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Abstract

Array and pointer references areoften ambiguous in

that compile time analysis cannot always determine if

distinct references are to the same object. Ambiguously

aliased objects are not allocated to registers by conven-

tional compilers due to the cost of the loads and stores

required to keep register copies consistent with memory

and each other. There are several hardware and soft-

ware strategies that can be used to solve the ambiguous

alias problem; we have implemented one such scheme

called CRegs in a compiler and instruction level simu-

lator. We present a modification to Briggs’ Optimistic

Coloring Algorithm that allows us to allocate local and

parameter arrays to CRegs. The CRegs register file

operation and instruction set modifications required to

implement this scheme are discussed. Underlying hard-

ware issues such as pipeline impact and chip area are

briefly discussed. Several benchmarks are compared in

terms of dynamic instructions executed for two CReg

set sizes. The measured reduction in memory opera-

tions is significant, averaging 23% for the benchmarks

shown.

Keywords: CRegs, ambiguous alias, register alloca-

tion, graph coloring, live range.

1 Introduction

An ambiguous alias occurs when two names may or

may not refer to the same memory location. In the ex-

ample shown in Figure 1, if the relationship between i

and j is not known at compile time or varies (denoted i

? j), the references may depend on each other and the

load in line 3 is required. If the relationship between i

and j can be determined (i = j or i # j ) then a load

can be eliminated because a [i] can be allocated to a

register. In general, ambiguously aliased objects are not
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allocated to the register file because of the loads and

stores required to maintain correctness.

CRegs is a hardware scheme that performs a run

time consistency check of effective addresses, in this

manner aliases are detected and values are propagated

to ambiguously aliased objects in other CRegs [10].

With CReg hardware maintaining addresses in the reg-

ister file, the compiler can allocate pointer values and

array elements to CRegs safely without fear of using

stale data, reaping the benefits of fast local memory for

these objects. A performance gain is expected due to

the associated reduction in memory bandwidth.

A CReg is a register that has an additional address

field used to perform associative matches with other

CRegs and that is capable of updating other CRegs

under certain circumstances. The scope of the asso-

ciativity is limited by the CReg set size; the underlying

hardware must be capable of writing the value fields of

the matching CRegs in the set simultaneously. Values

in different sets are not updated even if their addresses

match.

Alias sets are used to group live ranges for allocation

to CReg sets. An alias set is composed of live ranges

that are ambiguously aliased at some point in their live

range [1]. It is assumed that names that are always

aliased have been appropriately renamed and that ob-

jects that are never aliased are placed in different alias

sets. Formal parameters are analyzed for aliasing and

placed into alias sets using an algorithm developed by

Cooper [8].

There are many solutions to the ambiguous alias

problem [7, 11, 6] but we focus only on CReg hardware

and compiler techniques in this paper. The remain-

der of the paper covers CReg instruction set modifica-

tions and hardware design (Section 2), CReg compila-

tion techniques (Section 3), experiment al results and

analysis (Section 4), and a summary (Section 5).

2 CReg Hardware
In this section we explain basic CReg operation and

propose modifications to a typical load/store instruction

set architecture to support CRegs. In addition, we show

how it can be integrated into an existing superscalar mi-

croprocessor design.

All CReg address matching and value update occurs

in loads and stores; these instructions are the primary

means for maintaining the mapping between memory

and registers. Non-memory instructions are modified to

clear the address field of their destination CReg. An

address is only bound to the value once the value is

loaded or stored with a CReg load or store. The range
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code i?j
i+j

i=j

1) ... = a[i] + . . . load r2+--a[i] load r2+a[i] load r2-a[i]

2) a[j] = . . . store a[jl =r3 store a[jl -r3 store a[jl -r3

3) . . . = a[il load r4+a[i] use r2 use r3

Figure 1: Ambiguous Alias Example

of address matching is limited to a CR,eg set which is re-

sponsible for propagating values between CRegs whose

addresses match. A maxtmal CReg set is where the ad-

dresses associate over the entire register file.

2.1 Original Instruction Set

The original load and store instructions remain un-

changed except that they now clear the address field of

the CReg they are loading or storing. Hence, a compiler

that is unaware of CRegs can safely use existing loads

and stores effectively treating CRegs as registers. Our

compiler uses these instructions when address matching

and value update is not required, e.g. when saving and

restoring registers at subroutine boundaries.

2.2 CReg Matching Instructions

A load and match address instruction is added to

the instruction set to load aliased objects into CRegs. It

calculates the effective addressl as a normal load does,

but performs an associative search with other CReg ad-

dresses within the set. If a match is fc)und, the memory

operation is “squashed” (i. e., not perfc)rmed) and a copy

from the matching CReg is made. Tlhe load still takes

time in the processor pipeline but no memory operation

is initiated.

