A Design For An Object To Be 3D Printed Should Be A Transformable Parametric Design

Session B, 11:00AM, July 25, 2023

Henry Dietz Electrical & Computer Engineering University of Kentucky

What is 3D Printing?

Subtractive Building:

"Every block of stone has a statue inside it and it is the task of the sculptor to discover it." - Michelangelo

Additive Building:

"The whole is greater than the sum of its parts." - Aristotle

Why Parametric Design?

Design for Manufacturability (DFM): Design product so it is easy to manufacture, but different tools/materials have different constraints.

- Lego doesn't easily do curves...
- Fused Deposition Modeling (FDM, FFF), Material Jetting (MJ), Drop On Demand (DOD) don't easily do unsupported...
- Stereolithography (SLA, DLP, LCD), Selective Laser Sintering/Melting (SLS/SLM, EBM), Binder Jetting (BJ) don't easily do cavities...

The Design Process

Conventional design for 3D printing:

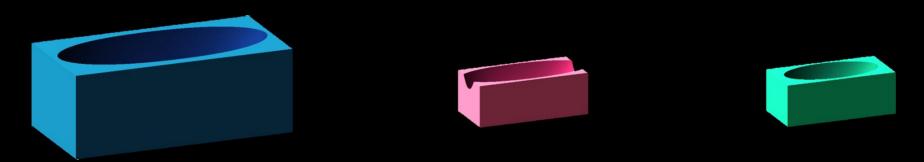
- 1. Create 3D model by drafting in a CAD system
- 2. Convert model to "portable" polygonal surface patches (STL)
- 3. Slice STL into machine-specific G code X, Y, Z, E movements
- A better design process for 3D printing:
 - 1. Create a parametric design as a program
 - 2. Compile the design program + parameter values into a DFM-optimized machine-specific design
 - 3. Convert design into G code

A Trivial OpenSCAD Example

OpenSCAD supports parametric program representations with variables, but intent, functionality, and constraints are not coded

How About A Base Fitting This?

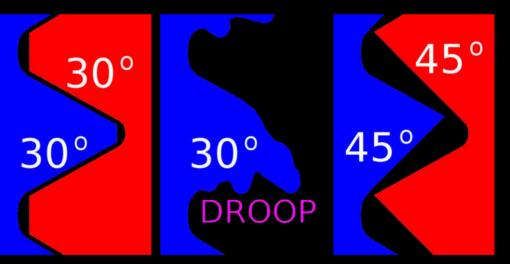
Make this a module with parameters:
 module statue(...) { ... }


- Make a base module too
- Just difference 'em to fit the base:

difference() { base(); statue(); }

We need a printer-dependent tolerance between them to get a good fit...

Parametric OpenSCAD


module tol(xt=defxt, yt=defyt, zt=defzt) {
 for(c=[0:1:\$children-1]) minkowski() {
 children(c); scale([xt, yt, zt]) cylinder();
 }
}

difference() {base(80); tol() statue(80);}
difference() {base(); tol() statue();}
difference() {base(); tol(yt=2) statue();}

A Manufacturability Example

- The Unified Thread Standard (UTS) specifies a **30° angle** for screw threads
- Can we print that without **droop**?
- Replace **30° angle** with a printable one:
- 45° is safe
- Could allow for droop

Implementing DFM Adjustments

- Manually edit all your design elements
- Use a parts library that exposes parameters
- Use optimizing compiler technology
- Use AI language models... GPT (Generative Pre-training Transformer)
- Use *fitness-based* AI optimization methods... GA / GP (Genetic Algorithm / Programming)

Compiler & Language Technology

- Optimizing compiler technology:
 - Analysis creates intermediate representation
 - Correctness-preserving transformations replace matched patterns with better implementations
- GPT (Generative Pre-training Transformer):
 Might recognize constructs, DFM violations
 Create *potential* design elements
 - ° Coding, like https://github.com/AntonOsika/gpt-engineer

Fitness-Based AI Optimization

• Sol75, 2021 https://www.sol75.com

15 Linear spring X	15 Library × +		~ _ u ×							
← → C ☆ @ https://www	w.sol75.com/library/		< ☆ ♠ ⊒ □ ③ :							
h Projectors h E-mount h Largeformat h Everything										
SOL75		Library	Report a bug Suggest a feature							
		Quick release buckle	Pulley							
SHOW ONLY										
Airfoil		By John Oldman	By Otto Lilenthal							
Bike	Belt	Shaft	Fine adjustment							
	\bigcirc		A.							
Box	By Otto Lillenthal	By Bob	By Senku Ishigami							
Compliant										
Fastener	Glider	Handlebar extension	Wing structure							
Tools	By Otto Lilenthal	By John Oldman	By Otto Lilenthal							
Transmission		by our owner								
	Airfoil NACA 4 digit	Bike bag anchor	Electronic enclosure							
	By Otto Lilenthal	By Senku Ishigami	By Anaheim Electronics							
	Box	Rack	Linear spring							
		Rack	Û.							
	By David Mills	By Senku Ishigami	By Monikey D. Luffy							
	Parallel axis transmission	Socket Head Cap Screw	Spur gear							
	By Prof. Hubert J. Farnsworth	By Senku Ishigami	By Emmett L. Brown							
	By Prot. Hubert J. Farnsworth	by striku isnigami	By Eminett L. Brown							

