
 1

Draft Specification of Transactional
Language Constructs for C++

Version: 1.1

February 3, 2012

Transactional Memory Specification Drafting Group

Editors: Ali-Reza Adl-Tabatabai, Tatiana Shpeisman, and Justin Gottschlich, Intel

 2

Important Legal Terms

We welcome feedback on the contents of this documentation and on the specification in
particular. To preserve our ability to incorporate such input into future versions of the specification
and to standardize future versions, we provide this specification under license terms that require
any party who provides substantive feedback to grant the authors a license. The feedback license
terms apply only if you choose to provide feedback.

License to feedback: You may, at your sole discretion and option, communicate written
suggestions or other ideas about potential changes to the specification, either directly to any
author or in a forum accessible to the authors, such as a blog or mailing list. Any such
communications will be deemed feedback. By the act of providing feedback you indicate your
agreement that you grant to each of the authors, under your copyright and patent rights in such
feedback, a worldwide, non-exclusive, royalty-free, perpetual, and sublicensable (with the
authority to authorize the granting of sublicenses) license to (a) modify and create derivative
works of such feedback, (b) copy, distribute, perform and display such feedback and derivative
works thereof, and (c) use, make (including design and develop), have made (including have
designed and have developed), import, and directly and indirectly sell and offer to sell products
incorporating the feedback in whole or in part, provided that the license rights granted in this sub-
section (c) shall apply solely to the feedback as originally furnished by you and solely to the
extent that such feedback is incorporated (in whole or part) into the specification. You agree that
any feedback you provide is not confidential information.

License grant from authors, other terms: The specification is Copyright 2009-2012 by IBM
Corporation, Intel Corporation and Oracle America, Inc. (as joint authors). The authors grant you
a license, under their copyright rights in the specification, to reproduce, distribute and create
derivative works of the specification, to the limited extent necessary for you to evaluate the
specification and to provide feedback to the authors. These legal terms must be included with all
copies. The specification is provided “AS IS”. Except for the limited license granted in this
paragraph, no other license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document.

As used in these terms, “you” refers to an individual’s employer when that individual is acting
within the scope of their employment. In such a case the individual represents to the authors that
they are authorized to bind their employer to these terms.

 3

Contributors

This specification is the result of the contributions of the following people:

Ali-Reza Adl-Tabatabai, Intel
Kit Barton, IBM
Hans Boehm, HP
Calin Cascaval, IBM
Steve Clamage, Oracle
Robert Geva, Intel
Justin Gottschlich, Intel
Richard Henderson, Red Hat
Victor Luchangco, Oracle
Virendra Marathe, Oracle
Maged Michael, IBM
Mark Moir, Sun
Ravi Narayanaswamy, Intel
Clark Nelson, Intel
Yang Ni, Intel
Daniel Nussbaum, Oracle
Torvald Riegel, Red Hat
Tatiana Shpeisman, Intel
Raul Silvera, IBM
Xinmin Tian, Intel
Douglas Walls, Oracle
Adam Welc, Intel
Michael Wong, IBM
Peng Wu, IBM

Feedback

We welcome feedback on this specification. The feedback should be directed to the TM &

Languages discussion group – http://groups.google.com/group/tm-languages.

 4

Contents

1. Overview .. 5

2. Transaction statement .. 6

2.1 Memory model ... 7

3. Relaxed transactions .. 8

3.1 The transaction_callable function attribute .. 9
3.2 Nesting ..10
3.3 Examples ...10

4. Atomic transactions ... 10

4.1 Outer atomic transactions ..11
4.2 The transaction_safe and the transaction_unsafe attributes11
4.3 Examples ...14
4.4 Nesting ..16
4.5 Memory model ..17

5. Transaction expressions.. 17

6. Function transaction blocks .. 18

7. Noexcept specification ... 19

8. Cancel statement .. 20

8.1 The outer attribute on cancel statements ...21
8.2 The transaction_may_cancel_outer attribute ..21
8.3 Examples ...23
8.4 Memory model ..23

9. Cancel-and-throw statement ... 24

9.1 The outer attribute on cancel-and-throw statements..25
9.2 Examples ...25

10. Inheritance and compatibility rules for attributes ... 27

11. Class attributes ... 28

Appendix A. Grammar ... 29

Appendix B. Feature dependences.. 30

Appendix C. Extensions ... 33

Appendix D. Changes compared to version 1.0 ... 35

 5

1. Overview 1

This specification introduces transactional language constructs for C++, which are intended to 2
make concurrent programming easier by allowing programmers to express compound statements 3
that do not interact with other threads, without specifying the synchronization that is required to 4
achieve this. We briefly describe the features introduced in this specification below. 5
 6
This specification builds on the C++11 specification. As such, the constructs described in this 7
specification have well-defined behavior only for programs with no data races. This specification 8
specifies how the transactional constructs contribute to determining whether a program has a 9
data race (Section 2.1). 10
 11
The __transaction_relaxed keyword (Section 3) can be used to indicate that a compound 12
statement should execute as a relaxed transaction; that is, the compound statement does not 13
observe changes made by other transactions during its execution, and other transactions do not 14
observe its partial results before it completes. Relaxed transactions may contain arbitrary non-15
transactional code and thus provide interoperability with existing forms of synchronization. 16
Relaxed transactions, however, may appear to interleave with non-transactional actions of other 17
threads. 18
 19
To enforce a more strict degree of transaction isolation, we introduce atomic transactions 20
represented by the __transaction_atomic keyword (Section 4). An atomic transaction 21
executes a single indivisible statement; that is, it does not observe changes made by other 22
threads during its execution, and other threads do not observe its partial results before it 23
completes. Furthermore, the atomic transaction statement takes effect in its entirety if it takes 24
effect at all. 25
 26
Two additional syntactic features allow the programmer to specify expressions (Section 5) and 27
functions (Section 6) that should execute as relaxed or atomic transactions. 28
 29
To make the atomic transaction behavior possible, the compiler enforces a restriction that an 30
atomic transaction must contain only “safe” statements (Section 4.2), and functions called within 31
atomic transactions must contain only safe statements; such functions – and pointers to such 32
functions – must generally be declared with the transaction_safe attribute. Under certain 33
circumstances, however, functions can be inferred to be safe, even if not annotated as such 34
(Section 3.2). This is particularly useful for allowing the use of template functions in atomic 35
transactions. Functions may be annotated with the transaction_unsafe attribute to prevent 36
them from being inferred as transaction_safe. This is useful to prevent a function from being 37
used in an atomic transaction if it is expected that the function may not always be safe in the 38
future. The attributes on a virtual function must be compatible with the attributes of any base 39
class virtual function that it overrides (Section 10). To minimize the burden of specifying function 40
attributes on member functions, class definitions can be annotated with default attributes for all 41
member functions, and these defaults can be overridden (Section 11). 42
 43
An atomic transaction statement can be cancelled using the __transaction_cancel 44
statement (Section 8), so that it has no effect. Cancellation avoids the need to write cleanup code 45
to undo the partial effects of an atomic transaction statement, for example, on an error or 46
unexpected condition. A programmer can throw an exception from the cancelled transaction 47
statement by combining the cancel statement with a throw statement to form a cancel-and-throw 48
statement (Section 9). 49
 50
Atomic transactions can be nested, but a programmer can prohibit a transaction statement from 51
being nested by marking it as an outermost atomic transaction using the outer attribute (Section 52
4.1). A cancel or a cancel-and-throw statement can be annotated with the outer attribute to 53

 6

indicate that the outermost atomic transaction should be cancelled (Sections 8.1 and 9.1). Such 1
cancel and cancel-and-throw statements can execute only within the dynamic extent of a 2
transaction statement with the outer attribute. The transaction_may_cancel_outer 3
attribute for functions and function pointers facilitates compile-time enforcement of this rule. 4
 5
If an exception escapes from an atomic transaction statement without it being explicitly cancelled, 6
the atomic transaction takes effect. Programmers can guard against subtle bugs caused by 7
exceptions escaping a transaction statement unexpectedly by using noexcept specifications 8
(Section 7) to specify if exceptions are (or are not) expected to be thrown from within an atomic 9
transaction. A runtime error occurs, which leads to program termination, if an exception escapes 10
the scope of an atomic transaction that has a noexcept specification specifying no exceptions 11
may escape its scope. 12
 13
Appendix A includes a grammar for the new features. Appendix B discusses dependencies 14
between features, to assist implementers who might be considering implementing subsets of the 15
features described in this document or enabling features in different orders. Appendix C 16
discusses several possible extensions to the features presented in this specification. Appendix D 17
describes changes compared to the previous version of the specification. 18

2. Transaction statement 19

The __transaction_relaxed or the __transaction_atomic keyword followed by a 20
compound statement defines a transaction statement, that is, a statement that executes as a 21
transaction: 22
 23
__transaction_relaxed compound-statement 24
__transaction_atomic compound-statement 25
 26
In a data-race-free program (Section 2.1), all transactions appear to execute sequentially in some 27
total order. This means that transactions execute in isolation from other transactions; that is, the 28
individual operations of a transaction appear not to interleave with individual operations of 29
another transaction. 30
 31
[Note: Although transactions behave as if they execute in some serial order, an implementation 32
(i.e., compiler, runtime, and hardware) is free to execute transactions concurrently while providing 33
the illusion of serial ordering.] 34
 35
A transaction statement defined by the __transaction_relaxed keyword specifies a relaxed 36
transaction (Section 3). A transaction statement defined by the __transaction_atomic 37
keyword specifies an atomic transaction (Section 4). Relaxed transactions have no restrictions on 38
the kind of operations they may contain, but provide only basic isolation guarantee of all 39
transactions – they appear to execute sequentially with respect to other transactions (both 40
relaxed and atomic). Relaxed transactions may appear to interleave with non-transactional 41
operations of another thread. Atomic transactions provide a stronger isolation guarantee; that is, 42
they do not appear to interleave with any operations of other threads. Atomic transactions, 43
however, may contain only “safe” code (Section 4.2). 44
 45
A goto or switch statement must not be used to transfer control into a transaction statement. A 46
goto, break, return, or continue statement may be used to transfer control out of a 47
transaction statement. When this happens, each variable declared in the transaction statement 48
will be destroyed in the context that directly contains its declaration. 49
 50
The body of a transaction statement may throw an exception that is not handled inside its body 51
and thus propagates out of the transaction statement (Section 7). 52

