which can change an ILAR, the two-part

structure used by the DLAR bank is unnecessary.

Instruction Selection And Decoding

Instruction decoding begins with selecting an instruction from the ILAR bank

using the Program Counter, or PC. Notably, the Program Counter in the LOON

architecture has no relation to memory addresses, as in other architectures such as

MIPS.[10] Instead, the first portion of the PC references an ILAR, while the second

portion references an offset within that ILAR. In LOON, the first five low-order bits

[4:0] of the PC reference ILAR offset, while the next eight bits [12:5] reference an

ILAR within the ILAR bank.
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Once the instruction is selected, the LARK Decoding Unit (LDU) decodes it. The

LDU generates all necessary control signals for the LOON architecture and passes

them into the pipeline registers to be directed to the appropriate modules.

5.2 Memory System

The LARK memory system centers around the key concept of “lazy” writeback

to memory. The LARs themselves hold data the majority of the time, and writing

data back to memory is automatically handled by the hardware. An overview of the

memory system may be found in Figure 5.2.

Memory Bus Guard (MBG)

The memory bus guard (MBG) acts as arbitrator between data reads, data writes,

and instruction reads accessing a single random-access memory or RAM that contains

both instructions and data. In a LAR-based architecture, since writeback to memory

is “lazy”, data writes are lowest priority while data reads are considered highest

priority. Instruction reads are prioritized higher than data writes but lower than

data reads. Memory is accessed via a single address bus for both reads and writes

and two 2048-bit wide buses for reading and writing cache-length lines respectively.

The MBG communicates with the data load queue, the instruction load queue, and

the memory writeback unit, and does not perform queuing of reads or writes on its

own. A logic diagram of the state machine within the MBG may be found in Figure

5.3.

Data Load Queue(DLQ)

The data load queue (DLQ) communicates between the DLAR Line Data Bank, the

memory bus guard, and the LOON Controller. LOAD instructions send a request

to the DLQ, which then puts in a request to the MBG. Once the MBG services

the request of the DLQ, it takes the provided data and attempts to write it to the

appropriate DLAR in the Line Data Bank. The Data Load Queue contends for the
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Figure 5.3: Memory Bus Guard (MBG) State Machine

write port on the DLAR Line Data Bank with the Writeback (WB) stage of the

processor. Since the WB stage is time sensitive, it is possible for the Data Load

Queue to be pre-empted. If this pre-emption occurs, the Data Load Queue attempts

to write again on following clock cycles until the write completes. For demonstration

purposes, the Data Load Queue only handles one LOAD instruction at a time. In a

more advanced architecture, the DLQ could be expanded to handle multiple LOAD

requests to the Memory Bus Guard. A logic diagram of the state machine within the

DLQ may be found in Figure 5.4.

22



��������

�	�
��������

��������

��������

������������

��������

�����������������

���

�� �����	
 �	��

�� �����	��

�������
��

	��� ���
� 
	
��� ���� ����

�� �	��
���
�	�

• ��� ����  ! "#$ %�&
• '(� �(�� �(��) * � "#$
• ��� +��  ! ,-./ %�!0 %�&
• � 1!� +(!�1!2 �� +��  !
,-./ %�!0 %�&

• '(� +(!�1!2
• '(� %�&)

�� �	�3�4 ��56�


�� �3�4 ��56�
��

• 7 � %�&)

• 89(�� �(�� �(��) * � "#$
• ��� "#$ ����  ! ,-./ %�!0
%�&

• 8 ::1� ;�1�( � ,-./ %�!0

• 89(�� ;�1�( � 
,-./ %�!0

• 89(�� %�&)

Figure 5.4: Data Load Queue (DLQ) State Machine

��������

��	��
������

���������
����

��������

��	���
�������

��������

�������� ��!��"	�#

<= >?@AB CC A@DEB?BFG

• HIJ KLMN
• HIJ OLPQJRJST JR JRJST
OLPKIU RV WXYZM JR VIJ[\

• HIJ WX] ^JU JR ^UR_`aIa bcHd
• HIJ WX] SaaU JR ^UR_`aIa SaaU
• HIJ ^IOa`Oe ĴU JR bcHd
• HIJ PSUf ^IOa`Oe
• HIJ [RLOJ JR gIUR

<= A?hijkl mno@npB

<= hijkl mno@npBnq

• rst uvwx

• yz{|} ~|}� �{�����
• �wwv{ ���� ts ���

�������$

��������%������

��������
���%	�

<= A@DEB?BFG � �

• yz{|} ���� ts ���
• ���}{~{�t ���� �s��t{}
• ���}{~{�t ~{~s}x
|��}{ww ux ���

• yz{|} uvwx

<= >?@AB � A@DEB?BFG

• ���}{~{�t �sv�t
• ���}{~{�t �{����� �t}

<= <�� A?B q?An

<= <�� q?An

• �{�}{~{�t �v~�tst|z
• �wwv{ ���� ts ���

<= A@DEB?BFG CC �

Figure 5.5: Fetch Queue (FQ) State Machine

Fetch Queue (FQ) and Instruction Load Queue (ILQ)

The process for fetching ILARs is slightly more complex. While a LOAD instruction

specifies a single DLAR, a FETCH instruction may specify up to sixteen ILARs to be

fetched from memory. There are two modules responsible for FETCH instructions.
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The first, the Fetch Queue (FQ), receives FETCH instructions, and communicates

with the ILAR bank and the Instruction Load Queue. It marks all affected ILARs

as pending to prevent decoding of instructions from an out of date ILAR. The Fetch

Queue then generates the specified addresses from the FETCH instruction, and sends

the requests sequentially to the Instruction Load Queue. The Instruction Load Queue

(ILQ) is the ILAR counterpart to the Data Load Queue. The ILQ behaves in a similar

manner, and communicates between the ILAR bank and the Memory Bus Guard

as the DLQ does, but communicates with the Fetch Queue instead of the FETCH

instruction directly. Logic diagrams of the state machines within the FQ and ILQ

may be found in Figure 5.5 and Figure 5.6 respectively.
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Memory Writeback Unit (MWU)

The final component of the memory system is the Memory Writeback Unit (MWU).

