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Abstract

By exploiting fine grain parallelism, superscalar processors

can potentially increase the performance of future super-

computers. However, supercomputers typically have a long

access delay to their first level memory which can severely

restrict the performance of superscalar processors. Com-

pilers attempt to move load instructions far enough ahead

to hide this latency. However, conventional movement of

load instructions is limited by data dependence analysis.

This paper introduces a simple hardware scheme, referred

to as pr-eloari register update, to allow the compiler to move

load instructions even in the presence of inconclusive data

dependence analysis results. Preload register update keeps

the load destination registers coherent when load instruc-

tions are moved past store instructions that reference the

same location. With this addition, superscalar processors

can more effectively tolerate longer data access latencies.

Keywords: data dependence analysis, load latency, reg-

ister file, register preload, VLIW/superscalar processor.

1 Introduction

In order to increase performance, future supercomputers

can utilize superscslar processors to exploit fine grain par-

allelism inherent to applications. Due to the memory re-

quirements of many supercomputer applications, the first

Permission to copy without fee all or part of this material is
granted providad that the copies are not made or distributed for

diract commercial advantage, the ACM copyright notica and tha

title of the publication and its date appear, and notice is given

that copying ie by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
ICS ‘92-7 /92/D. C., USA

01992 ACM 0-89791 -485 -6/92 /0007 /0104 . ..$1 .50

level memory is usually large with a high access latency.

The performance of superscalar processors, however, is

more sensitive to data load latency than their single in-

struction issue predecessors. A superscalar processor can

lose over 30% of its performance when the latency for a

data load is increased from 1 to 2 cycles [1]. 1 The fact that

the performance decreases as the load latency increases in-

dicates that loads are often on the program critical path.

One important reason why loads appear on the critical

path is that their movement is constrained by stores when

there is insufficient memory dependence information avail-

able at compile time.

Data dependence analysis determines the relation be-

tween memory references. Three possible conclusions can

be reached regarding the relation between a pair of mem-

ory references: they always access the same location, they

never access the same location, or they may access the

same location. In the first two cases, the compiler can uti-

lize this information to optimize and schedule the reference

pair. In the third case, the inconclusive result typically

disables optimizations and code reordering. For example,

consider the scheduled code segments in Figure 1 for a ma-

chine that can issue 2 instructions per cycle with a load

latency of 2 cycles. Inconclusive data dependence analyais

results prohibit the movement of loads above the stores in

Figure la. This leads to an empty cycle in the schedule.

However, if the loads are determined to be independent of

the stores, a more efficient schedule is obtained as shown

in Figure lb. This problem compounds as the processor

is able to issue more instructions per cycle, since each cy-

cle that the processor has to wait for memory references

becomes more significant to the overall execution time.

For array references, many algorithms exist to perform

data dependence analysis [2] [3] [4]. However, there are

many cases where these data dependence analysis algo-

I currently, many ~Ommerci4 processors have a k=cl latency

of 2 or more cycles.
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Figurel: Problem with data dependence.

rithms cannot provide conclusive results [5] [6]. Due to

possible reference conflicts, a dependence must be assumed

between the reference pair to ensure correct program exe-

cution. Furthermore, programming languages which al-

low data types, such as structures and pointers, pose

even more difficulties for data dependence analysis [7] [8].

With preload register update, the dependence between a

load/store pair is removed regardless of the dependence re-

lation, andamore compact schedule canthus reachieved.

Out-of-order execution machines attempt to alleviate

the problem by performing load bypassing. During dy-

namic execution, a memory load can b,ypass a memory

store if their respective addresses are different. It has

been shown that load bypassing is a major reason why

dynamic code scheduling outperforms static code schedul-

ing [9]. Using a hardware monitor as proposed by Emma et

al., loads can bypass stores even when th,e store addresses

are unknown [10]. The core of the monitor is similar to our

proposed hardware scheme. However, the performance of

load bypassing is constrained by the dynamic lookahead

window size. Also, in the dynamic load bypassing model,

the hardware support and the compiler sulpport are consid-

ered separate entities. Thus, the compiler cannot utilize

the hardware support of load bypassing to increase the

opportunist y for optimization and scheduling.

