
Architectural Support for
Register Allocation in the Presence of AEasing*

Ben Heggy
Mary Lou Soffa

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260

Abstract
High pe$ormance computer architectures use registers to
provide high speed access to data operands, to provide
short names for operands, and to reduce memory trafic
for accesses to these operands. The possibility of aliasing
in a program segment reduces the quality of code that a
compiler can produce by necessitating that memory and
register copies of variables that have been allocated to
registers be kept consistent. A hardware support
mechanism is presented that permits all classes of data
objects, including dynamically allocated objects and
array elements, to be held in registers without
consideration of possible aliases and without requiring
that the generated code maintain consisrency between
register and memory copies of variables. Use of this
approach permits programs to benefit from the speed
advantages and reduced memory traffic associated with
register storage, obviates the need to collect aliasing
irgforman’on for use in register allocation, and reduces
instruction trafic by eliminating code used solely to
maintain register-memory consistency. The support
hardware can be implemented using known hardware
technology and without increasing the cycle time of the
processor.

Introduction
High performance computer architectures usually

include fast general purpose registers designed to act as
storage for frequently accessed data. Register storage can
improve the performance of a computer system by pro-
viding substantial improvements in access time, by pro-
viding short names for operands, and by reducing the
number of requests for memory access. These factors
increase throughput for simple uniprocessors and can
have even greater impact on pipelined processors and
multiprocessors where memory access contention is a
significant consideration. While the hardware advantages
of registers are clear, their effectiveness can be severely
reduced if compilers are not capable of using them
effectively. The presence of aliases in a program
negatively affects the ability of a compiler to perform

effective register allocation. These negative effects are
accentuated when interprocedural register allocation is
performed, both due to the increased difficulty in
obtaining accurate aliasing information and due to the
number of aliases present.

An alias in a program arises whenever there are two
or more distinct ways to refer to the same storage
location. [l] When aliases are present, accesses to
variables through names that appear to be independent
may actually interfere because they refer to the same
storage location. Aliases are introduced through the use
of arrays, pointers, and call-by-reference parameters and
thus occur in most programs in most programming
languages. Aliasing introduces back-door access paths to
variables that must be considered at compile-time in order
to generate code that executes as expected. The
possibility of back-door accesses forces a compiler to
update the memory copies of variables held in registers to
assure that accesses to the memory copies retrieve the
current values of the variables. The possibility of back-
door updates forces the compiler to re-load register copies
from memory before each use due to the effects of aliased
updates of the memory copy. The instructions generated
to perform memory updates and re-load registers increase
both the static and dynamic instruction count of the
executable program and substantially increase memory
traffic.

When a variable has been allocated to a register, it is
only safe to remove the code that guards against back-
door accesses when all code that uses (or modifies) the
variable has been identified and changed to refer to the
register. This identification implies a need to detect all
possible names for a storage location: hence all possible
aliases must be detected for each variable. Unfortunately,
this presents two problems that force the compiler to
retain the guard code. First, depending on the ways
aliases may be introduced in the programming language,
and the level of precision desired from aliasing
information, the determination of all possible aliases can

* This work was supported in part by the National science Foundation under grant CCR-8801104 to the University of
Pittsburgh.

CH2916-5/90/0000/0730/$01 .OO 0 IEEE 730

be an FIB-complete problem or can produce a solution set
of exponential size, and thus is not effectively solvable.
Second, as different a&sing relationships may be
established while the program runs, appropriate
modification of code to expect a variable in a register
may depend on the context from which the code was
invoked. In either of these circumstances, it is not
possible to eliminate all back-door accesses and therefore
it is not possible to omit the guard code. The presence of
aliases in a program thus reduces the quality of code that
can be generated.

Several software techniques have been developed
that conservatively estimate the abases in a program.
[4,5,6] These techniques reduce the negative effects of
aliasing on the generated code by determining that some
variables cannot be aliased, thus permitting them to be
maintained in registers without the need to maintain
consistency between their memory and register copies.
These approaches usually produce an improvement in the
code because they provide estimates of the actual aliasing
patterns of a program instead of the worst-case
assumption (that all type-compatible variables are
aliases). However, because they produce only estimates
of aliasing information, these techniques can be
ineffective in worst-case scenarios. Even where these
approaches are effective, they still require all variables
that may exhibit aliasing to be maintained in memory.

Another approach to reducing the difficulties
associated with register allocation in the presence of
aliasing is to eliminate registers altogether. Some
processor architectures, such as the Intel iAPX432, use
only memory-to-memory instructions and do not provide
explicit user-accessible registersJ71 A cache is used to
improve operand access time. The elimination of registers
does obviate the need to perform alias analysis for
register allocation. However this approach suffers from
decreased utilization of high-speed memory because of
the online, block oriented nature of the cache
management problem.