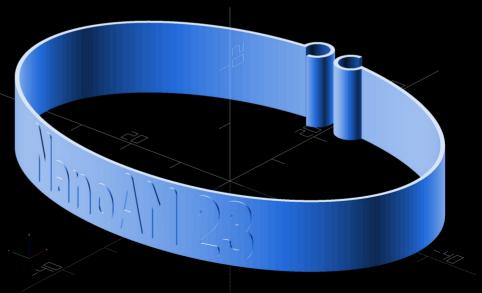
3D PRINTER SETTING		
Nozzle d		mm
Min layer t		mm
Min w		mm
Min tol		mm
Pip tol		mm
Printer bed size x		mm
Printer bed size y		mm
Printer max h		mm
Max bridge		mm
Max overhang		deg
		Save

35 Linear spring		× +							¥ - ¤
← → C ∆		://www.sol75.c	om/component/line					< *	🌲 ≕ 🗖 🕲
🖿 Projectors 🖿 E-	-mount 🖿	LargeFormat	Everything						
SOL75	∎ Details	⊳ Workspace	D Bill of Materials	Download		Library > Linear spring	Rep	ort a bug	Suggest a featur
DESIGN REQUIR	REMENTS			SPECS			Render Sketch)	
Machine			printer (FDM) 📫						
Material				PLA					
Free length			mm		mm				
Stiffness nom			N/mm	1.04	N/mm				
Cycles			k cycles	178	k cycles				
Mass			kg	0.02	kg		0		
Temp min				-20			o via	1	
Temp max				50				11	
		ADV						16	
Elongation limit	it ≥		mm		mm			11	
Compression limit			mm	18.04	mm				
Stiffness tol								//	
Hook d			mm		mm				
Hook clearance	e ≥		mm	6.08	mm				
Hook depth			mm		mm				
Bounding box width			mm	39.91	mm				
Bounding box depth			mm	19.93	mm _{Co}	ompile			

Built-Assembled Hinge Options

Many hinge designs require a trapped pin, which usually implies an **unsupported span**

- Hope you'll get a usable print anyway
- Use internal break-away/soluble supports
- Use a compliant/metamaterial mechanism
- Use a span-free hinge design


This type of choice can be automated!

Compliant Bracelet

Take advantage of material properties

- FDM printed in PLA or silk PLA
- Compliant open/close
- Clasp fail (deforms):
 >25lbs load

Not very compliant...

Compliant/Metamaterial Pliers

We need a hinge, a spring, and a rigid jaw

• Prof. Baudisch, Hasso-Platner Institute, 2016 https://hpi.de/baudisch/projects/metamaterial-mechanisms.html

Compliant/Metamaterial Pliers

We need a hinge, a spring, and a rigid jaw

• Compliant Mechanisms Research Group (CMR), Brigham Young University (BYU), 2019 https://compliantmechanisms.byu.edu/maker-resources

Built-Assembled Span-Free Hinge

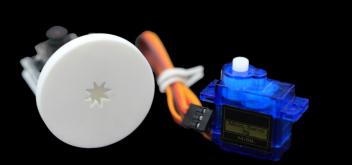
• It started with my HingeBox in 2013:

https://www.thingiverse.com/thing:120179 https://www.youtube.com/watch?v=PpIg92-3MT0

Compliant/Metamaterial Pliers

We need a hinge, a spring, and a rigid jaw

• Aggregate.Org, University of Kentucky, 2016



Mini/Micro Servo Horn

Servo horns have to fit a gear that, especially on mini/micro servos, has **unprintably fine teeth**

 Simply print a mating hole with fewer teeth or contact points (Paul Dietz, 2021; me, 2022):

Conclusion (are we there yet? ♥)

- Designs for 3D printing (any making!) should: ○ Be parametric, e.g., like OpenSCAD ▼ Build a library of DFM problem solutions Include intent, functionality, and constraints * ○ Use tools to automate DFM ♥ • Use AI methods to optimize parameters ¥
- Want more info? See:

