=

Load and Store Reuse Using
Register File Contents

Soner Onder
Department of Computer Science
Michigan Technological University

Houghton, MI 49931-1295

ABSTRACT

The detection of opportunities for value reuse optimizations
in memory operations require both the addresses and values
associated with these operations to be available. Although
the values are t ypically arailable in the physical register file,
their presence cannot be exploited because no correspon-
dence betw een the v alues and addressess maintained. In
this paper we propose the explicit management of the phys-
ical register file contents as a level in the memory hierar-
chy by supporting the Value Address Asso ciation Structur
(VAAS). The entries in V AAS hae a one-to-one correspon-
dence with entries in the physical register file. For each
value in the register file that is involved in a load or store
operation, the associated information, including the mem-
ory address, are stored in the corresponding V AASentry.
Several optimization tasks can be performed using the com-
bination of physical registers and VAAS.

Specifically VAAS enables unified implementation of the fol-
lowing optimization tasks: (i) Store-to-lo adforwarding is
performed without explicitly saving the stored values; (ii)
L oad-to-lad forw arding is performed without saing loaded
values in a reuse buffer; (iii) Silent stores are eliminated
without saving or loading the prior value stored to the same
addresses; (iv) Switching of bits in L1 cache is minimized
without saving additional history; and (v) False memory
access order violations are avoided without holding specula-
tively loaded values in the speculated loads table.

Our experiments demonstrate that our implementation of
non-speculative optimizations is highly effective as it elim-
inates memory references due to 60% (58%) of loads in
SPECint95 (SPECfp95) and 25% (22.6%) of stores in SPECint95
(SPEC£p95). On an average o ver 45% of cabe references are
eliminated due to non-speculative reuse. On an average the
L1 switching activity was reduced by 7.75%.

Permission to make digital or hard copies of part or al of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

ICS’ 01 Sorrento, Italy

© ACM 2001 1-58113-410-x/01/06...$5.00

Rajiv Gupta
Department of Computer Science
The University of Arizona
T ucson, AZ 85721

1. INTRODUCTION

Since frequent memory operations (loads and stores) repre-
sent a critical limiting factor to achieving high performance
on modern superscalar processors, a great deal of research
has focussed on techniques for effectively handling memory
operations. These techniques include aggressive load spec-
ulation for tolerating load latency [2, 17] as well as a vari-
ety of speculative and non-speculative load and store reuse
removal techniques [5, 8, 9, 12, 13, 14, 15, 18, 21]. To-
gether they provide an impressive array of techniques for
dealing with memory operations. In order to take full ad-
vantage of these techniques one w ouldlike to incorporate
these tec hniques in a realistic superscalar design. However,
the complexity of such an endea voris very high because
each of these techniques uses its own specialized hardware
structure to maintain the state needed for carrying out the
respectiv e optimization task.

Load reuse techniques, such as load value predictionha ve
another dimension of complexity to them — they are spec-
ulativ ein nature [5, 9]. With an increasing emphasis on
pow er-aw are processor design for the mobile computing en-
vironment, it is important to make judicious use of specula-
tion [10]. While branch prediction is essential for achieving
high performance, we believe that it may not be necessary to
employ speculative techniques for load reuse. Instead non-
speculative load and store reuse techniques can be applied
to aggressiv ely perform load and store reuse. A case for
employing non-speculative value reuse tec hniques instead of
value prediction techniques w as made in [18]. The tech-
niques we describe in this paper are useful in both the pres-
ence and absence of load speculation.

In this paper we presen t a simple unified solution for sev-
eral optimization tasks associated with memory operations
whic huses a single simple hardware structure for carry-
ing out m ultipletasks. The key idea of our approach is
to manage the conten ts of the physical register file as a level
in the memory hierarchy. This effectively means that we
m ust maitnain address associations for values that are con-
tained in the physical registers. Nearly all of the existing
techniques for various optimizations of memory operations
maintain such an association in some dedicated hardware
structure. Moreover the v alues are stored in this structure
even if they are present in some physical register and typ-
ically each optimization uses a structure that is specially
designed for it. We maintain a single dedicated structure,

289


 
Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.


called the Value-Address Association Structure (VAAS), for
maintaining address associations of loaded and stored val-
ues present in the physical register file. The VAAS acts as
a shared structure for implementing multiple optimizations.
Moreover it exploits data values present in the physical reg-
isters to carry out these optimizations. These optimizations
are applicable in context of uniprocessors and are not always
applicable to multiprocessor systems. As we demonstrate in
this paper, the VAAS can be integrated in an out-of-order
superscalar both in absence and presence of load specula-
tion.

The remainder of the paper is organized as follows. Before
we discuss our techniques in detail, we provide an overview
of non-speculative optimizations performed using VAAS in
section 2. In section 3 we describe the implementation of
VAAS. We also give the runtime algorithm for maintaining
VAAS such that at any given time all existing address asso-
ciations are valid, that is, the value in the physical register
file represents the true current value corresponding to the
associated address. We also discuss timing issues related to
the implementation of all of the optimizations in context of
a superscalar processor design which does not support load
speculation. In section 4 we present results of experiments
performed to evaluate the impact of non-speculative opti-
mizations for SPEC95 benchmarks. In section 5 we discuss
the use of VAAS in the presence of load speculation. We
discuss how the previously described non-speculative opti-
mizations can now be speculatively performed and also the
new optimization of avoiding memory access order violations
can be performed. Additional related work is discussed in
section 6 and the concluding remarks are given in section 7.

2. VALUE REUSE BASED NON-
SPECULATIVE OPTIMIZATIONS

Let us briefly examine the optimizations that exploit the
VAAS in the absence of load speculation. We highlight the
differences between existing implementations [8, 18] of the
optimizations and VAAS based implementations.

2.1 Store-to-load Forwarding for
L oad Avoidance

This optimization is performed by forwarding values from
prior store operations, to a (redundant) load. In existing su-
perscalar designs the values from prior stores are forwarded
to pending loads through the forwarding buffer which con-
tains address-value pairs corresponding to stores which have
not yet retired. However, once a store retires, the forwarding
buffer entry is deallocated and the value stored in memory
cannot be forwarded to future loads from the forwarding
buffer. In contrast, our solution relies on the physical reg-
ister file for values and forwarding of values from retired
stores to aredundant load is performed as long as the value is
present in a physical register. The information typically held
in the forwarding buffer is contained collectively in the phys-
ical register file and the VAAS. Therefore no dedicated for-
warding buffer is required for store-to-load forwarding. On
an average our technique is able to avoid memory reads cor-
responding to 27% of loads through store-to-load forwarding
in SPEC95 benchmarks.