A combined hardware and compiler scheme to keep in

register a value that can be accessed via multiple variable

names, or aliases, has been proposed [1 ,[]. The register

file is partitioned into several alias sets such that possi-

bly aliased and simultaneously live references can reside in

registers of the same alias set. A change in the content

of one register will reflect in another register within the

same alias set when their addresses are the same. This ap-

proach can also be used to reorder dependent load/store

pairs when the load destination and the store value re-

side in the same alias set. However, the effectiveness of

this approach is limited by the size of the alias sets pro-

vided in the hardware implementation. To remove this

constraint, a separate linked list of registers for each alias

can be maintained during execution [12]. Due to the possi-

bility of searching for the leader of the linlked list, though,

register access time may require an extra cycle.

Dependent load/store pairs can be reordered by insert-

ing explicit address comparison and conditional branch in-
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Figure 2: Overview of preload register update.

structions during compilation [13]. Instructions are also

inserted to repair for the incorrect execution of wrongly

reordered reference pairs. The extra instructions, how-

ever, can cause a large execution overhead as a result of

aggressive code reordering.

In this paper, a hardware scheme which allows the com-

piler to perform aggressive scheduling in the presence of

inconclusive data dependence analysis results is discussed.

This mechanism is referred to ae preload register update. In

Section 2, a description of the full design is presented fol-

lowed by a subset design which incurs less hardware cost.

A compiler which takes advantage of preload register up

date is described in Section 3. In Section 4, the effective-

ness of preload register update is evaluated for a set of

non-numeric and numeric benchmark programs.

2 Implementing Preload Regis-

ter Update

The main purpose of preload register update is to provide

support for the compiler to boost a memory load above a

memory store when their dependence state is not certain.

In this section, we discuss the details of one possible imple-

mentation of preload register update. The design details

will undergo minor modifications as the compiler provides

different levels of support. Our compiler support overview

will be discussed in Section 3.

2. I Overview of the Full Scale Design

When a load is moved above a store and their dependence

relation is uncertain, the load becomes a preload. A co-

herence mechanism must be used to update the preload

destination register if the preload and the store reference

the same memory location. Figure 2 provides an overview

of the coherence mechanism. For each register data entry,

an address register entry is added. Thus, if we have n gen-

eral purpose registers, n address registers are added. The

purpose of these new registers is to store the addresses of
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Figure 3: Register states implementation detail.

preloads. When a store instruction is executed, the store

address is compared against all preload addresses in the

address registers. When the addresses match, the stored

value is forwarded to the corresponding data register entry

for an update. Since there are multiple address registers,

a fully associative comparison of the store address and the

individual preload addresses must be made. A commit in-

struction is inserted at the original position of the load (we

will discuss the implementation alternatives of this commit

instruction in Section 2.3). The coherence mechanism will

continue to operate until a commit instruction is executed

or the register entry is redefined by a normal instruction.

To distinguish between a normal and a preloaded da-

tum, several bits to represent the state of each register

are required. The state bits associated with each data

register entry is presented in Figure 3. The opcode type

of the preload is encoded and saved in the preload type

field. This isusedfor data ahgnrnent andmaskingof afor-

warded datum when a store type is different from that of a

preload (e.g., preloading a character versus storing an inte-

ger). When a preload instruction is executed at run time,

the associated preload state (P) is set for its destination

register. The preload state is reset by the corresponding

commit instruction, which turns off the coherence mecha-

nism for the register. The ready bit (R), which is similar

to the ready bit required by an interlocking mechanism,

is set to O while the register content is being generated

or accessed. If the preloaded address is an 1/0 port de-

fined by the memory management unit, the freeze state

(F) is set so that the load can be retried at the time of the

use. The preload to the 1/0 port is therefore aborted. We

can delay the trap caused by a preload by setting the trap

bit (T). Since if the preloaded value is not used, the trap

can be ignored. Detection of exceptions for optimized and

scheduled code is discussed in [14]. In this paper, we focus

on the use of the preload register to improve the overall

program performance.