 7

2.1 Memory model 1

Transactions impose ordering constraints on the execution of the program. In this regard, they act 2
as synchronization operations similar to the synchronization mechanisms defined in the C++11 3
standard (i.e., locks and C++11 atomic variables). The C++11 standard defines the rules that 4
determine what values can be seen by the reads in a multi-threaded program. Transactions affect 5
these rules by introducing additional ordering constraints between operations of different threads. 6
 7
[Brief overview of C++11 memory model: 8
 9
An execution of a program consists of the execution of all of its threads. The operations of each thread are 10
ordered by the “sequenced before” relationship that is consistent with each thread’s single-threaded 11
semantics. The C++11 library defines a number of operations that are specifically identified as 12
synchronization operations. Synchronization operations include operations on locks and certain atomic 13
operations (that is, operations on C++11 atomic variables). In addition, there are 14
memory_order_relaxed atomic operations that are not synchronization operations. Certain 15
synchronization operations synchronize with other synchronization operations performed by another thread. 16
(For example, a lock release synchronizes with the next lock acquire on the same lock.) 17
 18
The “sequenced before” and “synchronizes with” relationships contribute to the “happens before” 19
relationship. The “happens-before” relationship is defined by the following rules: 20

1. If an operation A is sequenced before an operation B then A happens before B. 21
2. If an operation A synchronizes with an operation B then A happens before B. 22
3. If there exists an operation B such that an operation A happens before B and B happens before an 23

operation C then A happens before C. 24
(In the presence of memory_order_consume atomic operations the definition of the “happens-before” 25
relationship is more complicated. The “happens-before” relationship is no longer transitive. These 26
additional complexities, however, are orthogonal to this specification and are beyond the scope of a brief 27
overview.) The implementation must ensure that no program execution demonstrates a cycle in the 28
“happens before” relation. 29
 30
Two operations conflict if one of them modifies a memory location and the other one accesses or modifies 31
the same memory location. The execution of a program contains a data race if it contains two conflicting 32
operations in different threads, at least one of which is not an atomic operation, and neither happens before 33
the other. Any such data race results in undefined behavior. A program is data-race-free if none of its 34
executions contains a data race. In a data-race-free program each read from a non-atomic memory location 35
sees the value written by the last write ordered before it by the “happens-before” relationship. It follows 36
that a data-race-free program that uses no atomic operations with memory ordering other than the default 37
memory_order_seq_cst behaves according to one of its sequentially consistent executions.] 38
 39
Outermost transactions (that is, transactions that are not dynamically nested within other 40
transactions) appear to execute sequentially in some total global order that contributes to the 41
“synchronizes with” relationship. Conceptually, every outermost transaction is associated with 42
StartTransaction and EndTransaction operations, which mark the beginning and end of the 43
transaction.

1
 A StartTransaction operation is sequenced before all other operations of its 44

transaction. All operations of a transaction are sequenced before its EndTransaction operation. 45
Given a transaction T, any operation that is not part of T and is sequenced before some operation 46
of T is sequenced before T’s StartTransaction operation. Given a transaction T, T’s 47
EndTransaction operation is sequenced before any operation A that is not part of T and has an 48
operation in T that is sequenced before A. 49
 50
There exists a total order over all StartTransaction and EndTransaction operations called the 51
transaction order, which is consistent with the “sequenced-before” relationship. In this order, 52

1
 We introduce these operations purely for the purpose of describing how transactions contribute to the

“synchronizes with” relationship.

 8

transactions do not interleave; that is, no StartTransaction or EndTransaction operation executed 1
by one thread may occur between a matching pair of StartTransaction and EndTransaction 2
operations executed by another thread. 3
 4
The transaction order contributes to the “synchronizes with” relationship defined in the C++11 5
standard. In particular, each EndTransaction operation synchronizes with the next 6
StartTransaction operation in the transaction order executed by a different thread. 7
 8
[Note: The definition of the “synchronizes with” relation affects all other parts of the memory 9
model, including the definition of the “happens before” relationship, visibility rules that specify 10
what values can be seen by the reads, and the definition of data race freedom. Consequently, 11
including transactions in the “synchronizes with” relation is the only change to the memory model 12
that is necessary to account for transaction statements. With this extension, the C++11 memory 13
model fully describes the behavior of programs with transaction statements.] 14
 15
[Note: A shared memory access can form a data race even if it is performed in a transaction 16
statement. In the following example, a write by thread T2 forms a data race with both read and 17
write to x by Thread T1 because it is not ordered with the operations of Thread T1 by the 18
“happens-before” relationship. To avoid a data race in this example, a programmer should 19
enclose the write to x in Thread T2 in a transaction statement. 20
 21
Thread T1 Thread T2
__transaction_relaxed {

 t = x;

 x = t+1;

}

x = 1;

 22
] 23
 24
[Note: The C++11 memory model has consequences for compiler optimizations. Sequentially 25
valid source-to-source compiler transformations that transform only code between 26
synchronization operations (which include StartTransaction and EndTransaction operations), and 27
which do not introduce data races, remain valid. Source-to-source compiler transformations that 28
introduce data races (e.g., hoisting load operations outside of a transaction) may be invalid 29
depending on a particular implementation of this specification.] 30
 31

3. Relaxed transactions 32

A transaction statement that uses the __transaction_relaxed keyword defines a relaxed 33
transaction. We call such a statement a relaxed transaction statement: 34
 35
__transaction_relaxed compound-statement 36
 37
A relaxed transaction is a compound statement that executes without observing changes made 38
by other transactions during its execution. Furthermore, other threads’ transactions do not 39
observe partial results of concurrently executing transactions. Programmers can think of a 40
relaxed transaction statement as a sequence of operations that do not interleave with the 41
operations of other transactions, which simplifies reasoning about the interaction of concurrently 42
executing transactions of different threads. 43
 44
Relaxed transactions have no restrictions on the kind of operations that can be placed inside of 45
them and, thus allow any non-transactional code to be wrapped in a transaction. This makes 46
relaxed transactions flexible with regard to their usability, thereby allowing them to communicate 47
with other threads and the external world (e.g., via locks, C++11 atomic variables, volatile 48
variables or I/O) while still isolating them from other transactions. However, relaxed transactions 49

 9

that contain such external world operations are not guaranteed isolation, even in data-race-free 1
programs. Other threads that communicate with a transaction can observe partial results of the 2
transaction, and the transaction can observe actions of other threads during its execution. 3
 4
The following example illustrates a data-race-free program in which a relaxed transaction 5
synchronizes with another thread via access to a C++11 atomic variable: Note that accesses to 6
variable x in Thread 1 do not form data races with accesses to x in Thread 2 because operations 7
on C++11 atomic variables cannot create a data race: 8
 9

Initially atomic<int> x = 0;

Thread T1 Thread T2
__transaction_relaxed {

 x = 1;

 while (x != 0) {}

}

while (x != 1) {}

x = 0;

 10
Relaxed transactions appear to interleave with non-transactional actions of other threads only 11
when they perform non-transactional forms of synchronization, such as operations on locks or 12
C++11 atomic variables. Transactions that do not execute such actions appear to execute 13
atomically, that is, as single indivisible operations. 14
 15
Relaxed transactions may execute operations with side effects that the system cannot roll back. 16
We refer to such operations as irrevocable actions. For example, communicating partial results of 17
a relaxed transaction to either the external world via an I/O operation or to other threads via a 18
synchronization operation (such as a lock release or a write to a C++11 atomic variable) may 19
constitute an irrevocable action because the system may not be able to roll back the effects that 20
this communication had on the external world or other threads. For this reason, relaxed 21
transactions cannot be cancelled (Section 8). Irrevocable actions may limit the concurrency in an 22
implementation; for example, they may cause the implementation to not execute relaxed 23
transactions concurrently with other transactions. 24

3.1 The transaction_callable function attribute 25

The transaction_callable attribute indicates that a function (including virtual functions and 26
template functions) is intended to be called within a relaxed transaction. The 27
transaction_callable attribute is intended for use by an implementation to improve the 28
performance of relaxed transactions; for example, an implementation can generate a specialized 29
version of a transaction_callable function, and execute that version when the function is 30
called inside a relaxed transaction. Annotating a function with the transaction_callable 31
attribute does not change the semantics of a program. In particular, a function need not be 32
declared with the transaction_callable attribute to be called inside a relaxed transaction. 33
Declaring a function with the transaction_callable attribute does not prevent the function 34
from being called outside a relaxed transaction. 35
 36
The transaction_callable attribute specifies a property of a specific function, not its type. It 37
cannot be associated with pointers to functions, and may not be used in a typedef declaration. 38
 39
A function declared with the transaction_callable attribute must not be re-declared without 40
that attribute. A function declared without the transaction_callable attribute must not be re-41
declared with the transaction_callable attribute. See Section 10 for rules and restrictions 42
on overriding virtual functions declared with the transaction_callable attribute. 43

 10

3.2 Nesting 1

Relaxed transactions may be nested within other relaxed transactions. 2
 3
// Starting value: x = 0, y = 0 4
int x = 0, y = 0; 5
__transaction_relaxed 6
{ 7
 __transaction_relaxed 8
 { 9
 ++x; 10
 } 11
 ++y; 12
} 13
// Final value: x = 1, y = 1 14
 15

3.3 Examples 16

 17
The following example demonstrates the implementation of a swap operation using relaxed 18
transactions. Note that Thread T2 cannot see the intermediate state where x == y from Thread T1. 19
 20

int x = 1, y = 2;

Thread T1 Thread T2
__transaction_relaxed {

 int tmp = x;

 x = y;

 y = tmp;

}

int tmpX = 0, tmpY = 0;

__transaction_relaxed {

 tmpX = x;

 tmpY = y;

}

assert(tmpX != tmpY);

 21
The following example demonstrates how I/O can be used within relaxed transactions. The two 22
output operations will not be interleaved between the relaxed transactions. 23
 24
 25

Output: “Hello World.Hello World.”