290

2.2 Load-to-load Forwarding for
L oad Avoidance

This optimization is performed by forwarding values from
prior load operations to a redundant load. This optimiza-
tion is named as the load reuse optimization. In order to
hold values for potential reuse a dedicated structure called
the load reuse buffer is maintained. The technique in [18]
only allows reuse between different instances of the same
load instruction. This is because the reuse buffer is indexed
using an instruction’s PC value. An additional load link-
ing table is supported in [21] to link loads with different PC
values and thus achieve reuse across instances of loads with
different PC values. VAAS based approach has two advan-
tages. First our implementation does not maintain a reuse
buffer to save values but simply obtains them from the reg-
ister file. Second PCs do not play any role in detecting or
exploiting reuse opportunities. Therefore we do not need
to distinguish between load reuse opportunities arising from
dynamic instances of same static load instruction and dy-
namic instances of statically distinct load instructions. On
an average our technique is able to avoid memory reads cor-
responding to 32% of loads through load-to-load forwarding
in SPEC95 benchmarks.

2.3 Removal of Silent Stores

This is another important optimization that can greatly re-
duce the number of stores that write to memory. If the
value to be written by a store is the same as the value al-
ready present at that address, then the store is redundant.
One approach to carry out this optimization is to maintain a
structure to hold the history (values and corresponding ad-
dresses) of recently executed loads and stores. Another ap-
proach recently proposed by Lepak and Lipasti [8] loads the
value from a memory location and if it is different from the
value to be stored, the store is allowed to write to memory.
Therefore for every store that is encountered one load must
also be performed. Owur implementation eliminates silent
stores whose redundancy can be established from the values
in the physical register file and their associated addresses
in VAAS. The value may be present in a physical register
due to a prior load or a store to the same address. In con-
trast to [8], we do not require execution of any additional
load operations. Our technique is very effective because on
an average we are able to eliminate memory writes associ-
ated with nearly 25% (22.6%) of the stores in SPECint95
(SPEC£p95) benchmarks.

2.4 Power Optimization for L1 Cache

This goal is achievable using VAAS because it allows support
of a mechanism for lowering the switching activity caused by
writes to the L1 cache. Reduction in switching is achieved
by providing the option of storing data values either in their
original form or in their bitwise complimented form. We
choose to store the form which has a lower Hamming dis-
tance from the old value present in memory. The optimiza-
tion can only be performed in those cases where the old value
can be found in one of the physical registers. The cache is
modified by providing an additional bit per word which in-
dicates the form in which the value is stored (complimented
or original). Note that the removal of redundant stores does



PCI1: St RI, Addrl
PC2: StR2 Addr2
PC3: Ld R3, Adds3
PCL  Ld R3 Addr4

Address-Only Optimizations | Enabling Condition |

Existing Technique |

Ld R3, Addr3 is redundant
due to St R2, Addr2.

Addr2 = Addr3

Forwarding buffer supplies values
to loads from un-retired stores.

Ld R3, Addr4 is redundant
due to Ld R3, Addr3.

PC3 = PC4 = self reuse.
PC3 # PC4 = different load

reuse.

Addr3 = Addr4

Load reuse buffer supplies
values to redundant loads [18].
Different load reuse

requires an additional

load linking table [21].

Value-Address Optimizations

| Enabling Condition

| Existing Technique |

St R2, Addr2 is value redundant
due to St R1, Addrl.

Addrl = Addr2 AND
Value(R1) = Value(R2)

Value at Addr2 is loaded from
memory for verification in [8].

Reducing switching of bits
in the L1 cache by storing
compliment of the value.

Addrl = Addr2 AND
Value(R1) # Value(R2)

None.

Figure 1: Illustration of optimizations enabled by VAAS.

not eliminate any switching activity because by definition
they do not cause any switching. This is an important opti-
mization because on-chip cache memories already consume
nearly 30% of total power consumed by a processor. This
number is expected to grow further as larger caches are be-
ing put on future processors. Moreover the amount of power
consumed by the L1 cache is over three times greater than
an on-chip L2 cache due to the high degree to switching ac-
tivity in the L1 cache. Our experiments show that on an
average the degree of switching activity is reduced by 6.59%
(8.67%) for SPECint95 (SPECfp95) benchmarks.

The various optimizations described above are illustrated
in Figure 1. Along with an illustration of each optimiza-
tion, the precise conditions under which the optimizations
are applicable are given and existing techniques are also
listed. The optimizations are separated into two categories
(described in two separate tables in Figure 1). The appli-
cability of optimizations in the first category is determined
simply by checking addresses and the values are used only if
the optimization is found to be applicable. In contrast, both
addresses and values are needed to determine the applica-
bility of the optimizations in the second category. If the
optimization is found to be applicable, values are not ex-
plicitly used because these optimizations simply eliminate
operations that otherwise would have been performed.

3. VALUE-ADDRESSASSOCIATION

From the conditions for optimization opportunities described
in Figure 1, it is clear that address-value associations are
needed to detect such opportunities. In fact existing tech-
niques for some of such optimizations explicitly maintain
such associations. For example, the load reuse buffer main-
tains address-value associations encountered during recently

291

executed load instructions and the forwarding buffer main-
tains address-value associations encountered by store in-
structions that are yet to be committed.

3.1 VAASStructure and itsUse

The structure of VAAS that we maintain for remembering
valid address-value pairs is shown in Figure 2. It consists of
an address CAM and some additional fields of information.
There is a one-to-one correspondence between the entries
of the physical register file and the address CAM. For each
physical register that contains a loaded or stored value, the
corresponding address is contained in the corresponding ad-
dress entry of the CAM. The valid bit indicates whether the
CAM entry contains a valid address. To perform the switch-
ing optimization task an additional item is also needed. In
particular, we also remember whether the value stored in
memory in its original form or complimented form using the
C bit.