2.2 Implementation Timing and

Pipeline Stages

The stages of the pipeline model are illustrated by an ex-

ample in Figure 4. We wish to demonstrate two issues

with this example: register content updating and data

forwarding if a preload data is used immediately after a

preload/store address match. If a preload address matches

the store address, the preload register content is corrected

at the write back stage of the store. The computation re-

sult writes back and the preload content update due to

a matching store address is prioritized according to the

Preload I
Load DdaY

I

IF ID
I

EX
%

Ex WB

4

Sm$moad Regislw ‘xntmt C.x-s
Ad&sss ,s guarded by h SW9

.wnucibw or cpum$ wnwbuh

Store
IF 1 ID Ex WB I

“badccEbrEl
Figure 4: Example pipeline stage and instruction re-

lation assuming load latency of 2.

Register State II explanation

P\Fl R

0]0]0 Register redefine by a non-preload

instruction, not ready

O1o11 Register contain ready datum, coherence

111 II off I
o 1 0 State not used

o 1 1 State not used

1 0 0 Preload register, normal datum,

not ready

1 0 1 Preload register, normal datum,

register ready

1 1 0 Preload register, normal or frozen

state unclear, not ready

1 1 1 Preload register, frozen datum

Table 1: Explanation of register states.

instruction execution sequentiality. When more than one

preload address matches the store address, the pipeline is

frozen until all the register values are updated. 2 To allow

the preload register to be used right after the last bypassed

store, the datum for the preload register update is also for-

warded to the execution unit that uses the preload. 3 The

register file has a direct path from the write back port to

the read port to allow such forwarding.

We now concentrate on the P, F, and R bits of the reg-

ister state. The register states are explained in Table 1.

The associated state diagram is presented in Figure 5 while

the possible inputs used in the state diagram are given in

Table 2. All states with an input of 1 (instruction is a

preload) or 9 (register is defined by an instruction other

than a preload) will go to state PF~ and PFR respec-

tively. To make the hardware simple, all register data up-

date from redefinitions can proceed only if the register is

in its ready state (R=l). Thus, the proposed method is

z This allows us to avoid the complexity of regist er file imple-

mentation for multiple corrections. This trade-off is reasonable

because we expect the occurrence of this situation to be rare.

3Output and anti dependence are handled by register re-

naming at the decode stage [15]. In this case, the coherence

mechanism operates on the physical registers.
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8/P=O 7/update .eglster content

4/update register content
5/nil
6/1.gnore datum

8/cPu wait

4, 6/update register content lgOest.3PFE

-[

8/retry load

L_

4,5/n.l
8/wnJ wa. t 6/u7nore datum

1/.1
4,8/cpu wait

*1 For all redefines, CPU rn”st wait unless source state R=l

‘2 ,f TLB M.-e. , prel Oad .S retr.ed when TLB hits, else
the act. c.n .s postponed unt.1 freeze status .s known

Figure 5: State diagram ofpreload register controller.

Type II Explanation

1 Instruction is apreload

2 Preload needs to be frozen

3

3

Preload does not need to be frozen

4 Store addr matches thepreload addr

5 Store addr does not match preload addr

6 Preload datum is delivered

7 Non-preload datum is delivered

8 Preload datum use, commit

9 Re~ is defined bv an instr other than a Dreload

Table 2: Input types to the preload register controller.

compatible with a processor with simple interlocking mech-

anism similar to that used in CRAY-1 [16]. If the freeze

state is immediately known at the time olf the preload, we

can eliminate the 110 state totally and proceed to state

100 or 111 depending upon the freeze status. Although

the TLB access is fast in most processors, it still requires

some lag time before the result is available, therefore state

110 is included. State OOlisthe initial state ofall registers.

