
Low-Cost Microarchitectural Support for Improved Floating-Point
Accuracy

William R. Dieter Henry G. Dietz
dieter@engr.uky.edu hankd@engr.uky.edu

Electrical and Computer Engineering Dept.
University of Kentucky
Lexington, KY 40506

Abstract

Some of the potentially fastest processors that could be used for scientific computing do not have efficient floating-
point hardware support for precisions higher than32-bits. This is true of the CELL processor, all current commodity
Graphics Processing Units (GPUs), various Digital Signal Processing (DSP) chips, etc. Acceptably high accuracy
can be obtained without extra hardware by using pairs of native floating-point numbers to represent the base result
and a residual error term, but an order of magnitude slowdowndramatically reduces the price/performance advantage
of these systems.

By adding a few simple microarchitectural features, acceptable accuracy can be obtained with relatively little
performance penalty. To reduce the cost of native-pair arithmetic, a residual register is used to hold information
that would normally have been discarded after each floating-point computation. The residual register dramatically
simplifies the code, providing both lower latency and betterinstruction-level parallelism. To support speculative
use of faster, lower precision, arithmetic, a peak exponentmonitor and an absorption counter are added to measure
potential loss of accuracy.

1 Introduction

Many of the problems that have motivated the development of computers inherently involve real numbers that must be
approximated using finite representations. Fixed-size representations lead to the simplest and generally most efficient
hardware implementations, so computer hardware has been focussed on providing support for operations on a small
number of fixed-size floating-point representations. The problem addressed in this paper is that higher-precision
representations often carry circuit complexity costs thatmake the support of higher precisions economically infeasible.

For example, Graphics Processing Units (GPUs) are designedto serve one purpose: real-time creation of pleasing
2D renderings of scenes involving3D objects, textures, lighting, etc. For that purpose,16-bit floating point often is
sufficient, with only the most complex models requiring anything like the accuracy provided by32-bit floating point.
Although a growing number of researchers are working towardusing GPUs to accelerate scientific and engineering ap-
plications that require greater accuracy, the number of GPUusers requiring higher accuracy than32-bit floating-point
operations provide is insufficient to justify the extra circuit complexity required to support64-bit floating point. One
64-bit pipeline has roughly the same implementation cost as two to four32-bit pipelines. More graphics applications
will profit from additional low-precision pipelines, and that is what ATI and nVidia build.

The irony is that even in the most sensitive floating-point applications, the precision of64-bit floating point rarely
is needed to represent the answer, but is merely used to ensure that the sequence of operations used in the computation
produces an accurate32-bit floating-point result. Accuracy is not the same as precision; higher precision does not
necessarily imply higher accuracy, nor is higher precisionthe only way to achieve better accuracy. Thus, the residual
register architecture discussed in this paper provides a minimally intrusive way to allow multiple32-bit precision
floating-point values to be used to efficiently extend the accuracy of intermediate computations. Of course, this
approach also can be applied to similarly enhance the accuracy of any other native precision.

1

1.1 Floating-Point Hardware Approaches

Floating-point hardware is not a new thing; by 1941, Konrad Zuse’s Z3 was executing22-bit floating-point operations
using a sign bit,7-bit exponent, and14-bit mantissa[1]. However, the long history of floating-point hardware support is
plagued by unavoidable tradeoffs between efficiency and accuracy. Accuracy traditionally has been associated with the
precision of the mantissas on which floating-point hardwareoperates, though our work does not make this assumption.

Hardware efficiently supporting a wide range of floating-point precisions using “bit slice” implementations of
operations on a variable-length mantissa has never been common, but appears in a variety of systems. From the
late 1970s, the NorthStar FPB-A[2] was an S100 bus floating-point coprocessor board using standard TTL parts to
implement microcoded Binary Coded Decimal (BCD) floating-point add, subtract, multiply, and divide with2, 4, 6,
8, 10, 12, or 14 digit precision and a7-bit base-10 exponent. In the early 1990s, each of the16, 384 SIMD processing
elements of the MasPar MP1 supercomputer[3] implemented floating-point operations using4-bit slice operations on
the mantissa and specialized normalization hardware; although standard microcode provided only32-bit and64-bit
IEEE 754 formats, the hardware could efficiently support any multiple of 4 bits precision up to64 bits. The primary
problem with sequential slicing approaches is that they inherently yield latency which is a function of precision.

Many computers have processor hardware designed to implement just one precision of floating-point value which
is considered to be sufficient for the primary applications targeted. This is particularly common in processors intended
to work with ”natural” data types associated with audio and video. For such types, the accuracy of commonly-
used analog converters tends to drive the choice of mantissasize; 8-bit converters naturally led to16-bit floating
point and the proliferation of16-bit and20-bit converters has made32-bit floating point particularly appealing. This
evolutionary pattern has been followed by Digital Signal Processors (DSPs), SIMD Within A Register (SWAR) [4]
instruction set extensions for conventional processors, and by Graphics Processing Units (GPUs) in high-end video
cards. For example,32-bit floating point is featured in many of the popular TI TMS320C3x series DSPs[5]. SWAR
extensions such as AMD’s 3DNow![6], Intel’s SSE[7], and Motorola’s AltiVec[8] all initially provided only operations
on datapath-sized vectors of32-bit floating-point values (although these extensions to general-purpose processors
have more recently taken advantage of the wider datapaths toalso support64-bit floating-point operations). At this
writing, both nVidia and ATI are marketing high-end GPUs focussed on32-bit floating-point support, as is the CELL
processor[9].