Another technique that has appeared in the literature
suggests the use of hardware support in the form of
“CRegs.” [23 CRegs are banks of four registers which
have an associative memory used to check for back-door
accesses. When a request is issued to load a register using
a memory address that is associated with one of the
registers in the same CReg set, the request is satisfied
from the register. When two or more CRegs have the
same associated address, they are accessed in parallel in
order to cause consistency among the aliased values. It is
this parallel associative access technique that limits the
CReg set size to 4. This technique still requires alias
analysis in order to assure that possible aliased variables
are always allocated to registers in the same set. The

technique cannot directly handle any variable with greeter
than four possible aliases and must spill all elements of an
alias set whenever it is necessary to access an element of
the alias set in a different CReg associative set. The
technique also requires that the register allocation scheme
be cognizant of the organization of the machine registers
into CReg associative sets.

The work presented in this paper approaches the
problems associated with register allocation in the
presence of aliasing by utilizing hardware support to
eliminate the possibility of back-door accesses to the
memory copies of variables. The use of this approach,
which does not require alias analysis, permits a compiler
to generate improved object code by eliminating the need
to maintain consistency between register and memory
copies of variables. Additionally, this approach reduces
the overhead of runtime accesses to variables that are
abased by short-circuiting accesses using memory
addresses and directing them to registers. When back-
door accesses are removed from the runtime environment,
it becomes permissible to freely allocate variables to
registers without consideration of their possible aliasing
relationships. The elimination of back-door accesses is
accomplished by providing hardware to transparently
note and recall the address associated with the value
stored in each general purpose register and to monitor the
addresses generated for memory references, redirecting
references to the memory copy of variables to the register
copy. We refer to this approach as variable forwarding.

This approach is preferable to estimating the aliases
in a program and denying abased variables promotion to
registers because it allows even variables that have aliases
to be allocated to registers safely. This approach
maintains the problem of register allocation in a compile-
time setting thus providing the possibility of better
utilization of high-speed memory than can be achieved
with cache management. A compiler targeted at a
processor with variable forwarding hardware does not
need to collect any aliasing information in order to
perform register allocation. The elimination of
instructions inserted to maintain consistency of register
and memory copies of variables reduces both the static
and dynamic instruction counts of a program and thus
reduces memory traffic for both instructions and data.
The added hardware maintains the table of addresses
transparently, without added instructions in the code and
does not extend the processor cycle time.

Before presenting our approach in greater detail, we
consider the ways that aliases can be introduced into a
program, the algorithms and heuristics available to
estimate a&sing, and the effects of aliasing on register
allocation and code generation.

731

Aliases
Aliases are introduced into a program in a variety of

ways. When two or more pointer variables reference the
same object in memory, the names for the fields of the
referenced objects arc aliases. Subscript expressions for
references to the elements of an array may differ in
structure and content yet may evaluate to the same value.
The use of pass-by-reference parameters can introduce
aliases in several ways. The same variable may be passed
to a procedure at several positions in the argument list. If
at least two of these positions are pass-by-reference
parameters, then the corresponding formal parameters are
names for the same variable. If a variable which is non-
local to a procedure but which is visible to that procedure
under the scoping rules of the language is passed to the
procedure as a pass-by-reference parameter, the non-
local name and parameter are aliases. If a variable that
has aliases is passed as a pass-by-reference parameter, it
carries its aliases along to each formal parameter to which
it can be bound. While the C programming language does
not have an explicit pass-by-reference parameter
mechanism, the use of pointer parameters introduces
similar difficulties,

Approximating Aliasing
The parameter aliasing problem can be solved in an

imprecise way using a simple deterministic polynomial
time algorithm. A precise solution to this problem can
also be achieved using a deterministic algorithm, but
because the size of the solution set is potentially
exponential in the number of nodes in the program’s call
graph, this approach is generally too costly to be
considered. The only way to make use of a precise
solution to this problem would require a separate copy of
each procedure, tailored for each possible aliasing
circumstance, in order to accommodate varied aliasing
circumstances on each distinct path through the call graph
(infinite paths can be truncated safely). When 0nIy one
copy of each procedure is used, an imprecise solution to
the parameter a&sing problem is required in order to
assure the correctness of the program. The merged
information of an imprecise solution may yield results
that are excessively pessimistic for a particular path and
may include paths that are infeasible. Regardless of
whether multiple copies of procedures are used with
precise information or single copies are used with
imprecise solutions, aliased variables must be maintained
in memory, thus reducing the efficiency of the generated
code.