The MWU communicates between the DLAR meta data bank, the DLAR line data

bank, and the Memory Bus Guard. It walks through the DLAR meta data bank

linearly, fetching the pointer to the corresponding DLAR line data. It then reads this

line data and marks the line clean in the DLAR line data bank. Finally, it places a
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write request to the Memory Bus Guard using the retrieved meta data and line data

and waits until the MBG confirms that the data is written to memory. The Memory

Writeback Unit then moves on to the next DLAR and repeats the process. A logic

diagram of the state machine within the MWU may be found in Figure 5.7.
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Figure 5.7: Memory Writeback Unit (MWU) State Machine

5.3 Polymorphic Conversion

A key part of implementing LARs in a pipeline is the capability to operate on

several word sizes “on the fly” in sequential instructions, and possibly within a single

operation. Issuing an instruction to add an 8-bit value to a 16-bit word and store the

result as a 32-bit representation is entirely valid within the LARK instruction set.

The pipeline must therefore contain polymorphic hardware to transform data from

its stored type to the type desired for the operation.
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Shift Conversion Unit

The first step in SH/CD stage is to shift the target DLAR data into position. If the

instruction executing is a vector operation, this step is unnecessary as operation will

affect the entire DLAR. If the operation is scalar, the Shift Conversion Units align

data at the specified offsets to the zero offset position. The data is then ready to be

converted into the appropriate data type.

As this particular implementation is limited to signed and unsigned integer types

and does not implement floating-point arithmetic, the requirements of this polymor-

phic hardware are simplified. To further ease implementation, saturation logic will

be outside the scope of this project. When converting a number from a higher-bit to

a lower-bit type, the number may be outside the range of its new type. For example,

-32768 cannot be represented as an 8-bit value. If saturation logic were implemented,

the result of converting such a number would be the closest result in the new rep-

resentation: -32768 would be changed to -127. However, this conversion requires a

significant amount of logic to implement. Therefore, LOON implements such out-of-

range conversions as simple truncations. The LOON Example Polymorphic Hardware

(LEPH) performs conversions between all signed and unsigned datatypes by selecting

or sign-extending selected 8-bit words from the input since LARK does not implement

data types smaller than 8 bits.

Selection Process

These selections are implemented by specifying a multiplexer system in Verilog.

The number of inputs is determined by the number of possible conversions, which

is limited by the largest possible word. In LARK, there are a total of eighteen

integer type conversions: six up-conversions for signed integers, six up-conversions

for unsigned integers, and six down-conversions, which are unaffected by sign. An

example table for the first 64-bit slice of a DLAR is shown in Table 5.1.

26



Table 5.1: LEPH Conversion, 64-bit slice

Conversion Type Byte Target
From:To 0th 1st 2nd 3rd 4th 5th 6th 7th
64:32 0 1 2 3 8 9 10 11
64:16 0 1 8 9 16 17 24 25
64:8 0 8 16 24 32 40 48 56
32:16 0 1 4 5 8 9 12 13
32:8 0 4 8 12 16 20 24 28
16:8 0 2 4 6 8 10 12 14
8:64U 0 X X X X X X X
8:32U 0 X X X 1 X X X
8:16U 0 X 1 X 2 X 3 X
16:64U 0 1 X X X X X X
16:32U 0 1 X X 2 3 X X
32:64U 0 1 2 3 X X X X
8:64S 0 SE0 SE0 SE0 SE0 SE0 SE0 SE0
8:32S 0 SE0 SE0 SE0 1 SE1 SE1 SE1
8:16S 0 SE0 1 SE1 2 SE2 3 SE3
16:64S 0 1 SE1 SE1 SE1 SE1 SE1 SE1
16:32S 0 1 SE1 SE1 2 3 SE3 SE3
32:64S 0 1 2 3 SE3 SE3 SE3 SE3
Passthrough 0 1 2 3 4 5 6 7

The overall conversion pattern is symmetric across the entire cache line; for ex-

ample, down-converting a LAR-sized chunk of data from 16 to 8 bits will result in

selecting the 1st, 3rd, 5th, 7th, 9th, and so on bytes, with the remainder padded out

as zeroes. Thus, the full table is easily generated procedurally as shown in the script

in Appendix A. However, if sorted by position instead of operation, each byte posi-

tion has a relatively unique pattern, making writing code to implement a multiplexer

at each byte position non-trivial. Thus, the script shown in Appendix B generates

Verilog code according to the table produced by the script in Appendix A. This script

results in verbose code, but is suitable for most HDL implementation tools, which

can detect identical inputs and simplify circuit complexity more effectively than hand

coding. The combination of the two scripts produce Verilog code for a LEPH meet-

ing the LARK instruction set requirements for virtually any length LAR. Since the

hardware depth is bounded by the number of possible conversions, not the length of
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the LAR, the hardware footprint should scale almost linearly.