It is quite easy to see how the VAAS is used to perform op-
timization of load operations. When a load is encountered
we search for the memory address involved in the address
CAM. If a hit occurs (i.e., address match occurs with an
entry whose valid bit is set), we do not need to load the
value from memory but instead directly obtain the value
from the corresponding physical register. In this way we
implement store-to-load as well as both types of load-to-load
forwarding. In fact it is important to note that our imple-
mentation is greatly simplified because we do not distinguish
between the types of sources for the values. Existing tech-
niques explicitly categorize and separately handle the three
different types of sources: forwarding buffer for store-to-load
forwarding, load reuse buffer for load-to-load forwarding be-
tween instances of the same static load [18] and load linking



VALUE ADDRESS V C

I ERRR >

<<--e-e-- N

,,,,,,,,,,,,,,,,,,,,,, S RIS S oo

Cvawe1 e adaessi | 1| 0

Lvale2 == o0 T

Register number| ... Value3 D 7| Address3 | 1 | 1 ]
b =]

,,,,,,,,,,,,,,,,,,,,,, [ R R S

Physical Register File

VAAS (Address CAM + other fields)

Figure 2: The VAAS structure.

table together with the load reuse buffer for load-to-load for-
warding between load instances of statically distinct loads
[21].

Now let us consider the optimizations involving store opera-
tions. A redundant store is detected as follows. If the address
to which store is being performed hits in the address CAM,
the value at the corresponding entry in the physical regis-
ter file is read and compared with the value to be stored.
If the two are the same, the store commits without writ-
ing the value to memory. Note that the entry at which the
hit occurs may have been created by an earlier load from
the same address or an earlier store to that address. Much
like load reuse detection, silent stores are detected without
distinguishing between the different types of sources (earlier
load or store operations) due to which they arise.

3.2 Maintaining VAAS Contents

In the above discussion we showed how the contents of VAAS
are used to perform optimizations. Now we discuss how the
contents of VAAS are maintained. If a memory location
has not been updated, and the address is found in the ad-
dress CAM, then the most recent value corresponding to the
memory location is either already available or will become
available in the corresponding physical register. However, if
the memory location contains the latest value, our technique
must guarantee that if the address is also present in the ad-
dress CAM, then corresponding physical register contains
the same value as the memory location. In other words we
ensure that the contents of valid entries in the VAAS are
consistent with the contents of the memory in the above
situation. In this sense the contents of physical register file
and VAAS are managed like a write-through cache where the
cache contents are always consistent with memory contents.
The above consistency is easily achieved by writing the val-
ues due to stores to memory when the store commits (i.e.,
writing due to stores is never delayed). By delaying stores
it is possible to eliminate some dead stores — the value cor-
responding to the latest store to an address can be written

292

while the values from prior stores to the same address can be
simply discarded. However, in this work we only eliminate
value redundant stores and not dead stores.

The conditions under which valid address entries are created
in the CAM and later invalidated are discussed next.

Creation of valid entries.
A valid entry is created when a memory operation is en-
countered:

By loads. Once the address from which the value is to be
loaded is known, a valid entry is created in VAAS by
filling in the ADDRESS field and setting the valid bit
to 1 to indicate that a valid address is present. When
a load reaches the write-back stage, the loaded value is
available and is thus written into the assigned physical
register.

By stores. A store is handled in a similar fashion as a
load. When the address to which a value is to be
stored is known, the ADDRESS and other fields of the
entry corresponding to the physical register from which
the value is to be stored are set up creating a valid
entry. The value in the physical register may become
available later in time and is stored in the physical
register as soon as it is known.

Invalidation of entries.
Again there are two conditions under which an entry is in-
validated.

By non-memory instructions. It is possible that the phys-
ical register assigned to an instruction, which is not
a load or a store instruction, corresponds to a valid
entry. When such a non-memory instruction reaches
the write-back stage, the address entry is invalidated
since the register no longer contains a loaded or stored



value. This invalidation condition can be further re-
stricted through value reuse. If the register contains
the same value that is being written into it, the en-
try need not be invalidated. However, a register read
and a compare would have to be performed in order
to carry out this optimization.

Upon branch misprediction. Upon branch misprediction,
the pipeline is drained and resources allocated to mis-
speculated instructions are deallocated. When the phys-
ical register allocated to a misspeculated instruction is
freed and added to the free list, the valid bit is set
to 0 to indicate that the physical register is no longer
associated with the address in the address field.

3.3 Lifetimesof Loaded/Stored Values

The longer we can keep loaded or stored values in registers,
the greater is the degree to which future memory operations
can be optimized. Our technique promotes optimization in
a number of ways. First one should note that according
to the rules for creating and destroying valid entries, it is
possible for multiple valid entries corresponding to the same
address to be created (e.g., when multiple loads to the same
address are encountered). Thus, even if one of the entries
containing the value is invalidated, the value may continue
to be available through other entries.

Second the values stay around longer in the physical regis-
ters than they stay in a conventional forwarding buffer. This
is because as soon as a store or load is committed, the value
is no longer available from these structures. However, the
value continues to be available from the physical register af-
ter the commit. On the other hand, a value may stay longer
in the reuse buffer than in a physical register. Therefore we
incorporate the following policies for extending the lifetimes
values in physical registers.

Tracking contents of freed registers. When an in-
struction retires normally, that is, no misspeculation
has occurred, although the physical register associated
with the instruction is freed and added to the free list,
the valid bit is not unset. Thus, the value correspond-
ing to the address is still available for reuse.

Tracking contents of reassigned registers. The inval-
idation of a valid entry in VAAS is delayed as long as
possible using an observation made by Monreal et al.
[11]. When a free register is assigned to an instruction,
its contents are not invalidated immediately. Only
when the instruction reaches the write-back stage, the
entry is invalidated.

Register reassignment policy. Finally a policy for reas-
signing freed registers to new instructions has been de-
signed to extend the lifetimes of useful loaded or stored
values in deallocated registers. A partitioned free list
for physical register entries is maintained. One par-
tition tracks free registers which contain valid values
that have been loaded or stored at memory addresses
while the other partition contains free registers that
were most recently assigned to instructions other than
memory operations and therefore they do not contain

293

reusable values. Assignments are made from the lat-
ter category first. This strategy naturally tends to in-
creases the likelihood that useful values will continue
to survive in physical registers for longer periods of
time.

34

The design of the VAAS structure presented in this section
is suitable for integration in any superscalar design. How-
ever, the actions that must be taken when loads and stores
are encountered vary depending upon whether or not load
speculation is being carried out. In this section we show how
to integrate VAAS into an out-of-order superscalar proces-
sor where load speculation is not being performed. Thus,
loads can only proceed out-of-order with respect to preced-
ing stores once addresses of preceding stores and the load
have been generated and no dependence has been detected.
If a dependence is detected then load reuse through forward-
ing is performed using VAAS.