A store and match address instruction calculates

the effective address and associatively searches for other

CRegs with the same address. If it finds some, it copies

the value to be stored to the other CRegs. Unlike the

load, the store always performs a memory operation,

keeping objects in memory updated with the current

value. Multiple writes can occur within the register file;

potentially all the CRegs in the set may need to be writ-

ten. In practice there are rarely more that two CRegs

updated within the set.

There are two variants on the store and match ad-

dress instruction. The first updates matching CRegs

but does not write the address of the CReg being stored.

Our compiler uses this when the left hand side of an as-

signment statement is aliased and spilled therefore the

store address should not be written to the source regis-

ter. The second form of the store updates the address

of the CReg being stored as well as the values of match-

ing CRegs. This overwrites any address that was there,

effectively allocating the object to the CReg. Our com-

piler uses this after a DEF to start the live range of an

aliased object allocated to a CReg.

2.3 Address Clear Instructions

Care must be taken when live ranges are live across
subroutine boundaries. We identify ~wo cases. In the

first case, CRegs containing values jfrom one subrou-

tine’s stack frame could cause inadvertent squashed

1Virtual addresses are used if virtual memory is supported.

loads in following subroutines if their stack frames oc-

cupy the same memory space (at different times). The

second case involves an object that may not be involved

in the subroutine call, but the CReg it is allocated to

(or another in the same set) is used by the subroutine.

We force a break in the live range for these objects and

clear their address fields. This isolates the caller and

callee by making the ambiguously aliased objects reload

at the first USE following the subroutine call. Alterna-

tively, both the address and value field could be saved

and restored at the subroutine boundary.

2.4 Context Switching

More aggressive register isolation is required for

context switches, exceptions, and interrupts. The CReg

register file must contain the same contents after the

event as before. This is accomplished with special stores

and loads that move both the value and address field of

the CReg to and from memory.

2.5 Example

Figures 2 and 3 illustrate CReg operation. Val-

ues in CRegs or memory are referred to by name (r.5,

a [i]); addresses are referred to with an “&” prefix (&rS,

&a [i] ). Loads and stores involving CReg updates and

memory operations are depicted as a box surrounding

the operations they perform. For this example, i and

j are not known at compile time, the array references

are ambiguously aliased. Assume that the live ranges

for a[il and a[k] are allocated and that the live range

for a [j ] is spilled. Furthermore, assume the live range

for a [k] starts with the USE in line 4.

Line 2 of the example shows a DEF of an array el-

ement; the store that follows this DEF allocates a [i]

to r4 by writing the address of a [i] into &r4. It also

copies the value of r4 to any CRegs in the same set

with matching addresses and writes the value to mem-

ory. There is no load required for a [i] in line 4. Note

that if code in line 3 changed the value of a [i] through

another name, r4 would be updated via CRegs address

matching. The load of a [k] in line 4 is necessary to

start the live range for a [k] and may or may not result

in a memory operation. If the effective address of a [k]

matches the address field of a CReg in the same set, the

value will be copied from that CReg instead of being

loaded from memory. Finally, the store to a [j ] writes

the new value in r6 to memory and to other CRegs with

the same address but does not update &r6. The address

field of r6 remains null (it was set to null by the add

instruction in line 4) because a [j ] is spilled.
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1) input i,j

2) a[i] = 7.0

3) . . .

4) a[j] = a[il + a[kl

Figure 2: Simple Code Example

2.6 CRegs Implementation

An earlier study showed that CRegs could be in-

tegrated into a simple RISC processor pipeline using

cache-like circuitry with a small chip area increase and

no clock cycle time impact [12]. For superscalar proces-

sors [9] CReg stores cannot be dual-issued with an in-

teger ALU operation since the store may write a source

register for the integer ALU instruction. Additional for-

warding logic is needed, a load followed by a store of the

same CReg needs the loaded value and address to avoid

stalling. A CReg implementation will require additional

register file ports. In addition, each CReg requires an

address field approximately doubling the size of the reg-

ister file. Given increasing chip sizes and the small area

required for registers relative to caches, functional units,

and the data path, the increased chip area may not be

a problem.

3 Allocating Objects to CRegs

Graph coloring register allocators use nodes to rep-

resent live ranges of values and arcs between nodes to

specify that the two live ranges cannot be allocated to

the same register. The nodes of the interference graph

are colored representing an allocation of live ranges to

specific registers.

3.1 Live Range Construction

A variety of objects are eligible for allocation to

CRegs. The following simple rules describe our live

range strategy. We first organize the local and formal

parameter array references according to the name of the

array and the index calculation involved. Any vari-

ables in the index calculation are encoded with their

value number to annotate the reference uniquely. Live

ranges are built for array elements in the same manner

as scalars, treating each unique index for a given array

as a different element.