5.4 Execution Hardware

Due to the type tagging present in LARs, the execution pipeline must be able to

detect and support operations on data of varying size. Such operations are supported

in a variety of ways in existing architectures. Often separate pipelines operate on

different sizes and types of data which incurs a penalty in overall hardware size. In

other architectures, configuring the existing pipeline to operate on a different type

requires a context switch, an approach commonly implemented for AVX. However, as

LOON is a demonstration architecture, it is desirable to keep hardware complexity to

a minimum while avoiding delays caused by context switches, which is not practical

under the LARK ISA where types may not even originally match.

Arithmetic Logical Unit (ALU)

Therefore, this architecture contains a carry-break Arithmetic Logic Unit, or a

carry-break ALU. To meet the requirements of LARK, this unit should be reconfig-

urable to operate on both signed and unsigned integers ranging in size from 8 bits

to 64 bits. It should be able to perform basic arithmetic and logic operations on all

supported integer data types.

Carry-break ALU

The carry-break ALU is distinguished from other ALUs by consisting of many

smaller ALUs, connected by a logic network that can continue or break carry prop-

agation based on data type and size. The length of the small internal ALUs is

determined by the smallest supported data type, in this case 8 bits. They are con-

nected in groups supporting the largest possible word, which is 64 bits under the

LARK instruction set, causing each group to contain eight ALUs. These ALUs are

connected by a set of seven multiplexers, which change the carry-in bit to each ALU

based on the operation type and data size. An example showing this multiplexer net-
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work is shown in Figure 5.8. For example, if the ALU is operating on 32-bit signed

integers, the multiplexer between the ALU3 and ALU4 will break the carry chain,

causing ALUs 0-3 to operate on one 32-bit word while ALUs 4-7 operate on another

32-bit word.

29



� � � � � � � � 	


 � � � �  � � �

� � �

� � � �� � � �� � � �� � � �� � � �� � � �� � � � � � � � � � � �

" � # $ % & ' ( ) & *+

� � � � � � � �

" � , $ % & ' ( ) & *+

� � � � � � � �

" � # $ % & ' ( ) & * +

� � � � � � � �

" � - $ % & ' ( ) & * +

� � � � � � � �

" � # $ % & ' ( ) & *+

� � � � � � � �

" � , $ % & ' ( ) & * +

� � � � � � � �

" � # $ % & ' ( ) & *+

� � � � � � � �

. /

0 /

. 1

0 1

. 2

0 2

. 3

0 3

. 4

0 4

. 5

0 5

. 6

0 6

. 7

0 7

8 9 8 �8 � 8 � 8 � 8 � 8 � 8 :

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Figure 5.8: LOON Carry-break Arithmetic Logic Unit
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Arithmetic Shift Unit (ASU)

Constructing a shift unit for a LARs based architecture presents a similar problem

to that of constructing an ALU. The simplest shifters shift only a single bit position at

a time, only operate on a single word length, and are eminently unsuited to operating

on data held in a LAR. More complex shifters are capable of arbitrary length shifts,

and some are capable of operating on a selection of word lengths.

Existing Examples in Cryptography

An example of such a shifter intended for general-purpose cryptography is found

in “Design and Implementation of Reconfigurable Shift Unit using FPGAs” by Yu

et al.[27] They designed an arbitrary-length shifter capable of operating on several

standard sized words from 4 bits up to 128 bits, used in cryptography schemes such

as DES and Twofish. To satisfy this end, they implemented multiple levels of shifters

performing shifts in powers-of-two increments, and enable signals on each level to

perform shifts of a length specified by a 5-bit input. For shorter-length words, the

top level shifters are disabled. For example, the shifters performing a shift of 32 bits

are unneeded if operating on 8 bit words.

Application to LARs

This design is also useful in a LARs based pipeline, as it requires no reconfiguration

for changes in word size. In the LOON architecture, the Arithmetic Shift Unit (ASU)

consists of six levels of shifters. These shifters perform shifts in powers of 2 incre-

ments ranging from 20 to 25, or 1 to 32 bits. Since the largest possible word in this

architecture is 64 bits, the shifter hardware consists of 32 identical sets, each capable

of operating on a single 64- bit word or multiple smaller words. Each set contains two

32-bit shifters, four 16-bit shifters, eight 8-bit shifters, sixteen 4-bit shifters, thirty-

two 2-bit shifters, and sixty-four 1-bit shifters. The bottom three levels of shifters

from 1 to 4 bits are always potentially active depending on the length of the shift,

while the upper levels should never be activated if they match or exceed the word
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size.

Figure 5.9: LOON ASU 16-bit Multiplexer

Since the behavior of each shifter depends on both the word size and the type

of shift, the ASU is implemented as multiplexers, with each multiplexer choosing

from one of twelve inputs, one input for each possible combination of word size and

shift type. However, each input only consists of five potential cases: all zeroes, the

bits from the previous positions, the bits from the next positions, the top bit from

this position repeating for arithmetic right shifts, or pass bits for the same position

through to the next level. An example for the 16-bit multiplexer in the next-to-least

significant position is shown in Figure 5.9. The overall table of input types for each

multiplexer also displays high levels of symmetry, as shown in Table 5.2. Therefore,

a script parses this table and generates Verilog code for the ASU. While verbose, this

method provides broad amounts of information to the implementation tools, allowing

the tool to simplify the actual generated hardware to a higher degree than is possible

simplifying by hand.