2.3 Committing Preload Data

After the execution of all the stores that were bypassed by

the preload, the coherence mechanism is no longer needed

for the destination register of the preload instruction. In

fact, none of the subsequent stores should be allowed to

modify the register. Therefore, a method to commit the

preload is required to turn off the coherence mechanism at

this point of the execution.

A commit instruction can be implemented in two pos-

sible ways. First, it can be added to an existing instruc-

tion set. This opcode would only have one operand, which

is the register number of the preload destination register.

The execution of the commit instruction turns off the co-

herence mechanism, or retries the preload if the freeze bit

is set. For the second option, the use of the preload desti-

nation register implies a commit instruction. As described

in Section 3, the compiler does not move the use of the

preload data above or below any stores that may conflict

with the preload, Therefore, the execution of the use sig-

nals the ending of the coherence mechanism. If a use is

not available, we can create artificial use of the register by

performing a move to a register hardwired to O (such as RO

in the MIPS R2000 [17]) or to itself. The two alternatives

both have their advantages and disadvantages. They vary

in hardware complexity, compiler complexity, and execu-

tion overhead. From our experience, the explicit commit

instruction incurs much more overhead, and is not effective

for low issue rate machines. Therefore, we will concentrate

on the second model.

2.4 An Example of Preload Register

Update Operation

We illustrate preload register update with an example,

Figure 6a shows a load/store pair whose address depen-
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a) Original code segment

store mem(Rl) <- R2

load R3 <- mem(R4)

alu R4 <- R3 + 99

store mem(R4) <- RI

alu R2 <- R3 + R2

b) Code segment after preloading

(opl) preload R3 <- mem(R4)

(op2) store mem(Rl) <- R2

(op3) alu R4 <- R3 + 99

(op4) store mem(R4) <- RI

(op5) alu R2 <- R3 + R2

c) Sample execution when load and store addresses conflict

INITIAL
STATE

After
op 2

M2M(1OO) - 4

ADDRESS DATA P

B

10 R1

R2

R3

10 R4

K2M(1OO) - 1

ADDRESS DATA P

RI

R2

R3

R4

After
q 1

Af oar
q 3

After
op 5

M2M(1OO) - 4

ADDREss DATA P

B

10 R1

R2

100 4 R3

10 R4

MEM(1OO) - 1

ADDREs S DATA P

100 0 ~~

1 0 R2

100 1 c R3

100 0 ~q

Figure 6: An example of preload register update.

dence cannot be resolved at compile time. With preload

register update, the load is moved above the store with

the condition that the use by op3 remains between the

two stores (Figure 6b). The execution of the preload in-

struction changes P of R3 to 1 to indicate that R3 contains

a preloaded datum, and memory coherence must be main-

tained for R3. When the store is executed, the coherence

mechanism checks the store address against the address

field of R3, and finds that they are the same (Figure 6c).

Therefore, the data field of R3 is updated with the stored

value. When the ALU instruction is executed, P of R3 is

set to O, thereby turning off the memory coherence for this

register.

2.5 Subset Design of Preload Register

Update

At this point, one may question the viability of the full

scale design when the number of address registers increases

to a large value. This subsection presents a subset design

of preload register update, which incurs lower cost for all

sized register files.

Address v GRP

m

Address Data State

m

n
m

~ ~

R

. . . . .
I

-4St.,.
..”.,.1

I
I

11’
S,.;. c..,.,
h.. 0...

Figure 7: A Subset Design of Preload Register Update.

Basically, the subset design is similar to the full scale

design, except that the number oft he fully associative ad-

dress compares is reduced to m (where m < n); m ad-

dress registers each with a general purpose register pointer

(GRP) field and a valid bit (V) added (see Figure 7). All

other state bits for the general purpose registers remain

unchanged. The purpose of the GRP is to associate an

entry of the address register (from here on, the set of m

address registers will be referred to as address registers) to

an arbitrary general purpose register entry. This way, all

general purpose registers can become a preload register,

but only m of them can be active for memory coherence at

the same time. The V bit indicates whether the address

entry contains a valid address for memory coherence. If

the V bit is 1, the register pointed to by GRP needs to be

kept coherent for all subsequent memory stores. If there

is more than one preload address entry which matches the

store address, the pipeline is frozen and all matching reg-

isters are serially updated.