Integrating VAAS into a Super scalar

VAAS is integrated into the superscalar pipeline by insert-
ing a new stage called the memory disambiguation and reuse
detection (MDRD) stage right before the regular data cache
access stage (see Figure 3). Memory instructions are allowed
to proceed to this stage from the issue window upon com-
pleting their address computations in program order. Both
load and store addresses are entered into the VAAS struc-
ture when instructions move into the MDRD stage regard-
less of the availability of data. Since the instructions do
not need to wait for their data operands, if they are not yet
available, MDRD is organized as a small reservation station
where instructions can wait for their data values to become
available, if necessary. The width of MDRD stage is equal
to the number of instructions at the head of the reservation
station. In order to ensure that all of these instructions can
be simultaneously checked for independence or dependence,
the number CAM ports provided is equal to the width of
the MDRD stage.

Now let us consider the operation of MDRD in greater de-
tail and show how the load and store operations use and up-
date the VAAS contents. Before we describe these details,
we should mention that our optimizations are only applied
in context of full-word memory operations. Non full-word
stores (such as byte accesses) invalidate the entries found
in the VAAS upon an address hit and non full-word loads
proceed to the DCACHE stage because we do not exploit
value reuse at byte level.

Handling Loads.

The execution of a load proceeds according to where the
value associated with load address currently resides. The
value may be present only in memory, only in VAAS, or
both in memory and VAAS. When a load instruction is en-
countered MDRD accesses VAAS through a CAM port. In
the first case a miss occurs while in the latter two cases a
VAAS hit occurs. Moreover when a hit occurs, the value
associated with the address may already be present in the
destination register, and hence VAAS, or the write to the
register may be pending. Next we describe how each of the
above situations is handled in greater detail.



5 2 o | [wdzp] [, eIt o ..
Al I Rt Pl == === I
o a & -z o o - 0
22
$3
>
WAKEUP EXECUTE DCACHE REG WRITE
FETCH| DECODE | RENAME SELECT REG READ BYPASS MDRD ACCESS | COMMIT

Figure 3: Superscalar pipeline incorporating VAAS.

VAAS miss. If a miss occurs the calculated address is en-
tered into the VAAS and the load proceeds to the reg-
ular DCACHE access stage. Once the value arrives
and is placed in the register it is also available for use
by subsequent memory instructions involving the same
address.

VAAS hit and value present. If a VAAS hit occurs and the
data value is already available in the corresponding
register, the value is copied into the destination regis-
ter for the load and the load commits. This copying of
value implements load-to-load forwarding if the creator
of the entry was a load and it implements store-to-load
forwarding if the creator of the entry was a store.

VAAS hit and value absent. In case of a VAAS hit it is
also possible that the value is not yet available in the
corresponding register because the producer of value
has not written it to the register yet. In this case the
load instruction is made dependent on the appropri-
ate producer of the data so that as soon as the value
becomes available it is directly forwarded to the wait-
ing load instruction. The register from which the load
instruction in question is to receive its value may be
written to by: (a) an earlier load instruction; (b) an
earlier store instruction; or (¢) an instruction which
performs an ALU operation. This is how each of these
cases are handled:

e Earlier load. If the producer is an earlier load
instruction then by making the current load in-
struction dependent upon the producer load in-
struction, we achieve load-to-load forwarding. It
should be noted that if multiple loads to the same
address are encountered before the producer load
can make the value available, then all of these
loads will become dependent upon the same pro-
ducer load and therefore all of them will proceed
simultaneously when the value becomes available.

Earlier store. In case of a VAAS hit where the
entry was created by an earlier store instruction,
the load instruction is made dependent upon the
producer of the value to be stored. The producer
may be an earlier load or an ALU operation. In
either case the direct linking of the load to this
earlier instruction goes beyond store-to-load for-
warding and actually achieves complete bypassing

294

of both the memory and the store instruction.
Again if multiple load instructions loading from
the same address are encountered before the value
is available, they will all be made dependent on
the producer of the data value which can be an-
other load instruction or the producer of a store
instruction.

ALU operation. If the producer is an ALU opera-
tion, then a hit indicates that there is an interven-
ing store operation that created an entry in the
VAAS where the hit occurred. The load instruc-
tion is made dependent upon the ALU instruction
as discussed above. Making the load dependent
upon the producer causes store bypassing to oc-
cur.

In case of data reuse through loads, the performance is im-
proved because more memory operations will proceed in par-
allel than the number of available cache/memory ports. In
case of data reuse through stores, the effective critical path
is reduced which can greatly improve the performance. The
scheme performs poorly only when the addresses of store in-
structions become available at the same time or later than
their data values. In this case, the memory operations will
be serialized and all the benefits of reuse will be lost (this
happened in two of our benchmarks — 099.go and 130.11i).

Handling Stores.

When a store instruction is encountered again first MDRD
accesses the VAAS. In case of a miss, we enter the store
address into the VAAS and proceed to the regular DCACHE
access stage. In case of a hit, if both the value to be stored
by this store is available, and the register at the hit location
has its value, the two values are compared. If the values are
equal, the store is silent and therefore it is squashed after
updating the address corresponding to the store’s data value
register. If the values are different, or if the store value is
not available, all matching entries are invalidated. In other
words, when the data value is not available there can be only
one entry with a given address. When there are multiple
entries with the same address all the values are equal and
all of them are available. Therefore, VAAS keeps the in-
order dependency status of load and store instructions and
as such acts both as a disambiguator and a reuse detector.



3.5 Hardware Complexity of VAAS

Since the physical register file is always present, the hard-
ware cost of our technique is the address CAM which has
the same number of entries as the register file. While the
register file is an indexed structure, address CAM is more
complex due to its ability to simultaneously search all entries
for an address. Depending upon the number of instructions
which are allowed simultaneous access to VAAS, appropri-
ate number of read and write ports should also be present.
However, we must remember that we do not require a sep-
arate forwarding buffer since the values are now supplied
by the VAAS. Forwarding buffer requires an organization
similar to VAAS because in both cases a parallel search for
the address in question is needed and if multiple loads can
be issued in each cycle, multiple read ports to the forward-
ing buffer should also be provided. A forwarding buffer may
have fewer entries than the address CAM in VAAS, but then
each entry is larger since it must contain both the value
and the address. Therefore, the hardware costs of the ad-
dress CAM is expected to be similar to that of a forwarding
buffer. While we need additional ports to read values from
the physical register file, we need fewer ports to memory
since the values found in physical registers will not have to
be fetched from memory. We also avoid the need for other
multiple hardware structures needed to implement existing
algorithms for the various optimizations discussed earlier.