Globals and pointers are not allocated and so are

“pre-spilled” which means that for each USE/DEF there

is spill code responsible for loading/storing the value.

Live ranges for scalar locals and formal parameters are

created as described by Briggs [3].

1)
2)

3)

4)

rlFi, r2=j

r4 t 7.0: &r4 4- null

copy r4 to CRegs matching &a [i] CReg

store r4 to &a [i] store

&r4 ~ &a [i]

...
(no load of a [i] , it’s allocated to r4)

if (&a [k] = &r4) r5 * r4 (squash) CReg

else load r5 from &a [k] load

r6 +- r4 + r5; &r6 + null

copy r6 to CRegs matching &a [j 1 CReg

store r6 to &a[j] store

Figure 3: Underlying Operations

3.2 Alias Analysis

This section describes how we group objects into

alias sets in preparation for allocating them to CReg

sets. If ambiguously aliased objects were not grouped

in alias sets, they might be allocated across multiple

CReg sets and stale data could occur in some CRegs.

The alias analysis we use for local variables is min-

imally simple. If an object A is ambiguously aliased

with object B at some point in the program, we put

both A and B in the same alias set. If another object C

is aliased with B at a later point, it is also placed in the

alias set. The set implies that A and C are aliased; this

may or may not be true but is conservatively assumed

to be true. Obviously there is room for improvement in

the construction of these sets; note however that A, B,

and Call must be allocated to the same CReg set and so

enhanced alias analysis may not improve the allocation

process.

An alias set is represented in the interference graph

as a circularly linked list of live range nodes. For local

arrays, the alias set consists of all the live ranges for the

elements of that array2. Scalars have a null pointer for

their alias set.

Two basic operations on alias sets find the range

of CRegs that are allowed during color selection. If an

alias set has a member that has been colored to a CReg

set, the remaining alias set members are limited to col-

ors within the CReg set. If no members of the alias

set have colors, a CReg set is chosen in a round-robin

manner. The first operation is finding the color of any

member of an alias set given an uncolored member of

the set (fi.nd-alias.color (node)). If no members of

the set have been colored yet, a color from a CReg set

is chosen in a round-robin manner. If the node is not

a member of an alias set, an illegal color is returned.

The second basic operation uses the resulting color and

finds the first and last CReg in the corresponding CReg

set (f ind-fi.rst-last (color) ). If the color given is not

a valid color, it returns the first and last CReg of the

entire register file. If the target architecture supports a

2This is conservative; if two local array live ranges do not interfere, they can be placed in different alias sets

102



maximal CReg set, f ind.first ~ast ( ) always returns

the entire register file as the range,

3.3 Modifications to Briggs’ Optimistic

Coloring Algorithm

Briggs’ Optimistic Algorithm delays spill decisions

until it knows there are no colors available in the color

selection phase [4], We control the selection of colors

such that nodes in an alias set are limited to CRegs in

one CReg set. The color selection stage scans through

the range of colors, checking them a~gainst the colors

of the node’s neighbors. This loop is originally limited

to the available colors, we further limit it based on the

CReg set to which the node should be colored. For

scalar objects or allocation to a maximal CRegs set, the

limits remain the entire register file. If the node cannot

be colored within the range of colors specified, spill code

is inserted and the algorithm iterates.

Chaitin-style allocators (including Briggs’) have

heuristics that limit the insertion of spill code. For ex-

ample, if all the USES of the live range are “close” 3

to the DEF, the live range will not have spill code in-

serted. We override this in the case of DEFs of am-

biguously aliased objects where a store always follows

to keep memory updated.

During color selection, we originally found that sev-

eral alias sets frequently had one member allocated to

a single CReg set. The remaining members of the alias

sets often were not allocated because the CReg set was

full. This is why f ind.alias-color ( ) returns colors

from CReg sets in a round-robin manner if the alias set

is not fixed to a CReg set yet. This allows alias sets a

better chance to be completely allocated to a CReg set.

Multiple alias sets can still be allocated to one CReg set

if they will fit.

Our augmentation to Briggs’ Algc,rithm is indepen-

dent of the cost function making it compatible with

other improvements [2].

3.4 Dependence and Pointer Analysis

CReg hardware is complementary to compile time

techniques to reduce ambiguous aliasing such as depen-

dence and pointer analysis. These techniques are pow-

erful but cannot always succeed in disambiguating all

relevant references. When static techniques fail, CReg

hardware provides a mechanism to detect aliasing at

run time, retaining the advantages of register storage

for aliased objects. For this study, no dependence or

pointer analysis was implemented. For a maximal CReg

set, pointer values can be allocated without analysis. If

the CRegs are divided into sets, analysis is required to

group references into alias sets.