Other types of aliasing can be estimated as well. The
complexity of performing these analyses increases with
the generality of the aliasing problems presented by the
language, while the quality of the solution decreases.

Determining aliasing in a program with arrays or pointers
is an NP-complete problem. [5,6] Several techniques are
known that consider the relationship between the values
of program variables and subscript expressions in order to
detect cases in which array accesses occur independently.
These techniques, generally known as array reference
disumbiguation, are based on algebraic properties of the
subscript expressions and can eliminate a class of
expressions that occur when an array is being processed
in a linear or systematic way. Processing orders based on
random numbers, inputs, and contents of the array
elements themselves cannot usually be disambiguated.
Additionally, most disambiguation schemes can be led
astray by the presence of infeasible paths.

The problem of determining whether or not two
pointers may point to the same object is NP-complete. [5]
There are some heuristics that may be applied to this
problem but these generally require substantial analysis
time, while still producing only rough estimates of the
actual aliasing present in the program.

Effects of Aliasing on Generated Code
Without register forwarding hardware, the

possibility that an aliased reference may occur to the
memory copy of a variable while the variable is loaded
into a register must be taken into account by the register
allocation strategy. There are two basic approaches to this
end that may be safely adopted: 1) deny potentially
aliased variables promotion to registers and 2) maintain
consistency between the register and memory copies of a
variable. Both of these approaches forfeit some, if not all,
of the advantages of storing variables in registers.

If variables that may have aliases are denied
promotion to registers, most operations will require at
least one memory access. If the compiler uses worst-case
aliasing assumptions, the only variables that will be
stored in registers are temporaries.

If registers are used, the memory and register copies
of the variable must be kept consistent at all times,
implying that the register copy of a variable must be
reloaded from memory before each use that follows any
instruction that could have written to memory. This
assures that the value in the register reflects any updates
that may have occurred using an aliased name, directly
reaching the memory copy. Additionally, any
modification of the value stored in a register must be
immediately followed by a write to the memory copy of
the variable so that any direct use of the memory copy
through an aliased name will retrieve the most recent
value of the variable.

Both of these approaches produce code that uses
registers in a very inefficient manner and generates a

732

significant number of memory access requests. As an
example of this situation, consider Figure I. In Figure la,
we present a small Pascal-like program fragment. In
Figure lb, we present one possible intermediate code
sequence for the fragment. Figure lc presents code
generated using registers, with the insertion of loads and
stores as required to maintain consistency of the
register and memory copies of all variables. Figure Id
presents code that maintains variables in memory.
. . .
fori:=ltolO

T := T t i;
ArA’i;

. . .

(a) Source Fragment

. . .
i*l

Ll: ifJnpl0
hot u
T:=T+i
A:=A’i
iii+1
ip Ll

I2 . . .

(b) Intermediate Code
. . .
load m,Xl
store m,i . . .

Li: cmp m,%l 0 mov #l ,i
imt L2 Ll: cmp MO
load rl,T jmt f2
add m,rl add i,T,T
store rl ,T mul i,A,A
load m,i add i,%l ,i
load r2,A jp L1
mul m,R L2: . . .
store r2.A
load m,i (d) Memory Only
inc m
stDr8 m,i
jp L1

I2 . . .

(c) Consistent Copies

Figure 1
Example Code Generation with Aliases

When code is generated placing 1 oads and s t ores
around variable uses and definitions, a total of 72 load

and store instructions will be executed thus generating
72 memory operations (31 writes and 41 reads). In the
case where variables are not promoted to registers, no
load or store operations are executed, but implicit
accesses in other instructions generate 81 memory
operations (3 1 writes and 50 reads).

Variable Forwarding
The architectural features of variable forwarding

assure that accesses to the memory copy of a variable
retrieves the most recent value, even if that value is stored
in a register. These features also assure that modification
of the memory copy of a variable that is loaded into a
register will affect the value stored in the register. These
features permit the register allocator and code generator

to make best-case assumptions about aliasing in the
program without any danger of producing a program that
does not operate correctly.

. . .
load m,i
nwf#i,m

Ll: cmp fo,#lO
imt D
Mrl,T
add m,rl
store ri ,T
kad r2,A
mul m,t2
store r2,A
incm
store m,i
j&l

I2 . . .

(a) Local Allocation

. . .
load m,i
movwi,ro
load rl,T
load r2,A

Ll: anp IQ,110
imt u
add m,rl
mul m,c2
incm
jpL1:

I2 store m.i
store rl ,T
store R,A
. . .