C AV | SMALL LARGE
0| vaee
1| vawe Addressﬁ
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Register number

Integrated Physical Register File+ VAAS

Figure 4: Restricting optimizations to small values.

Very often the integer data values used by programs are
small values which can be stored in fewer than 32 bits.
This is not only true for multimedia applications, but it
also holds true for more general purpose applications such
as the SPECint95 benchmarks [22]. If we restrict our imple-
mentation so that it only exploits optimization opportunities
that involve small data values, we can lower the cost of the
VAAS as follows. We can use the structure shown in Fig-
ure 4 where instead of having two large fields of 32 bits for
the value and address we provide two fields, SMALL (less
than 32 bits) and LARGE (32 bits). If we have an address-
value pair where the value is small, we can save the value
in the SMALL field and the address in the LARGE field. If
the value is large, it is stored in the LARGE field and the
address is not stored thus sacrificing optimization opportu-

295

nities. The AV field indicates whether an entry contains an
address-value pair or simply a value. The search for an ad-
dress hit is carried out over the LARGE field and if a hit
occurs, the AV field is used to determine if this is a valid
hit.

4. EXPERIMENTAL RESULTS

In this section we report on the experimental results based
upon the implementations of the VAAS based superscalar
design presented in the preceding section. All optimizations,
except store bypassing, were implemented in absence of load
speculation. Our simulated architecture is based upon the
MIPS-I instruction set. The simulators we use have been
generated using the FAST system [16]. The benchmarks we
used are from the SPEC95 suite which were executed on the
test inputs. They were compiled using gcc 2.7.2 compiler
with the -03 level of optimization. Our simulated architec-
ture uses the following configuration:

Number of rename registers | 128
Instruction window size 64
Reorder buffer size 64

8 instructions

16 instructions

8 symmetric units
2 read/write

Issue width
Retire width
Functional units
Memory ports

VAAS ports 4 read/write
Instruction cache ideal
Data cache ideal

Silent stores. In Figures 5 and 6 we show the degree
of value reuse opportunities in stores found in SPEC95
benchmarks as well as the value reuse opportunities
captured and exploited by VAAS. We found that on
an average of 53.9% and 41.7% of total stores to be
value redundant in SPECint95 and SPECfp95 bench-
marks. On an average VAAS captured and avoided
writes associated with 25% of total stores in SPECint95
and 22.6% of stores in SPEC£p95 benchmarks. We be-
lieve that VAAS based implementation is very effective
as with limited hardware cost it is able to eliminate
substantial number of writes to memory. This opti-
mization is achieved without increasing the number of
memory reads. In contrast the technique proposed by
Lepak and Lipasti [8] requires a load for every store
(redundant or not) to detect value redundant stores;
thus, greatly increasing the number of memory reads.

Loads avoided. Recall that the memory read due to a
load can be avoided by forwarding the value it re-
quires from a prior load or due to an earlier store.
The reuse opportunities captured by VAAS in each of
these categories is shown separately in Figures 7 and
8. On an average VAAS found slightly more than 60%
of loads in SPECint95 and 58% of loads in SPECfp95
to be redundant. This number is much greater than
the number reported in [18] because Sodani and Sohi
only captured self-reuse of loads. Yang and Gupta
[21] consider all types of redundancies and on an aver-
age found 43% of loads to be redundant in SPECint95



Figure 5: SPECint95 - Silent stores:

VS

benchmarks. In contrast, in this paper we are able to
capture a greater amount of load reuse (60% vs 43%
for SPECint95) which we attribute to the conceptual
simplicity of the VAAS structure.

[T % total redundant stores,
o "1 % eliminated stores i

T

Il Il Il Il Il Il Il Il Il
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

total present

detected by VAAS.

% total redundant stores
% stores eliminated

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

Figure 6: SPEC{p95 - Silent stores: total present vs
detected by VAAS.

Potential of exploiting small values.

We also cat-
egorized the values involved in redundant loads and
stores according to their size. The results of this ex-
periment are shown in Figures 9 and 10. This exper-
iment yielded interesting results. Nearly 49% of the
values involved were very small requiring 1 byte and
over 45% were very large requiring all 4 bytes. Only
few percent of the values needed 2 or 3 bytes. We be-
lieve this is indicative of the fact that programs make

very frequent use of small constants (e.g., 0, 1, -1 etc.)
and frequently compute addresses (e.g., due to arrays
and pointers) [22]. The values in the former category
require 1 byte and those in the latter category typi-
cally require all 4 bytes. Therefore, if we would like to
reduce the combined size of the VAAS and the phys-
ical register file as suggested in section 3, we should
have a LARGE field of size 4 bytes and SMALL field
of size 1 byte. This approach will reduce the degree of
reuse captured to nearly half.

100.0

50.0

0.0

[ [ % Load to load
% Store to load
% Non redundant

i

Figure T7:

W \
NN -\,‘31:(\‘)8%&'3’A S,e‘m o o(xe*x“\ea“
e

° A\ c© >
ogg'i “\%%Vf" \,’Lﬁ 9 o “\Q‘e
v 22

SPECint95 - Load-to-load forwarding:

store-to-load forwarding: non-redundant loads

L=l

% Store to load

% Non redundant
100.0

0.0

W gt (8 0 02 o® e e

\,0&\0 %\,o% ‘ﬂmﬂé‘o 9 00"96\‘3‘ W/"’ fo"‘"’ WL AN
Figure 8: SPECfp95 - Load-to-load forwarding:

store-to-load forwarding: non-redundant loads

Memory reference reduction. Given the high degree of

296

load and store reuse detected by VAAS in the SPEC95
benchmark suite, it is not surprising that the reduc-
tion in total memory reference is quite substantial. As



shown in Figures 11 and 12, on an average the reduc-
tion in memory reference is 45% (47%) for SPECint95
(SPEC£p95) benchmarks. The reductions attributed to
load reuse are shown separately from the reductions
resulting due to store reuse. It is quite clear that both
load and store reuse play an important role in reducing
memory references.

% 1-byte
% 2 bytes
% 3 bytes
% 4-bytes
50.0
0.0
O < > \ o+ \
0999 %%\(\5\“\ 'L@‘Q'C «\Q‘e‘"’ 20 o \\QeQ» %M)e (\e e
p » o X
v AL
Figure 9: SPECint95 - Reuse involving values of

size: 1-byte; 2-bytes; 3-bytes; and 4-bytes.