Multiplication Unit

Constructing a multiplier unit suitable for the LARK instruction set faces similar

issues to the ALU. The unit must be capable of both scalar and vector operations, on

word sizes ranging from 8 to 64 bits. However, due to the fundamental nature of the

32



Table 5.2: Arithmetic Shift Unit Opcode Table

op/size 8 SLL 16 SLL 32 SLL 64 SLL 8 SRA 16 SRA 32 SRA 64 SRA 8 SRL 16 SRL 32 SRL 64 SRL
opcode 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
32-0 0 0 0 1 3 3 3 3 0 0 0 0
32-1 0 0 0 0 3 3 3 2 0 0 0 2
16-0 0 0 1 1 3 3 3 3 0 0 0 0
16-1 0 0 0 1 3 3 2 2 0 0 2 2
16-2 0 0 1 1 3 3 3 2 0 0 0 2
16-3 0 0 0 0 3 3 2 2 0 0 2 2
8-0 0 1 1 1 3 3 3 3 0 0 0 0
8-1 0 0 1 1 3 2 2 2 0 2 2 2
8-2 0 1 1 1 3 3 2 2 0 0 2 2
8-3 0 0 0 1 3 2 2 2 0 2 2 2
8-4 0 1 1 1 3 3 3 2 0 0 0 2
8-5 0 0 1 1 3 2 2 2 0 2 2 2
8-6 0 1 1 1 3 3 2 2 0 0 2 2
8-7 0 0 0 0 3 2 2 2 0 2 2 2
4-0 1 1 1 1 3 3 3 3 0 0 0 0
4-1 0 1 1 1 2 2 2 2 2 2 2 2
4-2 1 1 1 1 3 2 2 2 0 2 2 2
4-3 0 0 1 1 2 2 2 2 2 2 2 2
4-4 1 1 1 1 3 3 2 2 0 0 2 2
4-5 0 1 1 1 2 2 2 2 2 2 2 2
4-6 1 1 1 1 3 2 2 2 0 2 2 2
4-7 0 0 0 1 2 2 2 2 2 2 2 2
4-8 1 1 1 1 3 3 3 2 0 0 0 2
4-9 0 1 1 1 2 2 2 2 2 2 2 2
4-10 1 1 1 1 3 2 2 2 0 2 2 2
4-11 0 0 1 1 2 2 2 2 2 2 2 2
4-12 1 1 1 1 3 3 2 2 0 0 2 2
4-13 0 1 1 1 2 2 2 2 2 2 2 2
4-14 1 1 1 1 3 2 2 2 0 2 2 2
4-15 0 0 0 0 2 2 2 2 2 2 2 2
2-0 1 1 1 1 3 3 3 3 0 0 0 0
2-1 1 1 1 1 2 2 2 2 2 2 2 2
2-2 1 1 1 1 2 2 2 2 2 2 2 2
2-3 0 1 1 1 2 2 2 2 2 2 2 2
2-4 1 1 1 1 3 2 2 2 0 2 2 2
2-5 1 1 1 1 2 2 2 2 2 2 2 2
2-6 1 1 1 1 2 2 2 2 2 2 2 2
2-7 0 0 1 1 2 2 2 2 2 2 2 2
2-8 1 1 1 1 3 3 2 2 0 0 2 2
2-9 1 1 1 1 2 2 2 2 2 2 2 2
2-10 1 1 1 1 2 2 2 2 2 2 2 2
2-11 0 1 1 1 2 2 2 2 2 2 2 2
2-12 1 1 1 1 3 2 2 2 0 2 2 2
2-13 1 1 1 1 2 2 2 2 2 2 2 2
2-14 1 1 1 1 2 2 2 2 2 2 2 2
2-15 0 0 0 1 2 2 2 2 2 2 2 2
2-16 1 1 1 1 3 3 3 2 0 0 0 2
2-17 1 1 1 1 2 2 2 2 2 2 2 2
2-18 1 1 1 1 2 2 2 2 2 2 2 2
2-19 0 1 1 1 2 2 2 2 2 2 2 2
2-20 1 1 1 1 3 2 2 2 0 2 2 2
2-21 1 1 1 1 2 2 2 2 2 2 2 2
2-22 1 1 1 1 2 2 2 2 2 2 2 2
2-23 0 0 1 1 2 2 2 2 2 2 2 2
2-24 1 1 1 1 3 3 2 2 0 0 2 2
2-25 1 1 1 1 2 2 2 2 2 2 2 2
2-26 1 1 1 1 2 2 2 2 2 2 2 2
2-27 0 1 1 1 2 2 2 2 2 2 2 2
2-28 1 1 1 1 3 2 2 2 0 2 2 2
2-29 1 1 1 1 2 2 2 2 2 2 2 2
2-30 1 1 1 1 2 2 2 2 2 2 2 2
2-31 0 0 0 0 2 2 2 2 2 2 2 2
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Table 5.3: Arithmetic Shift Unit Opcode Table (continued)