(b) Global Allocation

Figure 2
Example Code Generation with Variable Forwarding

In Figure 2, we present the code that could be
generated for a processor with variable forwarding
hardware for the example program presented in Figure 1.
Figure 2a presents code generated using only local
register allocation. This code segment will execute 52
load and store operations resulting in 52 memory
operations (31 writes and 21 reads). Figure 2b presents
code generated using global register allocation, that will
move load and store operations to the beginning and
end of spans, and thus out of the loop body. This code
will perform only 6 load and store operations
resulting in only 6 memory accesses. Even from this
simple example, it is clear that the ability to perform
register allocation on the assumption that there are no
aliases can provide for significant improvement of the
generated code and significant reduction of both
instruction and data memory traffic.

Forwarding Hardware
Figure 3 presents a schematic layout of the register

forwarding hardware. The variable forwarding technique
has two parts: memory forwarding, that detects back-door
accesses to memory copies of variables and substitutes
accesses to their register copies, and register forwarding
that is necessary to permit potentially aliased variables to
be allocated to different registers. The lower half of the
figure shows the modifications to the memory access unit
that perform memory forwarding. The upper half of the
figure presents the modifications to the register select
logic that perform register forwarding.

733

Effects on Memory Access
The usual action of the memory control unit is to

buffer and synchronize accesses between the internal and
external data, address, and control busses, Variable
forwarding augments the memory control unit with
additional hardware designed to monitor each memory
access and detect occasions where memory forwarding is
needed. This hardware compares the address being
requested from memory with the address associated with
each register through the use of an associative memory,
This memory is shown in the lower left of Figure 3 and
contains one entry for each general purpose register. As
memory accesses occur, the addresses requested are
applied to this memory. When a hit occurs, the result of
the memory access in progress is ignored (or the access
may be aborted) and a signal is sent to the register select
logic to complete the request with the register causing the
hit. It is important, both for the simplicity of the
forwarding mechanism itself and for the simplicity of the
associative memory design that each unique address
appears only once in the associative memory, thus
guaranteeing that only one entry will match per operation.
This fact eliminates the need for shift registers and added
logic needed to process multiple hits and permits the hit
indication signals to be directly used in addressing the
corresponding register.

The use of an associative memory to perform the
parallel comparison of memory addresses with register
tags permits this operation to complete in less time than
the general memory subsystem requires to perform the
actual memory operation requested. This means that if the
two operations are initiated in parallel, the result of the
associative memory access will be available in time for
the memory control unit to substitute a register access
whenever necessary. Because the comparison occurs in
parallel with the memory request, the presence of the
variable forwarding hardware does not increase the
general memory access time. In fact, when a hit occurs
and a register access is substituted for a memory access,
the access time is reduced to a value somewhere between
the normal memory access time and the register access
time. When a request for a value from memory is satisfied
by a forwarded register, a memory operation has been
initiated that is not necessary for the instruction to
complete. The results of such requests can be ignored,
without concern for reversing side effects because all
accesses to the memory locations in question will be
forwarded to the appropriate register. Depending on the
nature of the memory subsystem, it may be beneficial to
abort memory requests that were initiated, but later found
to be unnecessary. Figure 4 presents a detailed algorithm
for the actions performed during a memory read or write
operation.

Similar associative memory technology is currently
used in most virtual memory systems to provide the
translation of virtual addresses into the physical addresses
to which they are mapped. The output of translation
lookaside buffers @LB’s) is usually a set of words
indicating the physical addresses associated with the
matching entries. The associative memory used in register
forwarding can be made less general than those used in
virtual address translation as it does not need to
accommodate the possibility of multiple hits, nor does it
need to return a data value for the entry causing a hit, but
merely the select signal of the matching entry. The size of
an associative memory is usually limited by the amount
of chip real estate available. This limitation should not
pose a problem as each cell of the required associative
memory is simpler than the cells used in translation
lookaside buffers, and because the number of entries in
the memory is the same as the number of general purpose
registers, which is usually relatively small. The dedication
of space to the variable forwarding hardware is justified
when the improved runtime performance is considered.
Additionally, recent results [8] have suggested that the
use of register windowing hardware is unnecessary
because a suitably designed compiler can achieve equally
good results. The space formerly allocated to the register
windowing hardware can be utilized by the register
forwarding associative memories.