100.0

50.0

0.0

@“"\0“\

% 1-byte
% 2-bytes
% 3-bytes
% 4-bytes

I

S \\
'&01 \Ng; 5\{75‘0 \’Q‘O’L q ‘(\Q)‘\ '6‘39\6\\)“03xb‘& N 6“&\)‘) 3\]6 \*I\e"‘)~

Figure 10: SPECfp95 - Reuse involving values of
size: 1-byte; 2-bytes; 3-bytes; and 4-bytes.

Instructions completed per cycle.

Finally we com-
pared the performance of a superscalar pipeline that
incorporates VAAS with a baseline superscalar ma-
chine that does not contain VAAS. In this experiment
we choose a baseline machine which has a 1 cycle mem-
ory access delay with a perfect data cache. In contrast
the VAAS based superscalar machine takes 2 cycles
for each memory access. In other words (a) our ma-
chine always take 2 cycles to access memory while the

100.0

50.0 -

0.0

baseline superscalar always takes 1 cycle; and (b) even
though we reduce memory traffic by over 45%, we as-
sume that we do not have fewer data cache misses than
the baseline superscalar.

[ [ % reduction due to loads
% reduction due to stores

)

S
QQQ‘Q' %%\(\6\ ,LBQC Q‘es \2’0 rL\\Q b“’e
IS

“e* ea(\ e@(\

';’Lb‘ P~ \'\

Figure 11: SPECint95 - Memory reference reduc-
tion due to redundant loads and stores.

100.0

50.0

0.0

o oo \p’l« 36“ oy

[ % reduction due to loads
% reduction due to stores

W

o &0 w‘é‘\oe& (g\\“‘o\)ﬁa‘ﬁ w"" L \I\ea\r\ea“

Figure 12: SPECfp95 - Memory reference reduction
due to redundant loads and stores.

297

Under these conditions, as we can see from Figures 13
and 14, we achieve substantial speedups for most bench-
marks. In case of SPECfp95 the speedups range from
5% to 33%. In case of SPECint95 the speedups for
6 benchmarks range from 2% to 16%. The speedups
are due to increased throughput of memory operations
because in the VAAS based design the memory oper-
ations are split nearly equally among the physical reg-
ister file and the memory and therefore greater num-



| R
I
E—

ber of them can be handled per cycle. Moreover un-
der some conditions the forwarding of values to a load
(from another store or load) by VAAS also speedups
the execution of load operations.

[ T%speed-wp] 4

DDDDSDQDHH

Il Il Il Il Il
-250 -15.0 -5.0 5.0 15.0 25.0 35.0

Figure 13: SPECint95 - IPC values.

([T % speed-up]

]

]

]

I 1
]

]

]

Il Il Il Il
-20.0 -10.0 0.0 10.0 20.0 30.0 40.0

Figure 14: SPECfp95 - IPC values.

There are two integer benchmarks, 099.go and 130.11,
which show slow downs under the above conditions.
Our assessment of this behavior is that the serializa-
tion of the address computations in these benchmarks
causes the throughput of memory operations to be
low and load/store-to-load forwarding to be ineffec-
tive. On the other hand we continue to pay the higher
price of 2 cycle delay for memory accesses.

Reduction of switching in L1 cache. Finally we mea-
sured the reductions in switching activity that can be
achieved by storing values in original or complemented
form. Since we assumed an ideal data cache, this mea-
surement represents the upperbound on switching re-
duction. The results are given in Figure 15. On an
average we observed 6.59% reduction in switching for
SPECint95 and 8.67% reduction for SPECfp95 bench-
marks. These reductions were derived by applying our
optimization to values written by 24.69% of stores in
SPECint95 and 32.04% of stores in SPEC£p95 bench-
marks.

20

15 B

10 B

% of switching reduction

0 ﬂ ==
@ & SR

& 5 (L 2o eqf‘\“\oﬂz 2 R &
09\ ¥ (& SRR 00 Q @Q N
S 6‘@ h \\Q'?"*Q'\ X ‘10(’%5 ’L\\ 0’\@ %Q\& QQ
’\?’ '\,']9

Figure 15: SPEC95 - reduction in switching.

5. LOAD SPECULATION AND MEMORY
ACCESS ORDER VIOLATION

In this section we consider an out-of-order processor which
also incorporates load speculation. We demonstrate that our
approach achieves the following two goals. First we demon-
strate that we can efficiently exploit value redundancy to
cut down on false memory access order violations. Second
we show that all of the optimizations discussed in absence of
load speculation can also be performed in presence of load
speculation.

We assume that the processor incorporates a mechanism
that is responsible for making load speculation decisions
and detecting memory access order violations. From the
perspective of MDRD, when load speculation is performed,
a load is allowed to proceed ahead and access VAAS before
its potential conflict with prior stores is resolved.

Suppressing memory access order violations. A cer-
tain subset of memory access order violations which would
be detected and reported by a mechanism that is simply
based upon comparing a load address with addresses of
stores above which the load has been speculated can be
safely suppressed. In particular, value redundancy can be
used to suppress the reporting of these memory access order




PC2:

PC3:

St R2, Addr2

Ld R3, Addr3

| Value-Address Optimization

| Enabling Condition

| Existing Technique |

Speculating Ld R3, Addr3 wrt
St R2, Addr2 does not cause a
memory order violation.

Addr2 # Addr3 OR
(Addr2 = Addr3 AND
Value(R2) = Value(R3))

In [17] we achieve this by using
an expanded speculative loads table
and forwarding buffer.

Figure 16: Optimization of memory access order violation detection.

violations. The example in Figure 16 illustrates this opti-
mization. Let us assume that the load at PC3 is speculated
above the store at PC2. If the addresses of the two are the
same, an address based scheme will report a misspeculation.
However, if the loaded value is the same as the stored value,
then this misspeculation can be safely suppressed.

In [17] we had presented a solution for incorporating the
above optimization in a store set [2] based memory disam-
biguator. In this solution a speculated loads table is main-
tained which contains an entry for each speculated load. The
entry identifies the load, contains the load address, specu-
latively loaded value, and a sequence number which cap-
tures the original ordering of the memory operations. The
sequence numbers enable identification of the loads in the
speculated loads table which have been speculated above a
given store. If address of the store matches one of these loads
we have a potential for a load misspeculation. If the loaded
value matches the value being stored then the misspecula-
tion is suppressed; otherwise it is reported. The value field
added to the speculated loads table enables the optimization.