Thread T1 Thread T2
__transaction_relaxed {

 std:cout << “Hello World.”;

}

__transaction_relaxed {

 std:cout << “Hello World.”;

}

 26

4. Atomic transactions 27

A transaction statement that uses the __transaction_atomic keyword defines an atomic 28
transaction. We call such a statement an atomic transaction statement: 29
 30
__transaction_atomic compound-statement 31
 32
In a data-race-free program, an atomic transaction appears to execute atomically; that is, the 33
compound statement appears to execute as a single indivisible operation whose operations do 34
not interleave with the operations of other threads (Section 4.5). In this setting, atomic 35
transactions allow a programmer to write code fragments that execute in isolation from other 36
threads. The transactions do not observe changes made by other threads during their execution, 37
and other threads do not observe partial results of the transactions. 38

 11

 1
An atomic transaction executes in an all-or-nothing fashion: it can be explicitly cancelled so that 2
its operations have no effect (Section 8). 3
 4
These properties make it easier to reason about the interaction of atomic transactions and the 5
actions of other threads when compared to other synchronization mechanisms such as mutual 6
exclusion. 7
 8
To ensure that these guarantees can be made, atomic transactions are statically restricted to 9
contain only “safe” code (Section 4.2). This ensures that an atomic transaction cannot execute 10
code that would have visible side effects before the atomic transaction completes, such as 11
performing certain synchronization and I/O operations. These same restrictions support the ability 12
to cancel an atomic transaction explicitly by executing a cancel statement (Section 8), because 13
they ensure that no visible side effects occur during the execution of the atomic transaction, and 14
thus it is possible to roll back all changes made by an atomic transaction at any point during its 15
execution. 16

4.1 Outer atomic transactions 17

A transaction statement annotated with the outer attribute defines an outer atomic transaction: 18
 19
__transaction_atomic [[outer]] compound-statement 20
 21
An outer atomic transaction is an atomic transaction that must not be nested lexically or 22
dynamically within another atomic transaction. Thus, an outer atomic transaction must not 23
appear within an atomic transaction or within the body of a function that might be called inside an 24
atomic transaction (see Section 8.2) for details about how this is enforced). 25
 26
Outer atomic transactions enable the use of the cancel-outer statement (Section 8.1), which can 27
be executed only within the dynamic extent of an outer atomic transaction. 28

4.2 The transaction_safe and the transaction_unsafe 29

attributes 30

To ensure that atomic transactions can be executed atomically, certain statements must not be 31
executed within atomic transactions; we call such statements unsafe. (A statement is safe if it is 32
not unsafe.) Because this restriction applies to the dynamic extent of atomic transactions, it must 33
also apply to functions called within atomic transactions. To enable this restriction to be enforced, 34
we distinguish between transaction-safe and transaction-unsafe function types. (There are also 35
may-cancel-outer function types, as described in Section 8.2.) 36
 37
Function declarations (including virtual and template function declarations), declarations of 38
function pointers, and typedef declarations involving function pointers may specify 39
transaction_safe or transaction_unsafe attributes. A function declared with the 40
transaction_safe attribute has a transaction-safe type, and may be called within the dynamic 41
extent of an atomic transaction. The transaction_unsafe attribute specifies a transaction-42
unsafe type. A transaction-safe type might also be specified by implicitly declaring a function safe, 43
as described further in this section. 44
 45
We sometimes abbreviate the statement that a function has transaction-safe or transaction-46
unsafe type by stating simply that the function is transaction-safe or transaction-unsafe, 47
respectively. 48
 49
A function type must not be both transaction-safe and transaction-unsafe. That is, function 50
declarations, function pointer declarations, or typedef declarations for function pointer types 51

 12

must not specify both the transaction_safe and the transaction_unsafe attributes. If 1
any declaration of such an entity specifies the transaction_safe attribute then every such 2
declaration (except a function definition, if it is not a virtual function) must specify the 3
transaction_safe attribute. A function declaration that specifies the 4
transaction_callable attribute may also specify the transaction_safe or the 5
transaction_unsafe attribute. 6
 7
[Note: A function declared in multiple compilation units must have the same type in all of these 8
compilation units. For example, a function that has a transaction-safe type in one compilation unit 9
must be declared to have such a type in all compilation units where it is declared.] 10
 11
Pointers to transaction-safe functions are implicitly convertible to pointers to the corresponding 12
transaction-unsafe functions. Such conversions are treated as identity conversions for purposes 13
of overload resolution, i.e., they have no effect on the ranking of conversion sequences. There is 14
no conversion from transaction-unsafe function pointers to transaction-safe function pointers. 15
 16
The transaction_safe and transaction_unsafe attributes specify properties of the type of 17
the declared object, or of a type declared using typedef. Although such properties are ignored 18
for overload resolution, they are part of the type and propagated as such. For example: 19
 20
 auto f = []()[[transaction_safe]] { g(); } 21
 22
declares f() to be transaction-safe. 23
 24
An atomic transaction or a body of a function declared with the transaction_safe attribute 25
must not contain calls to transaction-unsafe functions and other unsafe statements, defined 26
precisely below. This ensures that such statements are not executed within the dynamic extent of 27
an atomic transaction. 28
 29
A statement is unsafe if any of the following applies: 30
 31

1. It is a relaxed transaction statement. 32
2. It is an atomic transaction statement annotated with the outer attribute (that is, it is an 33

outer atomic transaction). 34
3. It contains an initialization of, assignment to, or a read from a volatile object. 35
4. It is an unsafe asm declaration; the definition of the unsafe asm declaration is 36

implementation-defined. 37
5. It contains a function call to a function not known to have a transaction-safe or may-38

cancel-outer (Section 8.2) function type. 39
 40
[Note: A relaxed transaction is unsafe because it may contain unsafe statements (Section 3). An 41
outer atomic transaction is unsafe because it cannot be nested within another atomic transaction. 42
A statement that contains an initialization of, assignment to, or a read from a volatile object is 43
unsafe because a value of a volatile object may be changed by means undetectable to an 44
implementation. The definition of the unsafe asm declaration is implementation-defined because 45
the meaning of the asm declaration is implementation-defined.] 46
 47
Although built-in operators are safe, they may be overloaded with user-defined operators, which 48
result in function calls. Thus, applications of these operators may be safe or unsafe, as 49
determined by the rules defined in this section. (For example, although the built-in new and 50
delete operators are safe, user-defined new and delete operators may be unsafe. Atomic 51
operations defined by the standard library are unsafe.) 52
 53
A function definition implicitly declares a function safe, that is, declares its type to be transaction-54
safe, if the function is not a virtual function, its body contains only safe statements, and neither 55

 13

the definition nor any prior declaration of the function specifies any of the 1
transaction_unsafe, transaction_safe, or transaction_may_cancel_outer 2
(section 8.2) attributes. (If the definition or a prior declaration specifies the transaction_safe 3
attribute, the function is of transaction-safe type, but the definition does not implicitly declare the 4
function safe.) If the definition of a function implicitly declares it safe then no declaration of that 5
function may specify the transaction_unsafe attribute. Note that a recursive function that 6
directly calls itself is never implicitly declared safe. It may, however, explicitly specify a 7
transaction_safe attribute. 8
 9
A function template that does not specify any of the transaction_safe, 10
transaction_unsafe, or transaction_may_cancel_outer attributes may define a 11
template function that may or may not be implicitly declared safe, depending on whether the body 12
of the template function contains unsafe statements after instantiation. (This feature is especially 13
useful for template libraries, because it allows the use of template library functions within atomic 14
transactions when they are instantiated to contain only safe statements, without requiring these 15
template library functions to be always instantiated to contain only safe statements.) See Section 16
4.3 for an example of such a function template. 17
 18
See Section 10 for rules and restrictions on overriding virtual functions declared with the 19
transaction_safe attribute. 20
 21
When a function pointer of transaction-safe type is assigned or initialized with a value, the 22
initializing or right-hand-side expression must also have transaction-safe type. Furthermore, the 23
transaction safety properties of function pointer parameter types must match exactly. In particular, 24
the type of a function pointer parameter appearing in the type of the target pointer should be 25
transaction-safe if and only if the corresponding parameter type in the initializing or right-hand-26
side expression is. 27
 28
[Note: An implementation may provide additional mechanisms that make statements safe. Such 29
mechanisms might be necessary to implement system libraries that execute efficiently inside 30
atomic transactions. Such mechanisms are intended for system library developers and are not 31
part of this specification.] 32
 33
The creation (destruction) of an object implicitly invokes a constructor (destructor) function if the 34
object is of a class type that defines a constructor (destructor). The constructor and destructor 35
functions of a class must therefore have transaction-safe or may-cancel-outer type if the 36
programmer intends to allow creation or destruction of objects of that class type inside atomic 37
transactions. In the absence of appropriate programmer-defined constructors (destructors), the 38
creation (destruction) of an object may implicitly invoke a compiler-generated constructor 39
(destructor). A compiler-generated constructor (destructor) for a class has a transaction-safe type 40
if the corresponding constructors (destructors) of all the direct base classes and the 41
corresponding constructors (destructors) of all the non-static data members of the class have 42
transaction-safe type. A compiler-generated constructor (destructor) for a class that is not derived 43
from any other class and has no non-static members of class type always has transaction-safe 44
type. 45
 46
The assignment to an object invokes a compiler-generated assignment operator if the object 47
belongs to a class that does not define an assignment operator. A compiler-generated 48
assignment operator for a class has transaction-safe type if the corresponding assignment 49
operators for all the direct base classes and the corresponding assignment operators for all the 50
non-static data members of the class have transaction-safe type. 51
 52
[Note: The transaction_safe attribute on function and function pointer declarations allows the 53
compiler to ensure that functions whose bodies contain unsafe statements are not called inside 54
atomic transactions. Any function with external linkage that the programmer intends to be called 55

 14

inside atomic transactions in other translation units must be declared with the 1
transaction_safe attribute. To allow client code to use libraries inside atomic transactions, 2
library developers should identify functions with external linkage that are known and intended to 3
contain only safe statements and annotate their declarations in header files with the 4
transaction_safe attribute. Similarly, library developers should use the 5
transaction_unsafe attribute on functions known or intended to contain unsafe statements. 6
The transaction_unsafe attribute specifies explicitly in a function’s interface that the function 7
may contain unsafe actions and prevents a function from being implicitly declared safe so that 8
future implementations of that function can contain unsafe statements. When annotating a 9
function with the transaction_unsafe attribute, library developers should specify this attribute 10
on both a function declaration and its definition when the declaration and the definition are 11
located in separate header files. This enables client code to include such header files in an 12
arbitrary order.] 13
 14
[Note: Library users should not circumvent the restrictions imposed by the library interface by 15
merely modifying transaction-related attributes in the library header files. Similar to other changes 16
to a function declaration (such as changing a function return type or type of a function argument), 17
adding, removing or modifying a transaction-related attribute requires re-compilation. Modifying 18
transaction-related attributes in library header files without re-compiling the library may result in 19
undefined behavior.] 20
 21
The header files for the C++ standard library should be modified to specify the annotations for the 22
library functions consistent with the safety properties of those functions. Synchronization (that is, 23
operations on locks and C++11 atomic operations) and certain I/O functions in the C++ standard 24
library should not be declared to have transaction-safe type, as such actions could break 25
atomicity of a transaction, that is, appear to interleave with actions of other threads, under the 26
memory model rules specified in this document (Section 4.5).