Memory Access:
EA := effective address of operand
initiate memory read&rite request for EA
r these chedcs are performed in parallel ‘1
apply EA to register associative memory yielding R
if R is not null then

submit a readkrite request for register R
ignore or abort result of memory access

else
wait for memory access to complete

end MemoryAccess

Figure 4
Operation of a Memory Read or Write Operation

Effects on Register Access
The usual function of the register select logic is to

operate as a simple address decoder. Variable forwarding
augments the register select logic to perform register
forwarding. This type of forwarding is needed when the
same memory location has been loaded into several
different registers (when aliased variables have been
allocated to different registers). Any access to one of the
registers associated with a single memory location must
be forwarded to a single register in order to maintain
consistency. We refer to the set of registers associated
with a single memory location as a forwurding group. A
single register from the forwarding group holds the actual

734

I

ReariakrT~~h /N

T

E
R

f

I Amxiativc Manorv

II
I I 0

Lw bi- R

ADDRESS I -E

s
s

B
U

s

MEMORY

-
I

N

T

E
R

N

A
L

A

0

D

R
E

S
s

&

C

0

N

T

R

0

L

B

U
S

SUBSYSTEM

Figure 3
Register Forwarding Hardware

value of the variable. This register is referred to as the
leader. The leader is the only register in the forwarding
group that has its address field set to trap accesses to the
memory copy of the variable and hence is the register that
will be selected by any operation initiated by the memory
forwarding system. All accesses to other registers in the
forwarding group are also forwarded to the leader.

The knowledge of register forwarding information is
represented by a tag and three link fields, forward,
backward, and leader, that are stored with each register.
Each time a register is selected, its tag field is checked to
determine whether or not the register is part of a
forwarding group. If the register is part of a group, but is
not the leader, the leader link field is used to select the
leader register of the group. This can result in a one cycle
extension of the time required to access an operand in a
register. However, this increased time is due to the need

to retrieve the correct register and not due to any
overhead associated with testing an individual register’s
tag field. Thus, the time required to access a register
which is not being forwarded is not extended over the
register access time of a processor without register
forwarding. The forward and backward link fields are
used to construct a doubly linked list of the registers in
the forwarding group. This list is used to find other
registers in the group in order to update the leader field
when the current leader is stored and thus removed
from the group.

The load instruction must be augmented to
determine if the address of a variable that is being
loaded into a register is already associated with another
register, and when it is, to add the register to the existing
forwarding group. This is achieved by adding a check of

735

the associative memory to the load operation before
setting the tag field entry of the target register. Figure 5
presents a detailed algorithm of the actions performed in
the register read and write operations.

RegisterAccess:
RA := requested register
Apply RA to register bank
wait for Result
if Result.Tag = FORWARDED then

RA := Result.Leader
Apply RA to register bank

signal operation complete
end RegisterAccess

Figure 5
Operation of a Register Read or Write Operation

Effects on Instructions
As part of the variable forwarding technique, the

load and store instructions are augmented to update
the forwarding information. The augmentation of these
instructions is such that no auxiliary instructions are
needed to maintain the register-address mappings. This
section presents the details of the operation of these
instructions along with several new instructions designed
to optimize register management.

At machine initialization, the associative memory
entries are all initialized to 0, where it is assumed that no
valid data object will ever be assigned this address. The
register tags are all set to EMPTY, indicating that the
registers are not being forwarded and have not been
loaded with any values. The register forward, backward,
and leader link entries may be left uninitialized because
they arc only accessed after the tag and link fields have
been modified. Like register contents and TLB’s, register
forwarding tags and the contents of the variable
forwarding associative memory must be saved and
restored at context switches.

The load instruction is used to move a variable
from memory into a register. The instruction updates the
register address tag for the register being loaded and
creates forwarding groups whenever an attempt is made
to load a register with the contents of a memory location
that is already associated with another register. To begin
association of a register with a variable from memory, but
giving the variable an initial value instead of retrieving its
value from memory, a special instruction is provided:
init. The operands of ini t specify the address of the
variable, the register, and the initial value to lx loaded
into the register. Additionally, we provide a move
instruction that does not perform the usual initialization
of the register address field. This instruction is useful for
accessing memory mapped devices without forwarding
future references to a register, thus losing access to the

actual device control or status word. Figure 6 presents the
detailed operation of the load instruction.

bad Register, Value:
f set up new tag and address l /
EA := Effdve Address of Operand.
f%quest Fetch of memory operand at EA
P these checks are performed in parallel with the memory request ‘I
Leader := TLBcheck(EA)

if Leader o FAIL then
RegisterAddress := 0
Fbgister.Backward := Leader
RegisterLeader := Leader
Register.Tag := FORWARDED
if Leader.Tag = LOADED then