op/size 8 SLL 16 SLL 32 SLL 64 SLL 8 SRA 16 SRA 32 SRA 64 SRA 8 SRL 16 SRL 32 SRL 64 SRL
opcode 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
1-0 1 1 1 1 3 3 3 3 0 0 0 0
1-1 1 1 1 1 2 2 2 2 2 2 2 2
1-2 1 1 1 1 2 2 2 2 2 2 2 2
1-3 1 1 1 1 2 2 2 2 2 2 2 2
1-4 1 1 1 1 2 2 2 2 2 2 2 2
1-5 1 1 1 1 2 2 2 2 2 2 2 2
1-6 1 1 1 1 2 2 2 2 2 2 2 2
1-7 0 1 1 1 2 2 2 2 2 2 2 2
1-8 1 1 1 1 3 2 2 2 0 2 2 2
1-9 1 1 1 1 2 2 2 2 2 2 2 2
1-10 1 1 1 1 2 2 2 2 2 2 2 2
1-11 1 1 1 1 2 2 2 2 2 2 2 2
1-12 1 1 1 1 2 2 2 2 2 2 2 2
1-13 1 1 1 1 2 2 2 2 2 2 2 2
1-14 1 1 1 1 2 2 2 2 2 2 2 2
1-15 0 0 1 1 2 2 2 2 2 2 2 2
1-16 1 1 1 1 3 3 2 2 0 0 2 2
1-17 1 1 1 1 2 2 2 2 2 2 2 2
1-18 1 1 1 1 2 2 2 2 2 2 2 2
1-19 1 1 1 1 2 2 2 2 2 2 2 2
1-20 1 1 1 1 2 2 2 2 2 2 2 2
1-21 1 1 1 1 2 2 2 2 2 2 2 2
1-22 1 1 1 1 2 2 2 2 2 2 2 2
1-23 0 1 1 1 2 2 2 2 2 2 2 2
1-24 1 1 1 1 3 2 2 2 0 2 2 2
1-25 1 1 1 1 2 2 2 2 2 2 2 2
1-26 1 1 1 1 2 2 2 2 2 2 2 2
1-27 1 1 1 1 2 2 2 2 2 2 2 2
1-28 1 1 1 1 2 2 2 2 2 2 2 2
1-29 1 1 1 1 2 2 2 2 2 2 2 2
1-30 1 1 1 1 2 2 2 2 2 2 2 2
1-31 0 0 0 1 2 2 2 2 2 2 2 2
1-32 1 1 1 1 3 3 3 2 0 0 0 2
1-33 1 1 1 1 2 2 2 2 2 2 2 2
1-34 1 1 1 1 2 2 2 2 2 2 2 2
1-35 1 1 1 1 2 2 2 2 2 2 2 2
1-36 1 1 1 1 2 2 2 2 2 2 2 2
1-37 1 1 1 1 2 2 2 2 2 2 2 2
1-38 1 1 1 1 2 2 2 2 2 2 2 2
1-39 0 1 1 1 2 2 2 2 2 2 2 2
1-40 1 1 1 1 3 2 2 2 0 2 2 2
1-41 1 1 1 1 2 2 2 2 2 2 2 2
1-42 1 1 1 1 2 2 2 2 2 2 2 2
1-43 1 1 1 1 2 2 2 2 2 2 2 2
1-44 1 1 1 1 2 2 2 2 2 2 2 2
1-45 1 1 1 1 2 2 2 2 2 2 2 2
1-46 1 1 1 1 2 2 2 2 2 2 2 2
1-47 0 0 1 1 2 2 2 2 2 2 2 2
1-48 1 1 1 1 3 3 2 2 0 0 2 2
1-49 1 1 1 1 2 2 2 2 2 2 2 2
1-50 1 1 1 1 2 2 2 2 2 2 2 2
1-51 1 1 1 1 2 2 2 2 2 2 2 2
1-52 1 1 1 1 2 2 2 2 2 2 2 2
1-53 1 1 1 1 2 2 2 2 2 2 2 2
1-54 1 1 1 1 2 2 2 2 2 2 2 2
1-55 0 1 1 1 2 2 2 2 2 2 2 2
1-56 1 1 1 1 3 2 2 2 0 2 2 2
1-57 1 1 1 1 2 2 2 2 2 2 2 2
1-58 1 1 1 1 2 2 2 2 2 2 2 2
1-59 1 1 1 1 2 2 2 2 2 2 2 2
1-60 1 1 1 1 2 2 2 2 2 2 2 2
1-61 1 1 1 1 2 2 2 2 2 2 2 2
1-62 1 1 1 1 2 2 2 2 2 2 2 2
1-63 0 0 0 0 2 2 2 2 2 2 2 2
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multiply operation, scaling between different word sizes is significantly more difficult

than for addition. Although an add operation produces a n+1-bit result, given n-bit

operands, a multiply operation will produce a 2n-bit result. Thus, instead of simply

breaking the carry as for an add operation, a more sophisticated solution is required

in the multiply unit. Designers commonly implement a solution using increased radix

to increase multiply performance.[8][19][22]

Decomposition of Partial Products (DPP)

Examining the fundamental nature of the multiply operation, we find that for

a given radix, a multiply between operands of k-radix long may be expressed as

a sum of partial products. An example of multiplication for 4-radix long may be

found in Table 5.4. Further, if these operands are instead treated as two numbers

of 2-radix long, thus being two separate multiply operations, only a subset of the

partial products is required to calculate these two separate multiplies. Finally, if

the operands are instead treated as four separate numbers of a single radix long,

thus being four separate multiply operations, yet another subset of only one partial

product per multiply operation is required.