2
 27

4.3 Examples 28

The following example shows a function declared transaction-safe via the transaction_safe 29
attribute: 30
 31
[[transaction_safe]] void f(); 32
 33
The following example shows a function implicitly declared safe by its definition: 34
 35
int x; 36
void g() 37
{ 38
 ++x; // body containing only safe statements 39
} 40
// g() is implicitly declared safe after this point 41
 42
An atomic transaction can contain calls to functions declared transaction-safe either implicitly or 43
by using an attribute, as illustrated by the following example: 44
 45
void test() 46
{ 47
 __transaction_atomic { 48
 f(); // OK because f() is declared transaction-safe using 49

 // the transaction_safe attribute 50

2
 We are currently investigating ways to partially overcome this limitation.

 15

 g(); // OK because g() is implicitly declared safe 1
 } 2
} 3
 4
The following example illustrates combinations of declarations: 5
 6
void f(); // first declaration of f 7
void f() { ++w; } // OK, definition of f implicitly declares it transaction-safe 8
void f(); // OK, f is still declared transaction-safe 9
 10
[[transaction_safe]] void g(); // first declaration of g 11
void g() { ++x;} // OK: transaction_safe attribute optional on definition 12
void g(); // Error: prior declaration has transaction_safe attribute 13
 14
void h(); // first declaration of h 15
[[transaction_safe]] void h() {…} // Error: prior declaration has no 16
 // transaction_safe attribute 17
 18
void k() { ++y;} // OK, first declaration of k is a definition that implicitly declares it safe 19
[[transaction_unsafe]] void k(); // Error: previous declaration of k 20
 // implicitly declared it safe 21
 22
[[transaction_unsafe]] void l(); // first declaration of l 23
void l() { ++z;}; // OK, this definition does not implicitly declare k safe because of 24
 // a prior declaration with the transaction_unsafe attribute 25
 26
void m(); // first declaration of m 27
[[transaction_unsafe]] void m(); // OK, first declaration of m 28
 // did not declare it transaction-safe 29
 30
The following example illustrates transaction-safe function pointers: 31
 32
[[transaction_safe]] void (*p1)(); 33
void (*p2)(); 34
void foo(); 35
 36
p2 = p1; // OK 37
p2 = f; // OK 38
p1 = p2; // Error: p2 is not transaction-safe 39
p1 = foo; // Error: foo is not transaction-safe 40
 41
A programmer may instantiate function templates not declared with transaction-related attributes 42
to form either transaction-safe or transaction-unsafe template functions, as shown in the following 43
example: 44
 45
template<class Op> 46
void t(int& x, Op f) { // Transaction-safety properties of t are not known at this point 47
 x++; f(x); 48
} 49
 50
class A1 { 51
public: 52
 // A1::() is declared transaction-safe 53
 [[transaction_safe]] void operator()(int& x); 54

 16

}; 1
 2
class A2 { 3
public: 4
 // A2::() is declared transaction-unsafe 5
 [[transaction_unsafe]] void operator()(int& x); 6
}; 7
 8
void n(int v) { 9
 __transaction_atomic { 10
 t(v, A1()); // OK, call to t<A1> is safe 11
 t(v, A2()); // Error, call to t<A2> is unsafe 12
 } 13
} 14
 15
The following example illustrates using template functions with function pointer or lambda 16
expression arguments: 17
 18
[[transaction_safe]] void (*p1) (int&); 19
void (*p2) (int&); 20
[[transaction_unsafe]] void u(); 21
 22
void n(int v) { 23
 int total = 0; 24
 __transaction_atomic { 25
 t(v, p1); // OK, the call is safe 26
 t(v, [&](int x) {total += x;}); // OK, the call is safe 27
 t(v, p2); // Error, the call is unsafe 28
 t(v, [&](int x) {u();}); // Error, the call is unsafe 29
 } 30
} 31

4.4 Nesting 32

Atomic transactions except outer atomic transactions are safe statements and thus may be 33
nested lexically (i.e., an atomic transaction may contain another atomic transaction) or 34
dynamically (i.e., an atomic transaction may call a function that contains an atomic transaction). 35
 36
The following example shows an atomic transaction lexically nested within another atomic 37
transaction: 38
 39
__transaction_atomic { 40
 x++; 41
 __transaction_atomic { 42
 y++; 43
 } 44
 z++; 45
} 46
 47
The following example shows an atomic transaction dynamically nested within another atomic 48
transaction: 49
 50
[[transaction_safe]] void bar() 51
{ 52
 __transaction_atomic { x++; } 53
} 54

 17

 1
__transaction_atomic { 2
 bar(); 3
} 4
 5
Atomic transactions may be nested within relaxed transactions. Relaxed transactions must not be 6
nested within atomic transactions (Section 4.2). 7

4.5 Memory model 8

The memory model rules for transactions (Section 2.1) are sufficient to guarantee that in data-9
race-free programs, atomic transactions appear to execute as single indivisible operations. This is 10
ensured by restricting atomic transactions so that they do not contain other forms of 11
synchronization, such as, operations on locks or C++11 atomic operations (Section 4.2). 12
Consequently, an operation executed by one thread cannot be ordered by the “happens-before” 13
relationship between the StartTransaction and EndTransaction operations of an atomic 14
transaction by another thread, and thus cannot appear to interleave with operations of an atomic 15
transaction executed by another thread. 16

5. Transaction expressions 17

The __transaction_relaxed or __transaction_atomic keyword followed by a 18
parenthesized expression defines a transaction expression. Unlike a transaction statement, a 19
transaction expression defined by the __transaction_atomic keyword must not be annotated 20
with the outer attribute: 21
 22
 __transaction_relaxed (expression) 23
 __transaction_atomic (expression) 24
 25
A transaction expression of type T is evaluated as if it appeared as a right-hand side of an 26
assignment operator inside a transaction statement: 27
 28
 __transaction_atomic { T temp = expression ;} 29
 30
The value of the transaction expression is the value of a variable temp in the left-hand side of the 31
assignment operator. If T is a class type, then variable temp is treated as a temporary object. 32
 33
A transaction expression can be used to evaluate an expression in a transaction. This is 34
especially useful for initializers, as illustrated by the following example: 35
 36
 SomeObj myObj = __transaction_atomic (expr); // calls copy constructor 37
 38
In this example a transaction expression is used to evaluate an argument of a copy constructor in 39
a transaction. This example cannot be expressed using just transaction statements because 40
enclosing the assignment statement in a transaction statement would restrict the scope of the 41
myObj declaration. 42
 43
[Note: A transaction expression on an initializer applies only to evaluating the initializer. The 44
initialization (for example, executing a copy constructor) is performed outside of a transaction. 45
Transaction expressions and statements thus do not allow a programmer to specify that the 46
initialization statement should be executed inside a transaction without restricting the scope of the 47
initialized object.] 48
 49
A transaction expression cannot contain a transaction statement, a cancel statement (Section 8) 50
or a cancel-and-throw statement (Section 9) since the C++ standard does not allow expressions 51
to contain statements. 52

 18

 1
Implementations that support statement-expressions could syntactically allow a cancel statement 2
or a cancel-and-throw statement to appear within a transaction expression. However, a cancel or 3
cancel-and-throw statement must not appear inside a transaction expression unless the cancel or 4
cancel-and-throw statement is either annotated with the outer attribute or is lexically enclosed 5
within an atomic transaction statement that is lexically enclosed within that transaction expression. 6

6. Function transaction blocks 7

The function transaction block syntax specifies that a function’s body – and, in the case of 8
constructors, all member and base class initializers – execute inside a transaction; for example: 9
 10
void f() __transaction_relaxed { 11
 // body of f() executes in an relaxed transaction 12
} 13
 14
void g() __transaction_atomic { 15
 // body of g() executes in a atomic transaction 16
} 17
 18
Like a transaction expression, a function transaction block may not be annotated the outer 19
attribute. 20
 21
A function transaction block on a constructor causes the constructor body and all member and 22
base class initializers of that constructor to execute inside a transaction. The function transaction 23
block syntax thus allows programmers to include member and base class initializers in 24
constructors in a transaction. In the following example, the constructor Derived() and its 25
initializers all execute atomically: 26
 27
class Base { 28
public: 29
 Base(int id) : id_(id) {} 30
private: 31
 const int id_; 32
}; 33
 34
class Derived : public Base { 35
public: 36
 Derived() __transaction_atomic : Base(count++) { … } 37
private: 38
 static int count = 0; 39
}; 40
 41
This example shows a common pattern in which each newly allocated object is assigned an id 42
from a global count of allocated elements. This example cannot be expressed using just 43
transaction statements: the static field count is shared so it must be incremented inside some 44
form of synchronization, such as an atomic transaction, to avoid data races. But the field id_ is a 45
const member of the base class and can be initialized only inside the base class constructor, 46
which in turn can be initialized only via a member initializer list in the derived class. 47
 48
A function transaction block can be combined with the function try block syntax. If the 49
__transaction_atomic or the __transaction_relaxed keyword appears before the try 50
keyword, the catch block is part of the function transaction block. If the transaction keyword 51
appears after the try keyword, the catch block is not part of the function transaction block: 52
 53

 19

Derived::Derived() 1
try __transaction_atomic : Base(count++) {} 2
catch (...) {} // catch is not part of transaction 3
 4
Derived::Derived() 5
__transaction_atomic try : Base(count++) { … } 6
catch (...) {} // catch is part of transaction 7
 8
[Note: A function with a function transaction block may be declared with a transaction-related 9
attribute (i.e., transaction_safe, transaction_unsafe, transaction_callable, or 10
transaction_may_cancel_outer (Section 8.2)). The legality of such combinations is 11
governed by general rules of this specification. For example, the following code is erroneous, as a 12
relaxed function transaction block (unsafe statement) cannot occur in a function declared with the 13
transaction_safe attribute: 14
 15
// error: a relaxed transaction is never transaction-safe 16
[[transaction_safe]] void f() __transaction_relaxed { … } 17
] 18
 19
Unlike a transaction statement, a function transaction block may contain a cancel statement only 20
if that cancel statement is annotated with the outer attribute or is enclosed by an atomic 21
statement nested inside the function transaction block (Section 8). A function transaction block 22
may contain a cancel-and-throw statement (Section 9). 23

7. Noexcept specification
3
 24

The body of a transaction statement (expression) may throw an exception that is not handled 25
inside its body and thus propagates out of the transaction statement (expression). 26
 27
Transaction statements and expressions may have noexcept specifications that explicitly state if 28
exceptions may or may not be thrown by the statement: 29
 30
__transaction_atomic noexcept [(constant-expression)] compound-statement 31
__transaction_atomic noexcept [(constant-expression)] (expression) 32
 33
__transaction_relaxed noexcept [(constant-expression)] compound-statement 34
__transaction_relaxed noexcept [(constant-expression)] (expression) 35
 36
Transaction statements and expressions that use noexcept specifications may be annotated with 37
an attribute, which should appear between the __transaction_atomic or 38
__transaction_relaxed keyword and the noexcept operator, as illustrated by the following 39
example: 40
 41
__transaction_atomic [[outer]] noexcept 42

[(constant-expression)] compound-statement 43
 44
The noexcept clause without a constant-expression or with a constant-expression that evaluates 45
to true indicates that a transaction statement (expression) must not throw an exception that 46
escapes the scope of the transaction statement (expression). Throwing an exception that 47

3
 Previous versions of this specification included rules that enabled the use of exception specifications with

transactions statements. Because C++11 has deprecated exception specifications, we have since removed

them and replaced them with noexcept specifications, which are new to C++11. With this change, a

transaction statement may now only specify that no exceptions can escape its scope or all can.