Register.Forward := Register
Leader.Tag := LEADER

else
Register.Fotward := Leadar.Forward
Leader.Fotward.Dackward := Register

Leader.Forward := Register
ignore result of memory read

else
Register.Tag := LOADED
Register.Address := EA
Register.Fotward := Register
Register&&ward := Register
wait for result of memory read
Register.Value := result

signal operation complete

Figure 6
Operation of the LOAD Instruction

The store instruction dissociates the mapping of a
variable and register so that the register may be used for
other purposes. The instruction removes the register from
its forwarding group and clears the register’s addressing
information. If the register was a leader then a new leader
is selected from the group and the value from the register
is copied to the new leader. If the register was the only
register in the group, the value is copied to the associated
memory location and the group is destroyed. If the value
in the register is not live, there is no reason to perform the
save. A special instruction, kill, is provided that clears
the address information without storing the register
contents. Figure 7 shows the detailed operation of the
store instruction. The kill instruction performs the
same actions with the exception of the memory write
operation.

Changes to Code Generation
The altered semantics of the load and store

instructions and the presence of the forwarding hardware
affect the way the code generator should operate, both in
terms of correct instruction selection and in terms of
register allocation.

When generating code for a three address statement
of the form, Dest := Srcl op Src2, the code

736

generator should always assure that the address associated
with the register holding the value corresponds to the
addressof Dest. If DestisthesameasSrclorSrc2,
the code generator should generate a sequence that begins
by loading Dest into a register and then performing the
operation with the register as the result of the operation. If
Dest is disjoint from Srcl and Src2, then the code
generator should emit an init of the register with the
address of Dest and either Srcl or Src2 as the initial
value followed by the operation with the result in the
register.

Store Register:
case Register.Tag of

LEADER:
Newleader := Register.Forward
NewLeader.Vafue t Register.Value
NewLeader.Address := Register.Addrass
if NewLeader.Forward = NL then

NewLeader.Tag := LOADED
else

R := NewLeader.Forward
while R.Fotward C R do

R.Leader := NewLeader
R := R.Forward

R.Leader := Newleader
LOADED:

example program which contains a procedure to buffer a
list of outputs into several columns, is written in a Pascal-
like pseudo-code and is presented in Figure 8. The main
program has three calls to the procedure, each of which
creates a different abasing circumstance. The fust call
does not introduce any aliases. The second call introduces
an alias between the global variable CurrentRow and the
formal parameter Value. As both of these variables are
allocated to registers, this call demonstrates the operation
of register forwarding. The last call introduces an alias
between an element of the buffer array, Page, and the
formal parameter PageNum. As only the parameter is
allocated to a register, this call demonstrates the operation
of memory forwarding. The pass-by-reference parameter
PageNum would have likely been coded as a global
variable in a real program, but is included as a parameter
to demonstrate the improved code that can be generated

Procedure MultiColOut (
var PageNum:integer;
var Vafue:integer);

tegin
Page[CurrentCol][CurrentRow] :=

Value;

initiate a wait for completion of transfer
of RegisterValue to RegisterAddress

FORWARDED:
Register.Backward.Forward := Register.Forward
Register.Forward.Ba&ward := Register&&ward
if Register.Forwerd = Register then

if Register.Backwerd.Tag = LEADER then
Register.Badwvard.Tag := LOADED

Register.Tag := EMPTY
Register.Address := 0
signal operation complete

CurrentRow := CurrentRow t 1;
if (CurrentRow > MAXROWS) then

CurrentRow := 1;
CurrentCol := CunentCol + 1;
if (CurrentCot > MAXCCLS)

then

Figure 7

for accesses through pointers.
Main Program
Constants:

MAXCOLS = 5;
MAXROWS = 60:

variables:
Page:array[l ..MAXCOLS]
of array [l ..MAXROWS] of

integer;
CurrentRow:integer=l ;
CurrentCollnteger=l;
PagaNum:integer=l;
kin&e&;

Begin
MultiCotOut (PageNumJ):
MulfCelOut (PageNum,

CurrentFtow);
MulfColOut (Page[lHl],

PagaNurn);
End.

end;

OutputPage();
CurrentCot := 1;
PageNum :=
PageNum + 1;

Figure 8
Operation of the STORE Instruction Example Program Source

After a value has been computed into a register, the
result should either be stored to memory, if it is live, or
killed, if it is no longer needed, before the register is
used for another computation.

Operations that reference values through pointers or
addresses can also be compiled to place the values into
registers. For example, a pass-by-reference parameter can
be loaded from memory into a register, operated upon,
and then stored before the procedure exits. Similarly,
fields of dynamically allocated objects can be loaded
into registers and operated on, followed by a store
instruction.