At run time, apreload can occupy any of the address

register entries. When the number of preloads exceeds the

number of available address registers, an address register

entry is replaced to allow for the new preload instruction.

The replacement strategy can be LRU, FIFO, or any other

desired replacement policy. However, care should betaken

aa to prevent stale preload addresses from occupying use-

ful address register due to incorrect compile time branch

prediction. At the time of replacing an address register

entry, the F bit of the general purpose register pointed to

by the GRP is set to 1. This will cause a retry of the load

when the register is used.

To illustrate the operation of the subset design, an ex-

ample is provided in Figure 8 with one address register

available. When 0p2 finishes executing, the data content

of the first preload is no longer kept coherent, and the F

bit is set to 1. At the time to commit R3, we retry the

load to memory location 100, and obtain the correct da-

tum. All register entries are in the normal data state after

op5finishes execution.
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a) Original code segment

store (RI) <- R2

load R3 <- (R2)

load R4 <- (R4)

b) Code segment after preloading

(opl) preload R3 <- (R2)

(oP2) preload R4 <- (R4)

(op3) store (RI) <- R2

(op4) conmi.t R3

(op5) comruit R4

c) An example of preload overflow

WJDP.ES. VI w

~

Mml,loo, - 4 A*.,

.,,
MEm,, oe, - +

RDDRESS D&TA P F

15E131
2000 0 .u

100 0 Q u

,0 ~l,lu

,,0 0 9 ,,

Figure 8: An example for preload in subset design.

3 Compiler Support for

Preload Register Update

In this section, we focus on code scheduling, which is the

most important aspect of the compiler support for preload

register update. The scheduling support (discussed in this

paper is basedon the superblock structure [l]; however, it

can be easily generalized to other structures. A superblock

or extended basic block is a block of sequential instructions

in which control can only enter from the tc]p but may leave

from one or more exit points.

To perform superblock scheduling, a dependence graph

is constructed for each superblock. The dependence graph

includes flow, output, anti, and control dependence be-

tween instructions. In addition, memory dependence arcs

exist between all load/store, store/load, and store/store

pairs unless the compiler can determine that their respec-

tive addresses are always different. With the dependence

graph in place, a list scheduling algorithm is used to derive

the schedule for each superblock.

In order to take advantage of preload register update,

the dependence graph construction phase rreedsto remod-

ified. Several terms are used to explain the changes. When

the memory dependence relation between two memory in-

structions is uncertain, the dependence is termed ambigu-

ous. The Closest Ambiguous Store Befc)re (CASB) of a

memory instruction is defined as the first ambiguous store

above the memory instruction. The Clcwest Ambiguous

Store After (CASA) of a memory instruction is defined

as the first ambiguous store after the memory instruction.

The basic block where a preload originated is called the

home basic block of the preload.

If a load instruction is not indirectly flow dependent

upon another load instruction in the superblock, then it

is marked as a potential preload. For potential preloads,

all memory dependence on all preceding stores within the

superblock are removed. No use of the preload destina-

tion register can be moved above the CASB. We stipulate

that at least one instruction which uses the result of the

preload must remain within the home basic block of the

preload. Also, this use is marked as the commit instruction

and must be scheduled before the CASA. If a use is not

available in the home basic block, a commit instruction is

inserted in the home basic block. Note that preloads may

be moved above branches during superblock scheduling,

In this paper, the general code percolation model [1] is as-

sumed, and non-trapping hardware [18] is used to suppress

the exceptions caused by these preloads.