 20

escapes the scope of the transaction statement in this case results in a call to 1
std::terminate(). 2
 3
The following example declares a transaction statement that does not allow an exception to 4
propagate outside of its scope: 5
 6
__transaction_atomic noexcept (true) compound-statement 7
__transaction_atomic noexcept compound-statement 8
 9
A transaction statement (expression) that does not include a noexcept specification or includes a 10
noexcept specification that has a constant-expression that evaluates to false may throw an 11
exception that escapes the scope of the transaction statement (expression). 12
 13
The following example declares a transaction statement that allows an exception to propagate 14
outside of its scope: 15
 16
__transaction_atomic noexcept(false) compound-statement 17
__transaction_atomic compound-statement 18
 19
[Note: Omitting a noexcept specification on a transaction statement (expression) that may throw 20
an exception makes it easy to overlook the possibility that an exception thrown from within the 21
dynamic extent of that statement (expression) can result in the statement (expression) being only 22
partially executed. Therefore, programmers are strongly encouraged to explicitly state whether 23
exceptions can be thrown from transaction statements (expressions) by using noexcept 24
specifications. We considered an alternative approach in which the absence of a noexcept 25
specification is interpreted as if a noexcept(true) clause were present, which makes 26
mandatory an explicit noexcept(false) specification on a transaction statement (expression) that 27
may throw an exception. However, such an interpretation would be inconsistent with the existing 28
rules for noexcept specifications on function declarations.] 29
 30
A noexcept specification is not allowed on a function transaction block as such a specification is 31
redundant with a noexcept specification on a function declaration (that is, a noexcept specification 32
that may appear before the __transaction_atomic or __transaction_relaxed keyword 33
denoting a function transaction block). 34

8. Cancel statement 35

The __transaction_cancel statement (a cancel statement) allows the programmer to roll 36
back an atomic transaction statement. The cancel statement must be lexically enclosed in an 37
atomic transaction statement, unless it is annotated with the outer attribute (Section 8.1); for 38
example: 39
 40
__transaction_atomic { 41
 stmt1 42
 __transaction_cancel; 43
} 44
stmt2 45
 46
In its basic form (that is, without the outer attribute), a cancel statement rolls back all side 47
effects of the immediately enclosing atomic transaction statement (that is, the smallest atomic 48
transaction statement that encloses the cancel statement) and transfers control to the statement 49
following the transaction statement. Thus, in the example above the cancel statement undoes the 50
side effects of stmt1 and transfers control to stmt2. 51
 52

 21

The rule requiring a cancel statement to be lexically enclosed in an atomic transaction statement 1
ensures that the cancel statement always executes within the dynamic extent of an atomic 2
transaction statement. It also allows the implementation to distinguish easily between atomic 3
transactions that require rollback and those that don’t, a potential optimization opportunity for an 4
implementation. 5
 6
[Note: A cancel statement applies only to atomic transaction statements (including outer atomic 7
transaction statements). A cancel statement cannot be used to roll back a function transaction 8
block or a transaction expression, unless that block or expression is rolled back as part of rolling 9
back an atomic transaction statement.] 10

8.1 The outer attribute on cancel statements 11

Cancel statements may be annotated with the outer attribute: 12
 13
__transaction_cancel [[outer]]; 14
 15
We call a cancel statement with the outer attribute a cancel-outer statement. A cancel-outer 16
statement rolls back all side effects of the outer atomic transaction that dynamically contains it 17
(which is also the outermost atomic transaction that dynamically contains it) and transfers control 18
to the statement following the outer atomic transaction. 19
 20
Unlike a cancel statement with no attribute, a cancel-outer statement need not be enclosed within 21
the lexical scope of an atomic transaction. Instead, to ensure that a cancel-outer statement 22
always executes within the dynamic extent of an outer atomic transaction, a cancel-outer 23
statement must appear either within the lexical scope of an outer atomic transaction or in a 24
function declared with the transaction_may_cancel_outer attribute (Section 8.2). 25
 26
[Note: A cancel-outer statement cancels only outer atomic transactions; the restrictions above 27
imply that a cancel-outer statement cannot be executed when the outermost atomic transaction is 28
not an outer atomic transaction. In contrast, an unannotated cancel statement can cancel an 29
outer atomic transaction if it is the immediately enclosing atomic transaction.] 30
 31
The cancel-outer statement provides a convenient way to cancel an outermost atomic transaction 32
from anywhere within its dynamic extent. For example, when an error is encountered, the 33
programmer can cancel all transactions from the most nested transaction to the outer transaction. 34
The outer atomic transaction – together with the transaction_may_cancel_outer attribute – 35
ensures that an outermost atomic transaction that may dynamically contain a cancel-outer 36
statement is easily identifiable as such. This is important because otherwise, it would be difficult 37
to determine whether a given atomic transaction might be cancelled without examining all code it 38
might call. 39
 40
[Note: Cancelling an outermost atomic transaction using either multiple cancel statements without 41
the outer attribute or exceptions both have the disadvantages that additional, error-prone code 42
would be required to transfer control back to the outermost atomic transaction and to cancel the 43
outermost atomic transaction.] 44

8.2 The transaction_may_cancel_outer attribute 45

Function declarations (including virtual and template function declarations) and function pointer 46
declarations may specify the transaction_may_cancel_outer attribute. The 47
transaction_may_cancel_outer attribute specifies that the declared function (or a function 48
pointed to by the declared function pointer) has may-cancel-outer type and hence may contain a 49
cancel-outer statement within its dynamic scope. Like cancel-outer statements, a call to a function 50
with may-cancel-outer type must appear either within the lexical scope of an outer atomic 51
transaction or in a may-cancel-outer function. 52

 22

 1
If a class type has constructors or a destructor with may-cancel-outer type, then objects of that 2
type must be declared so as to ensure that the affected constructor or destructor is invoked within 3
the dynamic scope of an outer atomic transaction. Declarations of such an object leading to the 4
invocation of the affected constructor or destructor should appear within the lexical scope of an 5
outer atomic transaction or in a may-cancel-outer function. Moreover, an object should be 6
declared in such a way that the affected constructor or destructor is invoked in the same scope as 7
the declaration. For example, if a class has a constructor with may-cancel-outer type then a 8
program may not contain global or static declarations of that type resulting in the invocation of the 9
affected constructor. If a class has a destructor with may-cancel-outer type then a program may 10
not contain global, static, function-local static or thread_local declarations of that type. 11
 12
Like the transaction_safe attribute, the transaction_may_cancel_outer attribute 13
specifies a property of the type of the declared function or function pointer, which is propagated 14
along with the type. Just like transaction_safe, it may be meaningfully used in typedef 15
declarations. 16
 17
A pointer to a function with transaction-safe type may be implicitly converted to a pointer to a 18
function with may-cancel-outer type (or to a pointer to a function with transaction-unsafe type). 19
Such conversions have no effect on the ranking of conversions sequences. A pointer to a may-20
cancel-outer function is not implicitly convertible to a pointer to a non-may-cancel-outer function. 21
Allowable function pointer conversions: 22
 23
 transaction-safe may-cancel-outer 24
 transaction-unsafe 25
 26
A function or function pointer must not be declared with both the 27
transaction_may_cancel_outer and transaction_safe attributes. A function must not 28
be declared with both the transaction_may_cancel_outer and transaction_unsafe 29
attributes. That is, a function declaration, a function pointer declaration, or multiple declarations of 30
one function must not specify both attributes. If any declaration of a function specifies the 31
transaction_may_cancel_outer attribute then every declaration of that function (except its 32
definition, if it is not a virtual function) must specify the transaction_may_cancel_outer 33
attribute, and the first declaration must do so even if it is the definition of a non-virtual function. 34
The main function must not be declared with the transaction_may_cancel_outer attribute. 35
A function may be declared with both transaction_may_cancel_outer and 36
transaction_callable attributes. 37
 38
A function call to a function declared with the transaction_may_cancel_outer attribute 39
(before the function call) is a safe statement (Section 4.2). A function call through a function 40
pointer that was declared with the transaction_may_cancel_outer attribute is also a safe 41
statement. The body of a function declared with the transaction_may_cancel_outer 42
attribute must not contain unsafe statements. 43
 44
See Section 10 for rules and restrictions on overriding virtual functions declared with the 45
transaction_may_cancel_outer attribute. 46
 47
When a function pointer declared with the transaction_may_cancel_outer attribute is 48
assigned or initialized with a value, that value must be a pointer to a function of transaction-safe 49
or may-cancel-outer type. When a function pointer declared without the 50
transaction_may_cancel_outer attribute is assigned or initialized with a value, that value 51
must not be a pointer to a function of may-cancel-outer type. As in the case of the 52
transaction_safe attribute, parameter types for function pointers assigned in this way must 53
match exactly in their transaction_may_cancel_outer specification. 54