In the first call, the register configuration during the
body of the procedure will be:
r7 m(PageNum) rlo t-3
ra 11 (Vaklt?) rl 1 CurrentRow
rs 12 rl2 CurrentCot

The only memory access that will occur (other than
loads and stores) will be to an element of the array
Page, and the pass-by-reference parameter PageNum. As
these are not aliased to any of the values in the registers,
there will not be any associative memory hits during the
execution of the procedure, and thus no forwarding will
OCCUT.

Example
This section presents au example program that

demonstrates the operation of the variable forwarding
hardware in a variety of aliasing circumstances. The

737

Main: push
push
call

push
push
call
push
init
dec
init
mul
mul
add
add
push
call
halt

MultiColOut:

XI
tPageNum
B,MultiC4lOut
#CurrentRow
#PageNum
B,MultiColOut
#PageNum
ro,ti ,I
ro
rl ,P,tStride
ml
#ElemSize,rO
fl,m
#Page,rO
tl
B,MultiColOut
; terminate program

IO:
II:

12:
13:

Ll:L2:

POP r7
load r7,Vl

El!! &a
load rll ,CurrentRow
init t9,t2,rll
dec 19
mul #ElemSize,rS
lead rl2,CurrentCol
init rl O,t3,ri 2
dec rl0
mul #Stride,rlO
add r1OJS
kill rl0
add #Page,rS
move a(@)
kill r8
kill 19
inc rll
cmp rl ,#MAXROWS
jple Ll
move #l,lll
inc r12
cw rl2,#MAxCOLS
jple D
Call #O,OutputPage
move Wl,r12
inc r7
store r7
store rll
store r12
ret

: ski& parameters

; first call
; stack parameters

: second call
; stack first parameter
;tl :=I
; tl := 11 -1
; 12 := Stride
; 12 := 11 ’ 12
; tl := tl l ElemSize
;tl :=tl +t2
; tl := 11 + Addr(Page)
: stack computed parameter
; third call

; retrieve address of PageNum
; associate with r7, get initial value
; retrieve address of Value
; associate with r8, get initial value
: Put CurrentRow in rl 1
; set address of 12 for 19, initialize
; t2 := CurrentPow -1
; 12 := 12 l ElemSize
: Put CurrentCol in tl2
; set address of 13 for rl0, initialize
; t3 := CurrentCol -1
;t3:=13’Stride
;t2:=t2+13
: 13 no longer needed
: t2 := 12 + Addr (Page)
; store tl at address computed in 12
; Value has no further uses
; nor does t2
; CurrentRow := CurrentRow t 1

; CurrentRow := 1
; CurrentCol := CurrentCol t 1

; CurrentCol := 1
; PageNum := PageNum t 1
; PageNum is live, store
; Current&w is live, store
; CurrentCol is live, store

Figure 9
Pseudo-Machine-Code for Example Program

In the second call, the register configuration during
the procedure will be the same as during the first call, but
in this case, the access to Value is also an access to
CurrentRow. The instruction at label 11 will attempt to
fetch CurrentRow into rll and set its address field
accordingly. Because of the alias of CurrentRow and
Value, the address of CurrentRow is already associated
with the register holding Value (r8) due to the instruction
at label IO. Thus this load instruction will create a

forwarding group with r8 as the leader. Should there he
an access to the memory location, r8’s tag would cause an
associative memory hit and redirection would be to r8.
Should rl 1 be accessed, the forwarding tag would cause a
redirection to the leader of the group, r8. The instruction
at label 13 performs a kill on r8. This removes the
leader of the forwarding group. The ki 11 operation will
copy the value of r8 into rl 1 and set rl l’s address field to
canse a trap on the address of CurrentRow.

In the final case, a similar sequence occurs, however
the address associated with r8 will be the address of an
element of the page array. When execution conditions are
such that the address computation for
Page[CurrentRow][CurrentCol] yields the same address
as associated with r8, the move instruction at label 12 will
be redirected to write to r8.

Multiprocessor Architectures
While the discussion to this point has centered on a

uniprocessor architecture, the variable forwarding
technique is a useful addition to other processor
configurations as well. Variable forwarding can be
directly applied in any message passing processor
architecture where individual processors cannot directly
access the local memories of other processors.

A shared memory multiprocessor using variable
forwarding exhibits a phenomenon similar to the cache
coherency problem and may be managed with similar
techniques. When a memory reference occurs that is not
forwarded by the local hardware, the forwarding
associative memory of all other processing units must be
checked to assure that the value is not loaded into a
register in another unit. This is similar to the situation that
arises when a block has been loaded into one processing
unit’s cache and another processing unit generates a
request for the same block.