In a VAAS based superscalar we can perform the above op-
timization without a separate speculated loads table. For
this purpose we need to extend each VAAS entry by adding
two fields. The first field is the AGE field which is used to
save the sequence numbers. In addition, we need to know
whether a value in a register was placed by a load instruc-
tion or a store instruction. Therefore we maintain the L/S
field. The savings in a VAAS based implementation result
because the loaded value field is no longer needed as we can
now rely upon the physical register file to supply the value.
The modified VAAS structure is shown in Figure 17. When
a store address is known, the loads in VAAS with higher se-
quence numbers are identified. Their addresses and values
are compared with the store’s address and value to identify
misspeculated loads.

Other optimizations. Now let us consider the optimiza-
tions presented in section 2 to see how they are carried out
in presence of load speculation.

Load-to-load forwarding. The load-to-load forwarding
proceeds in much the same way as before. However,
there is one important difference. The load that sup-
plies the value may now be a speculated load in which
case the value that it supplies to a later load may be
incorrect. When misspeculation is detected recovery
must be accomplished. One approach for this recovery
is to restart the execution from the misspeculated load.

299

In this case the later load which was the forwarded an
incorrect value is discarded too and executed again and
therefore the recovery functions correctly. However,
if the recovery process is optimized by only execut-
ing those instructions which were directly or indirectly
affected by the misspeculated value, a more complex
mechanism is needed to identify the subset of instruc-
tions that must be executed again. Typically this is
achieved by linking all the instructions through which
a speculated value is propagated. Since now load-to-
load forwarding may be performed speculatively, the
involved loads must also be linked together to correctly
carry out the recovery process.

Store-to-load forwarding. Asin the case of load-to-load
forwarding, we can perform store-to-load forwarding
without checking to see if the load which is the tar-
get of forwarded value is being executed speculatively
or non-speculatively. Consider the example shown be-
low in which there are two stores followed by a load.
Let us assume that the load is speculated above the
second store. If Addr0 and Addrl are equal, store-
to-load forwarding will be carried from the first store
to the load. If later it is found that Addr2 is not the
same as Addr0/Addrl, then load speculation is suc-
cessful and therefore forwarding is also successful. On
the other hand if Addr2 is the same as Addr0/Addrl,
then a potential for misspeculation exists. The for-
warded value is compared with the value stored by
the second store to determine whether the misspecu-
lation should be suppressed or reported. Either case
is routinely handled by the memory access order vi-
olation detection mechanism. Therefore store-to-load
forwarding does not require any special consideration
in presence of load speculation.

PCO0: St RO, Addr0
PC1l: St R1, Addrl
PC2: Ld R2, Addr2

Silent stores. Load speculation has an interesting impli-
cation for detection of silent stores. All silent stores
that are suppressed in absence of load speculation con-
tinue to be detected and suppressed in presence of load
speculation. In addition, some additional silent stores
may be detected in presence of load speculation. Con-
sider the example given below where load follows a
store.



VALUE ADDRESS V | AGE|L/S| C
b eenee-- B
(<o = 1
,,,,,,,,,,,,,,,,,,,,,, I e R
_ vauel == Address1 | 1| 123|(L]0
,,,,, Vaue2  =reE - e e
Register number | .. vaues = 7| Address3 1 1) 1241 s |1 |
b eenee-- B
,,,,,,,,,,,,,,,,,,,,,, [ o et ot

Physical Register File

VAAS (Address CAM + other fields)

Figure 17: Modified VAAS structure.

PC1:

St R1, Addrl

Ld R2, Addr2

PC2:

Let us assume that the load is speculated above the

we present a simple unified solution for many optimization
tasks which require similar types of information.

store. If Addrl and Addr2 are not the same, the mem- ‘
ory access order violation will conclude that load spec- I-
ulation was successful. On the other hand if Addrl |
and Addr2 are the same two cases arise. If the specu-
latively loaded value is different from the stored value, o« — 1
misspeculation occurs. On the other hand if the values & ——‘
are the same, no misspeculation is reported. Moreover N ,LQ,.Q‘“G 1
in this situation it is also the case that the store must > o _ 1
be a silent store. Therefore speculative execution of Q@A —
the load helps us ascertain that the store is a silent N \/'5‘5\\ |
store. However, such a determination may not have O 1
been made if load speculation had not been performed. @'IJ'\\Q N |
@“‘Qi E— ]
Experimental evaluation. We have performed experi- ,\,@(@ ‘
ments to determine the extent to which value reuse can re- W 0.0 100 200 300 200
duce the number of mispredictions resulting from load spec-
ulation. The results are shown in Figures 18 and 19. As
we can see, for an 8-issue processor, the reductions in mis-
predictions are substantial (12-24%). As the issue width is . . L. X
increased to 16-issue, the degree of speculation performed Figure 18: False mispredictions prevented in

by the processor increases and therefore the reductions in
mispredictions achieved by exploiting value redundancy are
even greater.

Comparison with speculative value reuse techniques.
There are two pieces of research which share an important
characteristic with our work. The first is the work by Jour-
dan et al. [6] which exploits value reuse opportunities de-
tected through examination of register file contents in car-
rying out value forwarding which is predictive in nature.
The second is the work by Tullsen and Seng [19] on storage-
less load value prediction. Both of the works exploit value
reuse opportunities using register file contents. Both of the
above techniques for reuse are speculative techniques which
do not generate memory traffic to access values needed to
verify that speculation was correctly performed. Howover,

300

SPECint95.

6. OTHER RELATED WORK

In sections 2 and 5 we have already compared our work
with closely related non-speculative and speculative value
reuse techniques involving memory operations. In this sec-
tion we compare our work with other approaches for opti-
mizing memory operations.

Speculative register promotion. There are two other
proposals for exploiting value-address association structure
like the one we have proposed [3, 4]. However, in these works
this structure is allocated and hence exploited under com-
piler control. This has two implications. First the compile-
time decisions limit the amount of dynamic value reuse that



8 Issue
[ | 161ssue

Figure 19: in

SPECfp95.

False mispredictions prevented

can be performed. Second the structure associates addresses
with architectural registers visible to the compiler and thus
value reuse that arises through physical registers is not ex-
ploited. Thus, our approach can perform value reuse to a
greater extent than these techniques.

Filter cache. The load-store reuse mechanism can be viewed
as a form of a filter cache [7] since it is also a small struc-
ture which sits in between the CPU and the L1 cache and
reduces the number of references that are sent to the L1
cache. However, there is an important difference. The con-
ventional filter caches studied in [7] achieve energy reduction
at the cost of increased execution times. However, the tech-
nique we have presented typically resulted in significant re-
ductions in execution time. In a related piece of work Yang
and Gupta have developed an energy efficient implementa-
tion of the load and store reuse optimizations in presence
of load speculation [20]. While in this paper our emphasis
has been on exploiting values in register file contents, [20]
focuses on energy reduction by replacing the CAM structure
by a direct mapped structure. Therefore, unlike the conven-
tional filter cache, the technique presented in [20] results in
reductions in both energy consumption and execution times.