 23

8.3 Examples 1

An unannotated cancel statement rolls back the side effects of only its immediately enclosing 2
atomic transaction. In the following example, the cancel statement rolls back stmt2 but not stmt1. 3
 4
bool flag1 = false, flag2 = false; 5
__transaction_atomic { 6
 flag1 = true; // stmt1 7
 __transaction_atomic { 8
 flag2 = true; // stmt2 9
 __transaction_cancel; 10
 } 11
 assert (flag1 == true && flag2 == false); 12
} 13
assert (flag1 == true && flag2 == false); 14
 15
A cancel-outer statement rolls back the side effects of the outer atomic transaction that 16
dynamically contains it. In the following example, the cancel-outer statement rolls back both stmt2 17
and stmt1. 18
 19
bool flag1 = false, flag2 = false; 20
__transaction_atomic [[outer]] { 21
 flag1 = true; // stmt1 22
 __transaction_atomic { 23
 flag2 = true; // stmt2 24
 __transaction_cancel [[outer]]; 25
 } 26
 assert (0); // never reached! 27
} 28
assert (flag1 == false && flag2 == false); 29
 30
A cancel statement may execute within a dynamic scope of a relaxed transaction. The following 31
example shows an “atomic-within-relaxed” idiom that dynamically combines cancelling a 32
transaction and irrevocable actions within a relaxed transaction: 33
 34
[[transaction_safe]] void do_work(); 35
[[transaction_safe]] bool all_is_ok(); 36
[[transaction_unsafe]] void report_results(); // contains irrevocable actions 37
 38
__transaction_relaxed { 39
 bool all_ok = false; 40
 __transaction_atomic { 41
 do_work(); 42
 if (all_is_ok()) 43
 all_ok = true; 44
 else 45
 __transaction_cancel; 46
 } 47
 if (all_ok) 48
 report_results(); 49
} 50

8.4 Memory model 51

Cancelling an atomic transaction removes all side effects of its execution. Consequently, in a 52
data-race-free program a cancelled atomic transaction has no visible side effects. Cancelling an 53

 24

atomic transaction, however, does not remove a data race that occurred during the execution of 1
the transaction. The individual operations of an atomic transaction that executed before the 2
transaction was cancelled are part of the program execution and, like other operations, may 3
contribute to data races. In case of a data race, the program behavior is still undefined, as 4
specified by the C++11 memory model. For example, the following program is deemed racy even 5
though the transaction with a racy memory access is cancelled: 6
 7
Thread 1 Thread 2
__transaction_atomic {

 x++;

 __transaction_cancel;

}

x = 1;

 8

9. Cancel-and-throw statement 9

A programmer can use a cancel-and-throw statement to rollback all side effects of an atomic 10
transaction statement (atomic function transaction block) and cause that statement (block) to 11
throw a specified exception. The cancel-and-throw statement must be lexically enclosed in an 12
atomic transaction statement (atomic function transaction block), unless it is annotated with the 13
outer attribute (Section 9.1); for example: 14
 15
__transaction_atomic { 16
 stmt1 17
 __transaction_cancel throw throw-expression; 18
} 19
 20
In its basic form (that is, without the outer attribute), the cancel-and-throw statement rolls back 21
all side effects of the immediately enclosing atomic transaction statement (atomic function 22
transaction block) and throws the exception from the transaction. Thus, in the example above the 23
cancel-and-throw statement undoes the side effects of stmt1 and throws throw-expression. 24
 25
The exception thrown by the cancel-and-throw statement must be of integral or enumerated type. 26
This restriction ensures that the exception does not contain or refer to state that is not meaningful 27
after the transaction is cancelled.

4
 28

 29
 [Note: The programmer should not circumvent the restriction on the exception types by using the 30
exception, for example, as an index in a global array that stores additional information about the 31
exception. Since the exception will be processed in an environment in which the memory effects 32
of the transaction have been rolled back, code like the following may compile, but is never useful: 33
 34
__transaction_atomic { 35
 int my_exc_index = doSomething(); 36
 if (my_exc_index >= 0) { 37
 real_exception_description[my_exc_index] = 38

new(<detailed information about exception>); 39
 __transaction_cancel throw my_exc_index; 40
 } 41
}] 42
 43
The exception thrown by a cancel-and-throw statement will not be caught by any try-catch block 44
nested within the cancelled atomic transaction. 45

4
 Section “Removing restrictions on types of exceptions thrown by the cancel-and-throw statement” in

Appendix C explains the rationale for this restriction in more detail.

 25

 1
In an exception handler of integral or enumerated type, the cancel-and-throw statement may 2
optionally leave out the exception expression, in which case the specified exception is the current 3
exception. 4
 5
A cancel-and-throw statement has the same properties with respect to the memory model as a 6
cancel statement (Section 8.4): In a data-race-free program, a transaction cancelled by a cancel-7
and-throw statement has no visible side effects. However, the individual operations of a 8
transaction that executed before the transaction was cancelled are part of the program execution 9
and may contribute to data races. 10
 11
Unlike a regular throw statement, a cancel-and-throw statement provides strong exception safety 12
guarantees. With a regular throw statement, it is the programmer’s responsibility to restore the 13
invariants that might be violated by partial execution of an atomic transaction. With a cancel-and-14
throw statement the system automatically guarantees that such invariants are preserved by 15
rolling back the atomic transaction. 16

9.1 The outer attribute on cancel-and-throw statements 17

The cancel-and-throw statement may be annotated with the outer attribute, in which case it is a 18
cancel-outer-and-throw statement: 19
 20
 __transaction_cancel [[outer]] throw expropt; 21
 22
A cancel-outer-and-throw statement operates in the same way as a cancel-and-throw statement 23
except that it rolls back the side effects of the outer atomic transaction that dynamically contains it 24
and throws the exception from the outer atomic transaction. Like the cancel-outer statement, a 25
cancel-outer-and-throw statement need not be enclosed within the lexical scope of an atomic 26
transaction, but it must appear either within the lexical scope of an outer atomic transaction or in 27
a may-cancel-outer function. 28

9.2 Examples 29

An unannotated cancel-and-throw statement rolls back the side effects of only its immediately 30
enclosing atomic transaction. In the following example, the cancel-and-throw statement rolls back 31
stmt2 but not stmt1, and the thrown exception 1 propagates out of the outermost atomic 32
transaction: 33
 34
bool flag1 = false, flag2 = false; 35
try { 36
 __transaction_atomic { 37
 flag1 = true; // stmt1 38
 __transaction_atomic { 39
 flag2 = true; // stmt2 40
 __transaction_cancel throw 1; 41
 } 42
 } 43
} catch(int& e) { 44
 assert(flag1 == true && flag2 == false); 45
} 46
 47
A cancel-outer-and-throw statement rolls back the side effects of the outer atomic transaction that 48
dynamically contains it. In the following example, the cancel-outer-and-throw statement rolls 49
back both stmt1 and stmt2, after which the thrown exception 1 propagates out of the outer atomic 50
transaction (which is the outermost atomic transaction): 51
 52

 26

bool flag1 = false, flag2 = false; 1
try { 2
 __transaction_atomic [[outer]] { 3
 flag1 = true; // stmt1 4
 __transaction_atomic { 5
 flag2 = true; // stmt2 6
 __transaction_cancel [[outer]] throw 1; 7
 } 8
 } 9
} catch(int& e) { 10
 assert(flag1 == false && flag2 == false); 11
} 12
 13
The exception thrown by a cancel-and-throw statement cannot be caught by any try-catch block 14
nested within the cancelled atomic transaction. In the following examples, Example 1 15
demonstrates how normal C++ try / catch blocks behaves inside a transaction, followed by 16
Example 2, which demonstrates how a __transaction_cancel behaves inside a transaction. 17
Notice that in Example 2 the first catch block does not catch the exception thrown by the cancel-18
and-throw: 19
 20
Example 1: 21
 22
try { 23
 __transaction_atomic { 24
 try { 25
 throw 1; 26
 } catch(int& e) { 27
 ... ; // exception is caught here 28
 } 29
 } 30
} catch (int& e) { 31
 assert(0); // never reached! 32
} 33
 34
Example 2: 35
 36
try { 37
 __transaction_atomic { 38
 try { 39
 __transaction_cancel throw 1; 40
 } catch(int& e) { 41
 assert(0); // never reached! 42
 } 43
 } 44
} catch (int& e) { 45
 cout << “Caught e!” << endl; 46
} 47
 48
An exception thrown by a cancel-and-throw statement must be of integral or enumerated type. In 49
the following example, the cancel-and-throw statement with the exception expression of type X is 50
illegal: 51
 52
class X { int x;}; 53
 54
__transaction_atomic noexcept(false) { 55

 27

 __transaction_cancel throw X(); // Error: X() is of class type 1
} 2
 3
A cancel-and-throw statement without an exception expression re-throws the current exception. 4
In the following example, any exception thrown by stmt cancels the atomic transaction and 5
propagates to a catch block higher up the stack: 6
 7
__transaction_atomic noexcept(false) { 8
 try { 9
 stmt 10
 } catch (int&) { 11
 __transaction_cancel throw; 12
 } 13
} 14
 15
A cancel-and-throw statement without an exception expression must occur within an exception 16
handler of integral or enumerated type. In the following example, the cancel-and-throw statement 17
is illegal because it occurs within an exception handler that matches any exception: 18
 19
__transaction_atomic noexcept(false) { 20
 try { 21
 stmt 22
 } catch (...) { 23
 __transaction_cancel throw; // Error: current exception may be of any type 24
 } 25
} 26

10. Inheritance and compatibility rules for attributes 27

A member function declared with a transaction-related attribute (i.e., transaction_safe, 28
transaction_unsafe, transaction_callable, or transaction_may_cancel_outer 29
attribute) in a base class preserves that attribute in the derived class unless it is redefined or 30
overridden by a function with a different attribute. Functions brought into the class via a using 31
declaration preserve the attributes that they had in their original scope. Transaction-related 32
attributes impose no restrictions on redefining a function in a derived class. Transaction-related 33
attributes impose the following restrictions on overriding a virtual function in a derived class: 34

 A virtual function of transaction-safe type may be overridden only by a virtual function of 35
transaction-safe type. 36

 A virtual function of may-cancel-outer type can be overridden only by a virtual function of 37
either may-cancel-outer or transaction-safe type. 38

 A virtual function of may-cancel-outer type may override only a virtual function of may-39
cancel-outer type. 40

 Any function pointer type appearing in a signature of an overriding function must have the 41
same transactional attributes as the corresponding function pointer type in the signature 42
of the overridden function. 43

 44
The following example illustrates the class inheritance rules for transaction-related function 45
attributes: 46
 47
class C { 48
public: 49
 [[transaction_safe]] void f(); 50
 [[transaction_safe]] virtual void v(); 51
 [[transaction_unsafe]] virtual void w(); 52
}; 53
 54

 28

class D : public C { 1
public: 2
 void f(); // OK: D::f redefines C::f 3
 virtual void v(); // Error: D::v overrides C::v; needs transaction_safe 4
 virtual void w(); // OK: transaction_unsafe on D::w is optional 5
 using C::v; // OK: C::v preserves the transaction_safe attribute 6
}; 7
 8
 9