One possible approach to avoiding inconsistencies
among processors is to build an associative memory that
contains the addresses loaded into all of the registers in
the multiprocessor. Register tags must also be extended to
permit forwarding chains to cross processing units. This
memory could then be updated and consulted by each
processing unit for each memory reference as in the
uniprocessor case, but with hits resulting in either a local
access or a request for access to a register in another
processing unit. The associative memory could also be
replicated in each processing unit, with each unit
monitoring the memory requests of all processing units in
order to update its local view of the multiprocessor’s
complete register set. While replication eliminates
contention for a single associative memory, it quickly
becomes impractical as the number of processing units
increases because each unit must have an associative

738

memory large enough to represent all registers in the
complete multiprocessor.

An alternative organization that uses the same basic
approach but does not enlarge the individual processing
unit’s associative memories can be used instead. Each
processing unit has an associative memory reflecting the
contents of its own register set. Each unit must monitor
@l memory accesses by all units, checking each against
its own associative memory. Updates to the local
associative memory are triggered only by local load and
store instructions. When a hit occurs on an address
generated by another processor, an interrnpt is sent to that
processor, signaling that the value must be fetched from
the register copy held by the interrupting processor. As in
the other approaches, register tag fields must contain a
field to permit forwarding chains to cross processing units
and a communication protocol for accesses to other
processing units’ registers.

Further techniques for applying variable forwarding
to a shared memory multiprocessing environment may be
patterned after existing cache coherency strategies.

Instruction scheduling must take into account the
possibility that access to a potentially aliased variable
(subscripted variables, pointers, reference parameters)
that is loaded into a register may require an added register
cycle time to complete. This added time must be
scheduled but may not be needed if the execution of the
program is such that the variable does not actually have
an alias.

Conclusions
The use of register forwarding hardware can

substantially improve the quality of code that can be
generated for a program containing abasing. This
approach obviates the need for abasing analysis when
performing register allocation. This technique cannot
eliminate the need for abasing analysis for application of
optimizations.

Code generated for use with this hardware is
substantially improved over code that must accommodate
aliases directly. Global register allocation is more
effective because loads and stores can be moved to
the extremes of spans without concern for register-
memory consistency. The static and dynamic numbers of
loads and stores are reduced. The access time for
variables which are held in registers, but which are
referenced by their corresponding memory address is
shorter than the normal memory cycle, thus improving
execution speed over code for variables with known
aliases. The normal register access time is not extended,
but register forwarding may extend register access time
for aliased variables. The number of instructions that can
be eliminated through removal of guard code far

outweighs this negative effect. The classes of values that
can be allocated to registers are expanded to include
elements of arrays, objects referenced through pointers,
and pass-by-reference parameters.

The hardware required to implement register
forwarding is based on known technology and can bc
incorporated into a processor without extending its cycle
time. The nature of the variable forwarding problem
allows the use of a simplified associative memory due to
the information needed when a matching entry is found
and due to the guarantee of only single matching entries.
The chip real estate needed for this hardware can be
recovered from the area often used by register window
hardware.

Further analysis of the effectiveness of this
technique is being carried out through implementation of
a simulator for a RISC processor equipped with variable
forwarding hardware and a compiler designed to perform
interprocedural register allocation and to produce code
that takes advantage of this hardware.

Acknowledgement
We would like to thank one of the Supercomputing

‘90 referees for comments that were helpful.

PI

El

t31

[41

RX

r71

WI

References
A.V. Aho, R. Sethi, J.D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley
Publishing Company, Reading, MA, 1986.
H. Die& C.H. Chi, “CRegs: A New Kind of
Memory for Referencing Arrays and Pointers”,
Supercompufing ‘88, pp. 360-367, 1988.
J.R. Ellis, Bulldog: A Compiler for VLIW
Architectures, MIT Press, Cambridge, Mass., 1986.
K.D. Cooper, K. Kennedy , “Fast Interprocedural
Alias Analysis”, Conference Record of Sixteenth
ACM Symposium on Principles of Programming
Languages, pp.49-59 , January 1989.
J.R. Lams, P.N. Hilfinger, “Detecting Conflicts
Between Structure Accesses”, Proceedings of the
ACM SIGPLAN ‘88 Conference on Programming
Language Design and Implementation, pp. 621-34,
1988.
E.W. Myers, “A Precise Inter-procedural Dataflow
Algorithm”, Conference Record of fhe Eighth ACM
Symposium on Principles of Programming
Languages, pp. 219-230, January 1981.
G.J. Myers, Advances in Compufer Archifecture,
Wiley Interscience, John Wiley & Sons, New York,
1982
D.W. Wall, “Register Windows vs. Register
Allocation”, Proceedings of the ACM SIGPLAN ‘88
Conference on Programming Language Design and
Implementation, pp. 67-78,1988