An example dependence graph forthe code segment in

Figure 10aisshown in Figure 9a. Weaasume a load latency

of 2 cycles and a latency of 1 cycle for all other instructions

for this example. Totakeadvantage of thepreload register

update support, the dependence from thestoreto the load

is removed. A new dependence constraint now exists from

the store to the second ALU instruction. The updated

dependence graph is shown in Figure 9b. By allowing the

load to bypass the first store, the second ALU instruction

can be scheduled earlier, thereby shortening the program

critical path for a high issue rate processor. The resulting

schedule is shown in Figure 10b. The total execution time

drops from 7 to 5 cycles. Note that if the load latency is

3 cycles instead of 2 cycles, the original code segment in

Figure 10awould have taken 8cycles to execute. However,

the execution time of the code segment with preloading in

Figure 10b remains at 5 cycles.

Since memory coherence will not operate properly if

the register content is saved somewhere else (e.g., on the

stack), there are certain restrictions placed on the handling

of preload destination registers. Without interprocedural

register allocation, preloads cannot be moved above afunc-

tion call. Also, the register allocation algorithm needs to

remodified so that thepreload destination registers tend

not to be spilled before they are committed. This is accom-

plished by increasing the live range weight of thepreload

destination registers before their corresponding commit in-

struction. Thus, spilling will be unlikely for the register in

that section of the code. If spilling does occur, the data

register, the address register, andtheregister state all have

to be saved to the stack. 4 Whenever a spilled preload des-

tination register is filled from the stack, its F blt is set to 1.

Thus at thetimeof the use, the register value is reloaded

from tlhe data cache, thereby obtaining the most recent

value.

41n fact, only either the data register or the address regis-

ter needs to be saved onto thestack depending on thepreload

status (P b]t)of each register. If the register is marked as

a preload register, then only the address register needs to be

saved, otherwise, the data register is saved.
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[ Grouping I Benchmark II Benchmark Description

Group 1 cmp compare files

a) Before b) After

Figure 9: An example dependence graph.

a) Original code segment

tl: ALU

t2 : BRANCH

t3: STORE

t4 : LOAD

t5:

t6: ALU

t7: STORE

b) Code segment after preloading

tl: ALU LOAD

t2: BRAliGIi

t3: STORE

t4 : ALU

t5: STORE

Figure 10: Code scheduling and execution cycles.

eigen eigenvalues and eigenvectors

espresso truth table minimization

gause solve system of equations

grep string search

sparse solve sparse linear system

Wc word count

Group 2 lex lexical analyzer generator

ludecom LU decomposition

matrix matrix multiplication

tbl format tables for troff

yacc parser generator

Table 3: Benchmarks.

4 Experiments

Compiler support for preload register update has been im-

plemented based on the IMPACT-I compiler developed

at the University of Illinois. The IMPACT- I compiler is

geared towards high-performance scalar and superscalar

processors. In this section, experimental results on the ef-

~ectiveness of preload register-update are reported for the

twelve benchmarks listed in Table 3. The benchmark set

consists of five numeric kernels and seven control intensive

non-numeric programs. The benchmarks are divided into

two groups according to their performance behavior that

will be explained later. All benchmark programs are pro-

filed with several different inputs. The profile information

is used to identify superblocks in the benchmark programs.

4.1 Evaluation Methodology

To evaluate the performance of preload register update,

each benchmark program is re-profiled using one input

different from those with which it was originally profiled.

Base on the new profile information, we derive the worst

case execution time of each superblock for the instruction

issue rates of 1, 2, 4 and 8. The worst case execution

time is derived by considering the long instruction laten-

cies that protrude from one superblock to another. To

summarize performance results for a group, we report the

harmonic mean of the speedup numbers of all benchmarks

in that group. In the case of a cache miss, the pipeline

is stalled, and all subsequent instructions cannot proceed

until the cache miss is resolved. A blocking cache is sim-

ulat ed, therefore, all cache misses are serialized and are

non-overlapping.

The base architecture for calculating all speedup num-

bers has an issue rate of one instruction per cycle and

supports general code percolation. The instruction set is

a superset of the MIPS R2000 instruction set [17] with ex-

tensions in branching capabilities. One branch delay slot

that consists of N instructions for an N-issue processor

is automatically allocated for each predicted-taken branch

instruction. The function units are pipelined and uniform
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INT function I latency II FP function latency

ALU 1 II ALU I 3

barrel shifter 1 conversion 3

multiply 3 multiply 4

divide 25 divide 25

load varies load (1 word) varies

preload varies preload (1 word) varies

store 11 II store 11 I

Table4: Instruction Latencies.

for all issue rates except stores, which are restricted to one

per cycle due to the difficulties involvecl in designing the

associative search and forwarding logic to handle multi-

ple stores per cycle. Therefore for an N-issue machine, N

loads can be issued in the same cycle, but at most one

store along with N-1 other instructions can be issued in

the same cycle. Weassume CRAY-lstyle interlocking and

deterministic latencies (see Table 4) forallinstruction sex-

cept memory loads and preloads. Load latency can vary

due to different cache sizes and physical distances (e.g.,

on-chip or off-chip). Thus, the load latency is varied from

1 to4cycles for the experiments. The processor includes a

64-entry integer register bank and a 32-entry floating point

register bank.

4.2 Performance Evaluation

Ideal Cache Case

The full scale design of preload register update is evaluated

here in terms of execution speedup with an ideal cache.

We have divided the twelve benchmark programs into two

groups. Group 1 contains the benchmarks that obtained

substantial performance improvement with preload regis-

ter update. Group 2 consists of the benchmarks which did

not benefit significantly from preload register update. Fig-

ures 11 and 12 show the speedup achieved by superscalar

processors over the base architecture with and without

preload register update. We will examine the two groups

separately and explain the difference.

First, the Group 1 benchmarks are able to tolerate the

increased load latency better with preloabd register update.

For example, the performance of an issue 4 processor with

register preloading drops by only 570 when the load latency

is increased from 1 to 4. However, without register preload-

ing, the performance drops by 37Y0. Closer examination of

the benchmark programs reveals that the scheduling of the

Group 1 programs is limited by inconclusive data depen-

dence analysis results. As a result, the extra freedom to

reorder memory instructions provided by preload register

update enables the superscalar processor to better tolerate

longer load latency.

Second, the Group 2 benchmarks dc, not benefit from

preload register update in general (see Figure 12). Exam-

ining the Group 2 benchmarks shows that the scheduling

of these programs is not restricted by data dependence

analysis. Also, a lack of stores in the critical region within

SPEEDUP

3
~ .ith..t prekad

.. . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . .. . . . . . . . . . .. . . . . . . .. . . . . . . . . .. . . . . . .
m wit,,,.,.,.

ISSUE 2 ISSUE 4 ISSUE 8

Figure 11: Speedup for Group 1 benchmarks.
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Figure 12: Speedup for Group 2 benchmarks.

these benchmarks provides more scheduling freedom for

load instructions than Group 1 benchmarks. Group 2 pro-

grams, therefore, achieve a high level of performance with-

out preload register update. For example, an issue 4 pro-

cessor achieves more than 3 times speedup over the base

architecture in Figure 12. These programs are examples

where there are few opportunities for preload register up-

date to further improve performance.

The results shown do not necessarily mean the Group 2

benchmarks cannot tolerate the increased load latency. For

high issue rates, the performance decrease that arises as

the load latency increases, is due to the lack of schedulable

instructions within the superblock. Further loop unrolling

is required to provide sufficient independent instructions

to hide the load latency.

The characteristics of each benchmark determine the

number of preload registers required. Also this determines

the number of the address register entries required in the

subset design. Table 5 presents the maximum simultane-

ously live preload registers for each of the Group 1 bench-

marks. The address register requirement ranges from 2

to 20. Therefore for Group 1 benchmarks, 20 address

registers are enough to achieve the performance level in

Figure 11 for the subset design. The results for group 2

111



Benchmark Max Preloads Used

cmp 6

eigen 16

espresso 8

gause 15

grep 11

sparse 20
Wc 2

Table 5:

ters in a

Maximum number of required preload regis-

subset design.
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Figure 13: Speedup comparison under cache miss

penalty for Group 1 benchmarks.

benchmarks are not given due to a lack of opportunities

for preloading, and therefore the lack of need for preload

registers.