11. Class attributes 10

The transaction_safe, transaction_unsafe, and transaction_callable attributes 11
can be used on classes and template classes. In this case they act as default attributes for the 12
member functions declared within the (template) class but not for member functions on any 13
inheriting class; that is, they are applied to only those member functions declared within the 14
(template) class that do not have an explicit transaction_safe, transaction_unsafe, 15
transaction_may_cancel_outer, or transaction_callable attribute. The class attribute 16
does not apply to functions brought into the class via inheritance or via a using declaration; such 17
functions preserve the attributes that they had in their original scope. 18
 19
The following example shows a definition of class C from Section 10 written using class 20
attributes: 21
 22
class C [[transaction_safe]] { 23
 void f(); // declared as transaction_safe 24
 virtual void v(); // declared as transaction_safe 25
 [[transaction_unsafe]] virtual void w(); // declared as 26

 // transaction_unsafe 27
}; 28
 29
Class attributes reduce C++ programming overhead as they allow the programmer to specify an 30
attribute once at the class level rather than specifying it for each member function. We felt it was 31
important to ease the programmer’s task of specifying attributes to make them usable. 32

33

 29

Appendix A. Grammar 1

atomic transaction-statement: 2

 __transaction_atomic txn-outer-attributeopt txn-noexcept-specopt compound-3

statement 4

 5

relaxed transaction-statement: 6

 __transaction_relaxed txn-noexcept-specopt compound-statement 7

 8

atomic transaction-expression: 9

 __transaction_atomic txn-noexcept-specopt (expression) 10

 11

relaxed transaction-expression: 12

 __transaction_relaxed txn-noexcept-specopt (expression) 13

 14

atomic function-transaction-block: 15

 atomic-basic-function-transaction-block 16

 __transaction_atomic basic-function-try-block 17

 18

relaxed function-transaction-block: 19

 relaxed basic-function-transaction-block 20

 __transaction_relaxed basic-function-try-block 21

 22

atomic basic-function-transaction-block 23

 __transaction_atomic ctor-initializeropt compound-statement 24

 25

relaxed basic-function-transaction-block 26

 __transaction_relaxed ctor-initializeropt compound-statement 27

 28

cancel-statement: 29

 __transaction_cancel txn-outer-attributeopt ; 30

 31

cancel-and-throw-statement: 32

 __transaction_cancel txn-outer-attributeopt throw-expression ; 33

 34

txn-noexcept-spec: 35

 noexcept-specification 36

 37

txn-outer-attribute: 38
 [[outer]] 39

 40

postfix-expression: 41

 /* … existing C++11 rules …*/ 42

 transaction-expression 43

 44

 30

statement: 1

 /* … existing C++11 rules …*/ 2

 attribute-specifieropt transaction-statement 3

 4

jump-statement: 5

 /* … existing C++11 rules …*/ 6

 cancel-statement 7

 cancel-and-throw-statement 8

 9

function-body: 10

 /* … existing C++11 rules …*/ 11

 function-transaction-block 12

 13

function-try-block: 14

 basic-function-try-block 15

 try basic-function-transaction-block handler-seq 16

 17

basic-function-try-block: 18

 /* … existing C++11 rules for function-try-block …*/ 19

Appendix B. Feature dependences 20

In this section, we identify the dependences between features, to assist implementers who might 21
be considering implementing subsets of the features described in this specification or enabling 22
features in different orders, dependent on implementation-specific tradeoffs. 23
 24
As general guidance, we recommend that an implementation that does not support a certain 25
feature accepts the syntax of that feature and issues an informative error message, preferably 26
indicating that the feature is not supported by the implementation but is a part of the specification. 27
 28
The language features described in this specification are interdependent. Eliminating a certain 29
feature may make some other features unusable. For example, without the outer atomic 30
transactions, the cancel-outer statement is unusable; that is, it is not possible to write a legal 31
program that executes a cancel-outer statement and does not contain an outer atomic transaction 32
statement (because the cancel-outer statement must execute within the dynamic extent of an 33
outer atomic transaction). Some other features may remain usable but become irrelevant. For 34
example, without atomic transactions, the transaction_safe attribute can occur in legal 35
programs but serves no purpose. We recommend that an implementation that chooses to support 36
a certain irrelevant feature issues an informative warning specifying that the feature is supported 37
for compatibility purposes but has no effect. In the rest of this section, we describe dependences 38
between the features and identify the consequences of omitting a particular feature or 39
combination of features. 40
 41
Transaction statements, transaction expressions and function transaction blocks. This 42
specification provides three language constructs for specifying transactions: transaction 43
statements, transaction expressions and function transaction blocks. All other features described 44
in this specification are dependent on the presence of at least one of these constructs. Therefore 45
any implementation should include at least one of these constructs. The constructs themselves 46
are independent of each other. An implementation may include one, two or all three of them. 47
 48
All three constructs allow for specifying two forms of transactions – relaxed transactions and 49
atomic transactions. Furthermore, atomic statements may be annotated with the outer attribute 50

 31

to indicate that they execute as outer atomic transactions. These forms of transactions are 1
independent of each other. An implementation may include either relaxed transactions, or atomic 2
transactions, or both. It may also choose not to support outer atomic transactions, or to require all 3
atomic transactions to be outer atomic transactions. 4
 5
A majority of the features described in this specification are used in conjunction with atomic 6
transactions. Eliminating or limiting support for atomic transactions makes many other features 7
either unusable or irrelevant: 8
 The concept of safe and unsafe statements and the transaction_safe and 9

transaction_unsafe function attributes are irrelevant without atomic transactions 10
(because the safety concept and attributes are used to impose restrictions on statements that 11
can be executed within an atomic transaction). 12

 The cancel statement is unusable without atomic transaction statements (because it applies 13
only to atomic transaction statements). 14

 The cancel-and-throw statement is unusable unless an implementation supports either 15
atomic transaction statements or atomic function transaction blocks (because it applies only 16
to atomic transaction statements or atomic function transaction blocks). 17

 The cancel-outer statement, the cancel-outer-and-throw statement, and the 18
transaction_may_cancel_outer attribute are unusable without outer atomic 19
transactions (because the cancel-outer statements, cancel-outer-and-throw statements and 20
calls to functions declared with the transaction_may_cancel_outer attribute can 21
execute only within the dynamic extent of an outer atomic transaction). 22

 23
The only feature used solely in conjunction with relaxed transactions is the 24
transaction_callable attribute. This attribute is irrelevant without relaxed transactions 25
(because it indicates that a function might be called within a relaxed transaction). 26
 27
An implementation may impose additional restrictions on nesting of various forms of transactions 28
without affecting the rest of the specified features. 29
 30
Function call safety. This specification includes three features related to the safety of function 31
calls – the transaction_safe and transaction_unsafe attributes and the concept of 32
functions being implicitly declared safe. Eliminating one or more of the function call safety 33
features does not affect the rest of the specification. However, different combinations of these 34
features offer different degrees of ability to call functions from within atomic transactions: 35
 36
 An implementation that does not support either the transaction_safe attribute or the 37

concept of functions being implicitly declared safe must disallow function calls inside atomic 38
transactions (because it has no ability to verify that such function calls are safe). In such an 39
implementation, the transaction_unsafe attribute is irrelevant, as there is no way for a 40
function to be declared safe. 41

 An implementation that supports functions being implicitly declared safe but does not support 42
the transaction_safe attribute limits function calls inside atomic transactions to calling 43
functions defined within the same translation unit before the transaction. 44

 An implementation that does not support functions being implicitly declared safe does not 45
allow a function to be used in a transaction unless it is explicitly annotated with the 46
transaction_safe attribute. For example, this prevents the use of a template library 47
function that cannot be annotated with the transaction_safe attribute because it can only 48
be determined to be safe after instantiation. 49

 If an implementation does not support the transaction_unsafe attribute, programmers 50
cannot override the transaction_safe class attribute or prevent functions from being 51
implicitly declared safe when this is not desirable. The first limitation is relevant if class 52
attributes and the transaction_safe attribute are supported; the second limitation is 53
relevant if functions can be implicitly declared safe. 54

 32

 1
An implementation may include the transaction_safe attribute for function declarations, or 2
function pointer declarations, or both. An implementation that does not support the 3
transaction_safe attribute for function pointer declarations must disallow calls via function 4
pointers inside atomic transactions. 5
 6
Cancel and cancel-and-throw statements. This specification provides two forms of a cancel 7
statement – a basic cancel statement that cancels the immediately enclosing atomic transaction 8
and the cancel-outer statement that cancels the enclosing outer atomic transaction. This 9
specification also provides two similar forms of a cancel-and-throw statement – a basic cancel-10
and-throw statement and the cancel-and-throw-outer statement. The cancel and cancel-and-11
throw statements and the two forms of each statement are independent of each other. An 12
implementation may include any combination of these statements and their forms. Eliminating 13
either the basic cancel statement or the basic cancel-and-throw statement does not affect the rest 14
of the specification. Eliminating either the cancel-outer statement or the cancel-outer-and-throw 15
statement, but not both of these statements, also does not affect the rest of the features. 16
Eliminating both the cancel-outer statement and the cancel-outer-and-throw statement makes the 17
transaction_may_cancel_outer attribute irrelevant (because this attribute is used to specify 18
that a function may contain either the cancel-outer or cancel-outer-and-throw statement in its 19
dynamic scope) and limits the usability of the outer attribute on transaction statements (because 20
the main purpose of this attribute is to specify atomic transactions that can be cancelled by the 21
cancel-outer or cancel-outer-and-throw statement). The outer attribute, however, still can be 22
used to specify that an atomic transaction statement cannot be nested within another atomic 23
transaction. 24
 25
The transaction_may_cancel_outer attribute. Eliminating the 26
transaction_may_cancel_outer attribute reduces the usability of the cancel-outer and 27
cancel-outer-and-throw statements. An implementation that does not support this attribute must 28
not allow the cancel-outer and the cancel-outer-and-throw statements outside of the lexical scope 29
of an outer atomic transaction statement (because the implementation has no ability to verify that 30
a function containing a cancel-outer statement in its dynamic scope is not called outside of an 31
outer atomic transaction). 32
 33
The transaction_callable attribute. This attribute has no semantic meaning: it is only a 34
hint to the compiler that certain optimizations might be worthwhile. Eliminating this attribute has 35
no effect on other features. 36
 37
noexcept specification. A noexcept specification facilitates development of more reliable 38
programs. Not supporting noexcept specifications on transaction statements and/or expressions 39
has no effect on other features. 40
 41
Exceptions. An implementation that implements a subset of this specification may choose to 42
provide limited support for exceptions inside transactions (including the exceptions thrown by the 43
throw statement and/or exceptions thrown by the cancel-and-throw statement). For example, an 44
implementation might disallow throwing an exception from within code that could be executed 45
within a transaction, or disallow exceptions from escaping the scope of a transaction. Such 46
restrictions might make noexcept specifications irrelevant. 47
 48
Unsafe statements. This specification defines certain statements as unsafe. An implementation 49
that implements a subset of this specification might choose to treat additional statements as 50
unsafe. For example, an implementation might choose to treat built-in new and delete operators 51
as unsafe and disallow them inside atomic transactions. We suggest that such an implementation 52
provides a workaround to allow programmers to allocate and deallocate objects within atomic 53
transactions, and indicate this in an error message produced when encountering a new or 54