Compile-time load reuse. Work has also been done on
aggressively optimizing load operations at compile time. In
[1] a load reuse analysis was presented and evaluated. How-
ever, as mentioned in [1], even though very high levels of
load reuse can be detected at compile time, exploitation of
load reuse opportunities is difficult to perform because it
requires a large number of architectural registers.

7. CONCLUDING REMARKS

In this paper we have presented the design of VAAS which
enables unified implementation of several optimizations re-
lated to memory operations. We rely upon the physical
register file to provide data values corresponding to a subset

301

of memory addresses whose values are currently resident in
physical registers. The design of VAAS enables us to man-
age the contents of physical register file as another level in
the memory hierarchy. This unified implementation of sev-
eral optimizations leads to a significantly simpler and less
expensive hardware design than one that uses exiting im-
plementations of the same optimizations. Our experiments
indicate that our implementation of non-speculative opti-
mizations is highly effective as it eliminates memory refer-
ences due to 60% (58%) of loads in SPECint95 (SPECfp95)
and 25% (22.6%) of stores in SPECint95 (SPEC£p95). On an
average over 45% of memory references are eliminated due
to reuse optimizations. We have demonstrated that a VAAS
based superscalar yields substantial speedups over the base-
line superscalar which has one less stage.

Acknowledgements

This work is supported by DARPA award no. F29601-
00-1-0183 and National Science Foundation grants CCR-
0105355, CCR-0096122, EIA-9806525, and CCR-9996362.
The equipment obtained through the research infrastruc-
ture grant EIA-0080123 to the University of Arizona was
also used in this work.

8. REFERENCES

[1] Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa,
“Load-reuse analysis: design and evaluation,” ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 64-76,
Atlanta, Georgia, May 1999.

George Z. Chrysos and Joel S. Emer. Memory
dependence prediction using store sets. ACM 25th
International Symposium on Computer Architecture
(ISCA), pages 142-153, Barcelona, Spain, June 1998.

Hank Dietz and Chi-Hung Chi. A new kind of memory
for referencing arrays and pointers.
Supercomputing’88, pages 360-367, Orlando, Florida,
November 1988.

[4] Matthew Postiff, David Greene and Trevor Mudge.
The store-load address table and speculative register
promotion. IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 235-244, Monterey,

California, December 2000.

Freddy Gabbay and Avi Mendelson. Using value
prediction to increase the power of speculative
execution hardware. ACM Transactions on Computer
Systems, 16(3):234-270, August 1998.

Stephan Jourdan, Ronny Ronen, Michael Bekerman,
Bishara Shomar, and Adi Yoaz. A novel renaming
scheme to exploit value temporal locality through
physical register reuse and unification. IEEE/ACM
31st Annual International Symposium on
Microarchitecture (MICRO), pages 216-225, December
1998.

Johnson Kin, Munish Gupta, and William H.
Mangione-Smith. Filter cache: an energy efficient
memory structure. IEEE/ACM 30st Annual
International Symposium on Microarchitecture
(MICRO), pages 184-193, December 1997.

[7]



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Kevin Lepak and Mikko H. Lipasti. On the value
locality of store instructions. ACM 27th Annual
International Symposium on Computer Architecture
(ISCA), pages 182-191, Vancouver, Canada, June
2000.

Mikko H. Lipasti, Christopher B. Wilkerson, and
John Paul Shen. Value locality and load value
prediction. ACM 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 138-147,
Cambridge, USA, October 1996.

Srilatha Manne, Artur Klauser, and Dirk Grunwald,
“Pipeline gating: speculation control for energy
reduction,” ACM 25th Annual International
Symposium on Computer Architecture (ISCA), pages
132-141, June 1998.

Teresa Monreal, Antonio Gonzlez, Mateo Valero, Jos
Gonzlez, and Victor Vinals. Delaying physical register
allocation through virtual-physical registers.
IEEE/ACM 82nd Annual International Symposium on
Microarchitecture (MICRO), pages 186-192, Haifa,
Israel, November 1999.

Andreas Moshovos and Gurindar S. Sohi. Streamlining
inter-operation memory communication via data
dependence prediction. IEEE/ACM 30th Annual
International Symposium on Microarchitecture
(MICRO), pages 235—245, December 1997.

Andreas Moshovos and Gurindar S. Sohi.
Read-after-read memory dependence prediction.
IEEE/ACM 31st Annual International Symposium on
Microarchitecture (MICRO), pages 177-185,
November 1999.

Andreas I. Moshovos. Memory Dependence Prediction.
PhD thesis, University of Wisconsin - Madison, 1998.

Andreas I. Moshovos, Scott E. Breach, T. N.
Vijaykumar, and Gurindar S. Sohi. Dynamic
speculation and synchronization of data dependences.
ACM 24th International Symposium on Computer
Architecture (ISCA), pages 181-193, June 1997.

Soner Onder and Rajiv Gupta. Automatic generation
of microarchitecture simulators. IEEE International
Conference on Computer Languages, pages 80-89,
Chicago, May 1998.

Soner Onder and Rajiv Gupta. Dynamic memory
disambiguation in the presence of out-of-order store
issuing. IEEE/ACM 32nd Annual International
Symposium on Microarchitecture (MICRO), pages
170-176, November 1999.

Avinash Sodani and Gurindar S. Sohi. Dynamic
instruction reuse. ACM 24th International Symposium
on Computer Architecture (ISCA), pages 194-205,
1997.

Dean M. Tullsen and John S. Seng. Storageless value
prediction using prior register values. ACM 26th
International Symposium on Computer Architecture
(ISCA), pages 270-279, May 1999.

302

[20]

22]

Jun Yang and Rajiv Gupta. Energy-efficient load and
store reuse. ACM/IEEE International Symposium on
Low Power Electronics and Design, Huntington, CA,
August 2001.

Jun Yang and Rajiv Gupta. Load redundancy removal
through instruction reuse. International Conference on
Parallel Processing, pages 61-68, Toronto, Canada,
August 2000.

Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent
value locality and value-centric data cache design.
ACM 9th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 150-159, Cambridge, MA,
November 2000.