Cache Miss Penalty

It is important to quantify the effect of cache misses on the

overall performance, either with or without preload regis-

ter update. Figure 13 shows the speedup of the Group 1

benchmarks when taking data cache miss penalty into ac-

count. The three bars associated with each load latency

correspond to three different caches: ideal, 128K, and 64K.

Each bar is divided into two sections, with and without

preload register update. The cache is direct mapped with

32-byte blocks, and the cache refill latency is 50 cycles.

Each data cache miss is assumed to cause the processor to

stall for the cache refill latency. Since data cache misses

affect both the base scalar processor performance and the

superscalar processor performance, speedup is calculated

by taking data cache misses into account for both perfor-

mance measurements.

We will first concentrate on the performance of regis-

ter preload update under cache misses. As shown in Fig-

ure 13, preload register update maintains a relatively con-

stant performance level across the load latencies shown

for a given cache size. However, due to differing numbers

of cache misses for various cache sizes, a higher perfor-

mance level is obtained as the cache size increases. For

128K cache, the performance level is relatively unchanged

with respect to the ideal case. The performance level for

the 64K cache is noticeably lower than that of the 128K

cache. This is mainly due to the large data working set of

the numeric benchmarks (eigen, gause, and sparse), Thus,

the result in Figure 13 illustrates the need to include data

prefetching and other load latency hiding techniques in the

compiler.

By comparing the result of with and without preload

register update in Figure 13, there are two important ob-

servations. First, if doubling the 64K data cache causes

an increase in load latency, then the performance increase

is negligible without preload register update. However,

with preload register update, the processor can effectively

utilize the larger cache size to obtain higher performance

even with the increased load latency. The performance

thus achieved is approximately the same as if the cache

access time has not increased. For example, across all is-

sue rates, the performance improvement from a 64K cache

with 1 cycle access time to a 128K cache with 2 cycle ac-

cess time is negligible without preload register update. By

adding the preload support, the 128K cache with 2 cycle

access time achieves comparable performance as that of

a 128K cache with 1 cycle access time. Second, preload

register update becomes crucial as the load latency is in-

creased. For higher load latencies (3 to 4 cycles), larger

performance gains result from providing preload register

update with a 64K cache than increasing the cache size to

infinite. Therefore, it is more important to support preload

register update before an increase in cache size for higher

load latencies.

5 Conclusion

This paper presents a detailed design of a hardware mech-

anism, referred to as preload register update. We have

addressed issues regarding data forwarding, register in-

terlocking, and register coherence within the context of a

detailed state diagram and a processor pipeline example.

Problems associated with memory mapped 1/0 ports and

registers is resolved with additional register states. Saving

and restoring (e. g., register spills) of preload registers are

shown to provide correct operation. Lastly, a subset de-

sign of preload register update which incurs less cost while
maintaining similar functionalist y is discussed.

Preload register update complements compile-time data

dependence analysis. Without conclusive data dependence

analysis results, conventional compile-time scheduling of

memory instructions is restricted by conservative assump-

tions. Preload register update allows the compiler to move

load instructions even in the presence of inconclusive data

dependence analysis results. The load destination regis-

ters are kept coherent when load instructions are moved

above store instructions that reference the same location.

For programs whose scheduling is limited by inconclusive

data dependence analysis results, preload register update
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achieves from IA!ZO to 3370 performance improvement for

an issue 4 processor with load latency of 2 to 4 cycles.

This paper has focussed on the use of preload register

update to assist code scheduling. There are many other op-

timization within the compilation process which can ben-

efit from this hardware feature. For example, loop invari-

ant load removal cannot be performed if there is one store

whose address may be the same as the load. With preload

register update, the invariant load can be removed from

the loop without compromising correctness. We are cur-

rently investigating new optimization algorithms to take

full advantage of preload register update,
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