Table 5.4: Decomposition of Partial Products, 2 radix multiply highlighted

a b c d

X e f g h

d X h

c X h

b X h

a X h

d X g

c X g

b X g

a X g

d X f

c X f

b X f

a X f

d X e

c X e

b X e

a X e

1 radix: Not used 3rd result Not used 2nd result Not used 1st result Not used 0th result

2 radix: Not used 1st result Not used 0th result

4 radix: Not used 0th result
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Implementation in Hardware

By taking advantage of this decomposition of partial products, a variable word size,

multiple clock cycle multiply unit can be constructed. Taking into consideration that

multiplies of shorter word sizes should take fewer cycles, the partial products should

be rearranged in such a way that as many partial products are added simultaneously

as possible, with priority given to the particular products required for shorter word

sizes. Building on our 4-radix long example, a version of such an arrangement is

provided in Table 5.5. The middle of the result requires more partial products due

to the nature of the multiply operation, so this arrangement takes the form of a

pyramid. These partial products are arranged in such a way that the number of

add cycles required to reach the result is 2k − 1, where k is the radix length of the

operands, i.e. 2 · 4− 1 = 7 cycles required for 4-radix long operands.

Table 5.5: DPP pyramid form. 2 radix multiply highlighted

a b c d

X e f g h

Clock Cycle

1 a X e b X f c X g d X h

2 a X f c X f c X h

3 b X e b X g d X g

4 a X g b X h

5 c X e d X f

6 d X e

7 a X h

1 radix: Not used 3rd result Not used 2nd result Not used 1st result Not used 0th result

2 radix: Not used 1st result Not used 0th result

4 radix: Not used 0th result

Expanding this design to the LARK specification, we require 64-bit, 32-bit, 16-bit,

and 8-bit operations. We can treat 8 bits as our radix by including 8×8 look up tables

in our base multiply unit. Thus, our potential lengths are 8 radix, 4 radix, 2 radix,

and 1 radix. A similar pyramid arrangement of the decomposed partial products for

8-radix-wide operands is found in Table 5.6. The maximum possible number of cycles

is 15 for the 64-bit operands, while finishing in a single cycle for 8-bit operands.
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Table 5.6: DPP pyramid form for 8 radix. 4 radix multiply highlighted

a b c d e f g h
X i j k l m n o p

Clock cycle
1 i X a j X b k X c l X d m X e n X f o X g p X h
2 j X a l X a l X c p X a n X e p X e p X g
3 i X b k X b k X d o X b m X f o X f o X h
4 k X a l X b o X a p X b p X d p X f
5 I X c j X d n X b n X d o X e n X h
6 j X c n X a n X c p X c n X g
7 i X d m X b m X d o X d m X h
8 m X a m X c o X c m X g
9 i X e k X e l X f l X h
10 j X e l X e l X g
11 i X f k X f k X h
12 j X f k X g
13 i X g j X h
14 j X g
15 i X h

1 radix: Not used 7th result Not used 6th result Not used 5th result Not used 4th result Not used 3rd result Not used 2nd result Not used 1st result Not used 0th result
2 radix: Not used 3rd result Not used 2nd result Not used 1st result Not used 0th result
4 radix: Not used 1st result Not used 0th result
8 radix: Not used 0th result
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Converting this diagram to actual hardware, we find that eight 8 × 8 LUTs is

required for each 64-bit word slice. Since these LUTs are read-only, a significant

savings in hardware can be achieved by using a LUT with multiple read ports; using

a single 8 × 8 LUT with eight read ports is a feasible solution. Due to the single

byte offset of some levels of the two-byte partial products, a level of multiplexers is

required immediately after the LUTs to provide this offset. A 128-bit accumulator

is required to sum the partial products in each cycle. Finally, an array of eight byte

sized multiplexers is required to select the appropriate sections of the accumulator

result dependent on input word size.

Division Unit

Binary division tends to be a significantly more complicated problem than binary

multiplication, as shortcuts involving increased radix do not apply to division. Itera-

tive methods exist for division, but often destroy the remainder or cause undesirable

approximations.[21] However, unlike multiplication, integer division always produces

an n or less bit result given n-bit operands. Scaling between different word sizes is

therefore somewhat simpler than for multiplication.

Shift and Subtract Algorithm

LOON implements division by a “shift and subtract” algorithm, as shown in Table

5.7. Division is conducted by a series of steps: first, the dividend and divisor are

normalized to positive integers. Next, the divisor is shifted to the left such that its

highest bit is aligned with the highest bit of the dividend. Once alignment is complete,

the following two steps are repeated until the divisor returns to its original value:

the divisor and dividend are compared, and if the divisor is smaller, the dividend

is decremented by the divisor, and the quotient is set to 1 at the bit position of

the current divisor shift. Otherwise the quotient is set to zero. This step can be

streamlined by always performing the subtraction, and latching based on the sign of

the result. The divisor is then right shifted by one bit position, and the previous step

is repeated. Once these steps are complete, the positive quotient is fully described,
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Table 5.7: Division, Shift and Subtract Algorithm

Start 01101100 Shift: 0
÷ 00000011

Result 0

Align 01101100 Shift: 5
÷ 01100000 Align divisor

Result 000000

Subtract 00001100 Shift: 5
÷ 01100000

Result 100000

Shift 00001100 Shift: 4
÷ 00110000

Result 100000

No subtract 00001100 Shift: 4
÷ 00110000

Result 100000

Shift 00001100 Shift: 3
÷ 00011000

Result 100000

No subtract 00001100 Shift: 3
÷ 00011000

Result 100000

Shift 00001100 Shift: 2
÷ 00001100

Result 100000

Subtract 00000000 Shift: 2
÷ 00001100

Result 100100

Continue until 00000000 Shift: 2
shift back to 0 ÷ 00001100

Result 00100100

and the positive remainder is the remaining dividend value. Finally, the quotient

and remainder are normalized according to the signs of the original dividend and

divisor. If the dividend and divisor are of opposite signs, the quotient and remainder

are negative. If the dividend and divisor are of like signs, the quotient and remainder

are positive.
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Figure 5.10: LOON Divider Unit
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Implementation in Hardware

Implementing this algorithm in hardware in a manner capable of the word-size scal-

ing demanded by the LARK instruction set results in several interesting hardware

sections. First, the beginning normalization step requires another copy of the vector

ALU implemented for other arithmetic operations to perform negation on each word

of the specified size. The normalization steps also require hardware capable of detect-

ing the sign bits of the appropriate words and selecting the original or the negation

to get the positive value. Second, there must be hardware capable of detecting the

difference between the highest bit of the dividend and the highest bit of the divisor,

for each appropriate word size. This requirement results in fifteen pairs of priority

encoders, one in each pair for dividend and divisor and one pair per possible word

in each possible word size. There must also be a left shifter capable of acting with

differently sized shifts on every word in each word size. Finally, once the divisor and

dividend are aligned, the detected differences must count down, another vector ALU

must perform subtractions in the appropriate word sizes, and the quotients must be

set at the appropriate position based on the subtraction result and corresponding

detected difference. Finally, the ending normalization requires one additional vector

ALU and appropriate selection hardware as in the first step.

Figure 5.10 presents a diagram of the logical blocks found in the division unit.

This design results in a divider unit, capable of performing on n-bit operands in no

more than n + 4 steps, where operands may be 64-bit, 32-bit, 16-bit, or 8-bit signed

integers, suitable for the LARK instruction set architecture.

5.5 Writeback of Results

If the executed instruction was a vector operation, the Writeback stage is simple.

The result is simply sent back to the DLAR bank to be stored in the appropriate

DLAR. If instead the operation was a scalar operation, two operations must take

place: the scalar result must be shifted to the appropriate DLAR offset and the
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result must be merged with the existing data in the DLAR. These operations take

place simultaneously within the WB Shifter, as the scalar result is simply latched

over the existing data in the DLAR at the provided offset. This new data line is then

sent to the DLAR bank.

Copyright c© Matthew Sparks, 2013.
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Chapter 6 Problems with LARs

Due to their unconventional design, designing LARs into an architecture causes

problems with some solutions implemented in contemporary architectures. Input and

output to peripherals is difficult under the LARK ISA since there is no mechanism to

force data out to a memory address, and LARK does not contain other instructions

for input and output. Self-modifying code is also difficult to implement due to the

lack of a mechanism to force data to memory.

6.1 Input and Output

Input and output, or I/O, refers to communication between the processor/memory

system and any peripheral devices. I/O allows such necessities as keyboard and mouse

input to a computer, display of data to a video device, or sending information to a

printer. Two common methods of performing I/O are memory mapping, and port

mapping.

Memory-Mapped I/O

In memory-mapped I/O, addresses in memory space are assigned to correspond

with various peripherals and devices. To read or write data from a device, the pro-

cessor reads or writes to the appropriate memory location, effectively treating the

device as if it were memory. In traditional memory-cache systems, this method can

cause problems since the data at these “memory” addresses can change independent

of the processor. If the cache holds data belonging to a memory-mapped address, the

cached value will be provided upon read instead of the actual, potentially changed

value. This discrepancy can be resolved by specifying inside the program that the

value may change outside of the program’s control, such as by using C’s volatile key-

word. However, in LARs the cache-like behavior is far more integrated into the design

and cannot simply be bypassed. No mechanism exists for refreshing a DLAR from
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memory if that memory location changes. “Lazy” writeback also presents problems

with writing to memory-mapped devices. Since there is no way in the LARK/LOON

design to definitively determine when a DLAR will be written back to memory, timing

and communication protocols become difficult if not impossible.

Port Mapped I/O

In port mapped I/O, a separate address space is defined for peripherals, and special

instructions are provided for reading and writing in this space. For example, in the x86

instruction set, the instructions IN and OUT provide these functions. This approach

would work reasonably well in a LAR-based architecture, as the I/O address space

is then separate from the caching behavior of the memory address space and is not

required to use LARs since their associative and caching behaviors are not required

in that context. However, the LARK instruction set architecture does not contain

instructions for port mapped I/O.

Conclusion

Overall, I/O presents a non-trivial problem in an entirely LAR-based architecture,

and falls outside the scope of the LOON architecture. Further iterations of the design

would likely include port-mapped I/O to clearly delineate between the LAR address

space and the peripheral address space.

6.2 Self-Modifying Code

Self-modifying code is a program that modifies its own instructions as it executes,

either through treating data like instructions, or through an explicit instruction for

modifying code. This concept presents an unusual issue in LARs due to the automatic

association between registers and memory. In particular, three problems arise: first,

since writeback of data to memory is “lazy”, there is no guarantee that modified

data is actually ready to be fetched as an instruction. Second, there is currently no

mechanism to refresh an ILAR if its corresponding memory location is changed. If
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that memory location is already loaded into an ILAR, and is then modified elsewhere,

the modification will not reach the ILAR. Finally, although not implemented in the

LOON architecture, future development of LARs intends for compression on an ILAR

by ILAR basis in the instruction memory path in order to save bandwidth. Self-

modifying code would need to be aware of this compression scheme and be able

to appropriately package and compress an entire ILAR in order to accommodate.