 33

delete built-in operator in an atomic transaction. In most cases, treating additional statements 1
as unsafe would not affect the rest of the specification. 2
 3
Class attributes. Class attributes have no semantic meaning: they are default attributes for 4
function members declared without a transaction-related attribute. Eliminating class attributes has 5
no effect on the rest of the features. 6

Appendix C. Extensions 7

Allowing unsafe statements inside atomic transactions. To relax the restriction of statically 8
disallowing unsafe statements inside atomic transactions and functions declared with the 9
transaction_safe or transaction_may_cancel_outer attribute, we could make 10
executing such statements a dynamic error that rolls back the atomic transaction and then either 11
throws an exception or sets an error code. However, this approach would forgo the benefits of 12
compile-time checking and instead shift the burden of detecting and handling atomic transactions 13
that executed unsafe operations to a programmer. 14
 15
Transaction declaration statements. The features described in this specification do not allow 16
executing an initialization statement inside a transaction without changing the scope of the 17
initialized object (Section 5). We could introduce a transaction declaration statement that causes 18
all the actions initiated by the initialization statement to be performed inside a transaction. A 19
transaction declaration statement would be specified by placing the __transaction_relaxed 20
or the __transaction_atomic keyword before the declaration as illustrated by the following 21
example, where both the copy constructor and evaluation of its argument are executed within a 22
transaction: 23
 24
 __transaction_relaxed SomeObj myObj = expr; 25
 __transaction_atomic SomeObj myObj = expr; 26

 27
Relaxing the lexical scope restriction. We could remove the lexical scoping restriction on 28
cancel statements without outer attribute so that such statements could appear anywhere inside 29
the dynamic scope of an atomic transaction. Rollbacks don’t make sense outside of the dynamic 30
scope of an atomic transaction, however, so we could define such cancel statements such that 31
they are either a runtime or compile-time error. In the former case, we could define cancel 32
statements executed outside the dynamic scope of an atomic transaction as leading to a runtime 33
failure that terminates the program (similar to a re-throw outside of the dynamic scope of a catch 34
block); for example, by providing a cancel() API call that fails if called outside the dynamic 35
scope of an atomic transaction. To support the latter case, we could introduce a new function 36
attribute (e.g., the transaction_atomic_only attribute) specifying that a function can only be 37
called within the dynamic extent of an atomic transaction because it may execute a cancel 38
statement outside the lexical scope of an atomic transaction; thus an unannotated 39
__transaction_cancel statement must appear within the lexical scope of either an atomic 40
transaction or a properly-declared function (that is, a function declared with the 41
transaction_atomic_only or transaction_may_cancel_outer attribute). Similar to 42
lexical scoping, this has the advantage that the implementation can distinguish atomic 43
transactions that require rollback. Note, that although an unannotated cancel statement may 44
appear in a function declared with the transaction_may_cancel_outer attribute, using a 45
single attribute for functions that may contain an unannotated cancel statement and functions that 46
may contain a cancel-outer statement is not a good idea; such a design decision would artificially 47
restrict the usage of unannotated cancel statements to the dynamic scope of an outer atomic 48
transaction. 49
 50
Supporting cancelling of relaxed transactions. Allowing cancel statements only inside atomic 51
transactions limits combinations of irrevocable actions and cancel statements to well-structured 52
programming patterns (such as an atomic-within-relaxed idiom in Section 8.3). Alternatively, we 53

 34

could allow arbitrary syntactic combinations of cancel statements and irrevocable actions and 1
place the burden of preventing dynamically unsafe combinations on a programmer. That is, we 2
could allow a cancel statement to appear anywhere within the scope of a relaxed transaction and 3
require that programmers not to use __transaction_cancel after a call to an irrevocable 4
action (i.e., any call to an unsafe statement). In this case, cancelling a relaxed transaction that 5
executed an irrevocable action would be a run-time failure that exits the program with an error. 6
We could also devise static rules that avoid rollback after an irrevocable action at the expense of 7
prohibiting some dynamically safe combinations of cancel statements and irrevocable actions. 8
 9
With this change, we could also forgo differentiating between relaxed and atomic transactions 10
and simply treat relaxed transactions that contain only safe statements as atomic transactions. 11
However, we believe that supporting statically enforced atomic transactions encourages the 12
development of more robust and reliable software by allowing the programmer to declare the 13
intention that a block of code should appear atomic (with the corresponding restriction that it 14
should contain only safe operations). Effectively, atomic transactions act as a compile-time 15
assertion that allows atomicity violations to be identified at compile time rather than run time. 16
 17
Adding an else clause to atomic transaction statements. We could add an else-clause to 18
“catch” cancels. For example: 19
 20

__transaction_atomic { 21
 stmt 22
} else { 23
 // control ends up here if stmt cancels the transaction 24
} 25
 26

The else-clause allows the programmer to determine whether an atomic transaction cancelled 27
without resorting to explicit flags. We could also use the else-clause to provide alternate actions 28
in case the atomic transaction attempts to execute an unsafe statement, relaxing the rule that 29
prohibits unsafe function calls inside the dynamic scope of an atomic transaction. Thus, an 30
attempt to execute an unsafe statement inside an atomic transaction would rollback the statement 31
and transfer control to the else-clause. 32
 33
Introducing a retry statement. We could define a retry statement (e.g., 34
__transaction_retry) that rolls back an outer atomic transaction and then re-executes it. 35
Such a retry statement is useful for condition synchronization. Executing a retry statement when 36
the outer atomic transaction is within the dynamic extent of a relaxed transaction, however, will 37
result in an infinite loop (relaxed transactions are serializable with respect to atomic transactions 38
thus re-execution will follow the same path) and may prevent other transactions from making 39
progress (depending on implementation). It might be possible to statically disallow outer atomic 40
transactions from nesting inside a relaxed transaction using additional function attributes, but this 41
might unnecessarily restrict use of code that might execute outer atomic transactions and it 42
introduces a function attribute that might propagate all over the program. 43
 44
Removing restrictions on types of exceptions thrown by the cancel-and-throw statement. 45
This specification requires exceptions thrown by the cancel-and-throw statement to be of integral 46
or enumerated types. We could remove this restriction and allow the cancel-and-throw statement 47
to throw exceptions of arbitrary types. This, however, could lead to subtle hard-to-detect bugs 48
when an exception object contains or refers to the state that is not meaningful after the 49
transaction is cancelled. For example, if an exception object points to an object allocated inside a 50
transaction, that object would be deallocated when the transaction is cancelled, resulting in a 51
dangling pointer. If an exception object contains a pointer to an object allocated outside of the 52
transaction, throwing this object can still lead to an inconsistent state if the pointer is implemented 53
as a shared pointer with reference count. When transaction is cancelled the increment of the 54
reference count would be undone, possibly causing the thrown object to unexpectedly disappear 55

 35

due the reference count being one too low. Finally, a thrown object may contain inconsistent state 1
even if it contains no pointers. For example, if the thrown object is an instance of a class T, 2
whose constructors and destructors keep track of all instances of T, the tracking of that object is 3
going to be lost after the transaction is cancelled. 4
 5
Inheriting class attributes. We could let a class with no explicit attribute inherit the class 6
attribute of its base class and define the rules for attribute composition to support multiple 7
inheritance. This would complicate programmer’s reasoning while providing a limited benefit of 8
saving one declaration per derived class. 9
 10
Region attributes. We could introduce region attributes that act as default attributes for functions 11
declared within a region of code. This would allow the programmer to annotate multiple function 12
declarations by specifying the attribute only once. For example, a programmer could annotate all 13
declarations in a header file as transaction_safe, by including them in a code region 14
annotated with the transaction_safe attribute. 15
 16

Appendix D. Changes compared to version 1.0 17

This specification contains the following changes compared to its previous version – the Draft 18
Specification of Transactional Language Constructs for C++, version 1.0: 19
 20
Transaction keywords. The __transaction keyword and its associated attributes, atomic 21
and relaxed, have been replaced by the __transaction_atomic and 22
__transaction_relaxed keywords, respectively. Previously, an atomic transaction could be 23
declared by using just the __transaction keyword, while a relaxed transaction required the 24
__transaction keyword annotated with the [[relaxed]] attribute. The new syntax puts 25
relaxed and atomic transactions on equal footing, by providing each with its own keyword. 26
 27
Transactional types. The transactional function properties defined by transaction_safe, 28
transaction_unsafe, and transaction_may_cancel_outer attributes are now part of a 29
function type. As such, these properties might be specified in typedef declarations and 30
propagated as part of the type. They are still ignored, however, for the overload resolution. 31
Previously, the transactional properties of a function had many characteristics of type without 32
being such, which limited their applicability (e.g., they could not participate in typedef 33
declarations) and left the behavior in multiple corner cases unspecified. Elevating transactional 34
function properties to types solves these problems. 35

 36
Exception specifications and noexcept specifications. The specification now supports 37
C++11’s noexcept specifications and has removed support for C++11’s deprecated exception 38
specifications. This was done because exception specifications have been deprecated in C++11 39
and have been replaced by noexcept specifications. 40
 41
Cancel-and-throw exception types. The types of exceptions thrown by cancel-and-throw are 42
now limited to integral and enumeration types. This change was made to prevent subtle bugs due 43
to destroyed transactional state escaping the scope of the transaction via an exception object. 44
 45
Memory model. The memory model now includes complete rules on how TransactionStart and 46
TransactionEnd operations contribute to the “sequenced-before” relationship. 47
 48
Miscellaneous. The specification contains numerous other minor changes, such as additional 49
examples, fixes to minor inaccuracies and rephrasing of possibly ambiguous statements. 50