4 Experimental Results

Our test suite consists of several floating point

SPEC ’89 and ’92 benchmarks, Liverrnore Loops, and a

hydrodynamics code4,

The optimizing compiler, known as ccc, was devel-

oped at the University of Minnesota. The simulator can

support a conventional or CReg register file for the Al-

pha architecture [9]. It is an instruction level simulator

capable of giving dynamic instructions counts, but does

not simulate the processor pipeline or cache and so can-

not give actual cycle counts or an indication if a CReg

reference would have been a cache hit or miss.

To calculate the number of loads reduced by CRegs,

two compilations and simulations are performed. The

first compilation is targeted toward a conventional regis-

ter file. When this is simulated on a conventional archi-

tecture, a certain number of instructions are executed

and counted in categories (loads resulting in a memory

operation/load instructions/stores/all instructions) as a

baseline for comparison. The second compile allocates

objects to CRegs and then is simulated with a CReg reg-

ister file. The dynamic instruction counts are compared

to get the reduction percentage.

4.1 Analysis

We observed the following

shown in Figure 4:

The dy;amic load reduction

75%.

for the benchmarks

ranged from O to

The average reduction in memory operations

with CRegs was 23?10.

Small CReg sets cause only a slight increase

in memory operations compared to a maximal

CReg set.

The dynamic instruction count reduction varied

from -0.6% to 13.8%.

Register ~ressure increased.

Dy~amic’ load reduction is due to squashed loads

and direct removal of spill loads. For squashed loads, the

memory operation does not occur (i.e., it is not counted

as a load), but the instruction still counts in the total

instructions executed. Fewer loads occur in the CReg

code because more objects are allocated.

The data shows that having a maximal CReg set

gives only a slightly better reduction in loads. This

means that the register allocator is not overly con-

strained by allocating alias sets to CReg sets.

The reduction in total instructions executed is

slightly positive meaning that the reduction in loads

for objects allocated to CRegs more than offsets the in-

creased subroutine isolation code5.

The maximum number of writes and matches was

measured by the simulator for all test cases. It never ex-

ceeded two for the benchmarks shown but theoretically

it could be as large as the set size. We attribute this

to the low number of simultaneously live ambiguously

aliased objects.

With a CRegs implementation, execution time is

reduced for the following reasons:

● There are generally fewer instructions executed.

‘Two mentions of a live range are “close” if no other live range goes dead between them [5].

4The ppm code was obtained from Dr. Paul Woodward at the University of Minnesota.

5More CRegs than registers are used within procedures making the number of loads and stores performed by the callee

greater.
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Benchmark

nasa7/vpent a

tomcatv

matrix300

doduc/debi.co

doduc/dcoera

doduc/dyeh

doduc/yeh

Livermore Loops

pplll

MaxlmalUReg Set

memloads loads s~ores instrs.

36.62 36.60 -0.01 8.52

21.06

0.11

74.44

9.00
4.21

11.22

8.39

21.30

20.80

0.11

66,60

0.00

0.00

0.00

4.62
14.04

0.00 7.11

0.00 -0.03

-0.12 13.75

0.00 -0.61

0.00 0.00

-0.03 0.00

-0.02 1.4.5

-1.42 4.63

Figure4: Percent Reduction Summary for

There are fewer memory operations executed.

Overall data access latencies are reduced since

more references are directly to registers.

Summary and Future Work

A register fiie composed of CRegs is one solution

to the ambiguous alias problem. We have shown an in-

struction level implementation and explained the opera-

tion of the memory operations involved. Our CReg com-

piler works in conjunction with the CReg hardware to

produce code that contains fewer load instructions and

squashes some memory references dynamically. Live

ranges are constructed for local and formal parameter

array elements similar to those for scalars. These live

ranges are grouped into alias sets using interprocedu-

ral alias analysis and local alias information. A simple

modification to Briggs’ Optimistic Coloring Algorithm

allows an interference graph augmented with alias infor-

mation to be allocated to CRegs. The change involves

limiting which colors are available to a node during the

color selection phase of the algorithm. A round-robin

scheme helps distribute alias sets among the CReg sets

and averts deadlock situations which spill alias set mem-

bers.

In the future, we will be implementing better alias

analysis; more aggressive algorithms will keep the alias

set size small so that pointer values can be allocated

without causing significant increases in spill code. The

complexity of pointer analysis may limit this solution to

an architecture with a maximal CReg set. One way to

do this would be to add alias edges to the interference

graph; an alias edge is present between two nodes if the

nodes must be allocated to CRegs in the same CReg set.
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