Overall, LARs present many difficult challenges to self-modifying code which are not

covered by the scope of this work. In the LOON implementation, ILARs and the

corresponding memory locations are assumed to be read-only during the execution of

a program.

Copyright c© Matthew Sparks, 2013.
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Chapter 7 Conclusions

7.1 Results

Virtually all of the sub-components of the LOON architecture are completed, and

basic functionality of each verified using Verilog testbenches running under Icarus

Verilog. We tested the multiplication unit, the divider unit, and the arithmetic shift

unit individually for multiple cases, including overflow, signed and unsigned arith-

metic, and all word sizes specified in the LARK ISA. We verified that the polymorphic

hardware units function for each possible conversion type. The entire memory system

including the ILAR and DLAR banks is assembled and tested for basic operations,

particularly LOAD, FETCH, and STORE instructions.

All Verilog modules, Verilog testbenches, and generation scripts in Perl and bash

are available online.[23]

7.2 Future Work

In conclusion, the LOON architecture is the most in-depth exploration of the con-

cept of Line Associative Registers to date. Its vector arithmetic units provide an

example of the incredible parallelism available through a LARs based architecture,

and its conversion units demonstrate capabilities that require pipeline flushes and

other delays in conventional architectures. An instruction that converts an entire

row of 256 bytes to 64 32-bit integers, performs 64 adds to another row of 32-bit

integers, and stores all results is not only viable but is normal within the LOON

architecture.

Future work with LARs-based architectures falls into several categories. Developing

a viable input/output scheme would help cement LARs as a usable architecture.

A more immediately promising approach would be integration of LAR-style type
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and size tagging into existing SWAR instruction sets, such as AVX or SSE. These

formats already support the vector behavior of LARs, and integrating more LAR-

like characteristics would help bring some of the benefits of LARs into conventional

architectures. Finally, the instruction pipeline for a LARs-based architecture could

still benefit from an efficient instruction compression scheme, and would additionally

mitigate the effect of the memory gap.

Copyright c© Matthew Sparks, 2013.
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Appendix A LEPH Table Generation

#!/bin/basheho -n "Line size: "read lineSize ;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+5;let k=k+4;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+7;let k=k+2;else
printf "0,";let k=k+1;
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fidone
printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then

printf "$i ,";let i=$i+8;let k=k+1;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+3;let k=k+2;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";
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let i=$i+4;let k=k+1;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+2;let k=k+1;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "0,0,0,0,0,0,0,";let k=k+8;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;
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while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "0,0,0,";let k=k+4;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "0,";let k=k+2;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "0,0,0,0,0,0, ";let k=k+8;else
printf "0,";
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let k=k+1;fidone
printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then

printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "0,0,";let k=k+4;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "0,0,0,0,";let k=k+8;else
printf "0,";let k=k+1;fidone
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printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";eho -n "-$i ,-$i ,-$i ,-$i ,-$i ,-$i ,-$i ,";let i=$i+1;let k=k+8;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";eho -n "-$i ,-$i ,-$i ,";let i=$i+1;let k=k+4;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";eho -n "-$i ,";let i=$i+1;
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let k=k+2;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";eho -n "-$i ,-$i ,-$i ,-$i ,-$i ,-$i ,";let i=$i+1;let k=k+8;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";eho -n "-$i ,-$i ,";let i=$i+1;let k=k+4;else
printf "0,";let k=k+1;fidone
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printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]doif(($i < $lineSize )); then
printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "$i ,";let i=$i+1;

printf "$i ,";eho -n "-$i ,-$i ,-$i ,-$i ,";let i=$i+1;let k=k+8;else
printf "0,";let k=k+1;fidone

printf ’\n’;let i=1;let k=0;while [ $k -lt $lineSize ]do
printf "$i ,";let i=$i+1;let k=k+1;done

printf ’\n’;
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Appendix B LEPH Code Generation from Table

#!/usr/bin/perluse strict;use warnings ;my $file = $ARGV [0] or die "No CSV file given.\n";open(my $data , ’<’, $file) or die "Could not open ’$file’

$!\n";my $byteNum = 0;while (my $line = <$data >)

{ print "byteSelector bs".$byteNum ."(out[".( $byteNum

*8+7).":".( $byteNum *8)."],";print "{";homp $line;my @fields = split "," , $line;my $thisField ;my $firstFlag = 0;foreah $thisField (@fields )

{ if($firstFlag == 0)

{

$firstFlag = 1;

}else
{ print ",";

}if($thisField == 0)

{ print "8’b00000000 ";

}elsif($thisField > 0)

{

$thisField --;print "in[";
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print ($thisField *8+7);print ":";print ($thisField *8);print "]";

}elsif($thisField < 0)

{

$thisField = abs($thisField ) - 1;print "{";print "in[";print ($thisField *8+7);print "]";my $count;for($count = 0; $count < 7; $count

++)

{ print ",";print "in[";print ($thisField *8+7);print "]";

}print "}";

}else
{ print $thisField ;

}

}

$byteNum ++;print "}";print ",op_type );\n";

}
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