Many mainframe and workstation processor makers have takenadvantage of the fact that the IEEE 754[10] stan-
dard allows operations to be performed using any equal or higher precision. The floating-point hardware pipeline(s)
have been designed to use just one precision. Results are stored in the desired equal or lower precision with little addi-
tional hardware complexity. Perhaps the best known exampleis the Intel X87 floating-point model used in processors
from Intel, AMD, Cyrix, etc. The X87 floating-point mechanism allows32-bit, 64-bit, or 80-bit operands and results,
but is essentially an80-bit pipeline with a small amount of additional hardware allowing the pipeline to run at either
of the two reduced precisions. Without changing the pipeline precision, conversions are applied at register load/store,
with the strange result that the accuracy of a computation can be dramatically different depending on whether the
intermediate values were kept in registers or converted andstored/loaded from memory. Of course, careful register
allocation can use this fact to provide higher accuracy for computations while using only as much memory space
and access bandwidth as the lower-precision formats. The problem is that implementing an80-bit, or even a64-bit,
floating-point pipeline requires significantly more hardware than a32-bit pipeline; further, pure32-bit operations may
be slower than necessary thanks to pipeline timing being optimized for the higher-precision use of the function units.

The reason that32-bit, 64-bit, and80-bit floating-point formats are so common today is that they are codified in the
IEEE 754 standard[10]. IEEE 754 is closely linked to the development of Intel’s 8087[11] – the microcoded floating-
point coprocessor that first implemented X87. Before the mid1980s, nearly every computer manufacturer had their
own floating-point formats – some manufacturers even had multiple incompatible formats on different models. IBM’s
systems were well known for base16 floating point, many others used binary and still others usedbase10. Floating-
point representations had different sizes as well; the number of bits in a floating-point value on various machines
included16, 18, 22, 24, 32, 36, 48, etc. Generally, the standardization of floating-point formats has been a huge help
in ensuring that predictably accurate and reasonably portable floating-point code can be written, but the focus of the
IEEE 754 standard was on producing really good numerical characteristics for a few formats, not on minimizing the
hardware nor maximizing the flexibility.

Within the IEEE 754 guidelines, there is really only one standard mechanism that facilitates higher accuracy
without moving to a higher precision. The concept of a “fusedmultiply-add,” here called aMADD instruction, allows the
extra bits that naturally exist as two mantissas are multiplied to be preserved through the addition. More specifically,

2

multiplication of twok-bit mantissas naturally creates a2k-bit result, but only the properly-rounded topk bits would
be used as the multiplication result and some hardware only generates these bits. Within a fusedMADD instruction that
generates all2k bits, if the value added to happens to cancel some or all of thehigh bits of the multiplication result,
bits from the normally-discarded low portion of the mantissa multiplication result can be retained. In this way, a fused
MADD instruction provides accuracy as high as twice the precision. It should be noted thatMADD instructions often are
not implemented as true fused operations, in which case extra bits are not used in the addition and no improvement in
accuracy is obtained.

1.2 Floating-Point Software Approaches

Many processors – over 70% of all processors sold in 2002 [12]– do not implement floating-point operations directly
in hardware, instead simulating floating-point operationsusing integer operations to explicitly operate on exponent
and mantissa components each stored as signed integer values. This approach has been employed not only in mi-
crocontrollers targeted at low-cost embedded-system applications, but also in supercomputers aimed at the scientific
computing community. For example, the SIMD processing element hardware of the Thinking Machines CM1 and
CM2[13] provided only1-bit multiplexor operations from which integer and floating-point operations of any preci-
sion could be constructed. Thus, floating-point speed of an individual processing element was traded for a reduction
in circuit complexity that allowed many more processing elements, achieving reasonable floating-point throughput
by parallel execution of up to65, 536 processing elements. There also were many “scaled integer”techniques im-
plemented in software on various machines, but these techniques were quickly forgotten as floating-point hardware
support became more common. Multiple precisions can be implemented easily, if not efficiently, using any of these
integer-based approaches. For example, the Gnu Bignum library [14] provides a wide range of precisions using native
integers in much the same way that bit-slice hardware implementations use slices.

An interesting alternative, which is essentially the approach that this paper improves upon using new hardware
structures, involves use of multiple floating-point numbers to represent error residuals. Each higher-accuracy value
is spread across the mantissas of a sequence of native floating-point values in which the exponents in the lower
components serve only to align the mantissas. This general approach is perhaps best known in its application to
create an approximation to quad precision using two64-bit doubles, where it is commonly referred to asdouble-
double[15],[16],[17]. Our previous work in this area focused on efficient GPU algorithms for using the approach on
16-bit, 24-bit, and32-bit floating-point formats, speculation algorithms to avoid paying the performance penalty for
more accuracy than necessary, and software implementations of the algorithms optimized that run on a GPU[18]. We
generically refer to this “doubling” of mantissa precisionasnative-pairarithmetic, since a pair of native-precision
values are used to represent each more precise value. Note that native-pair values are not exactly double the precision
of a single native value. The IEEE format always has an implied ‘1’ in the most significant position, so the low half
may not be aligned flush with the high half. In other words, zeros may intervene between the two mantissas. The total
number of bits of precision represented by a native-pair is the number of bits in the two mantissas plus the number
of zeroes between the two mantissas. As discussed in Section4.1, a pair of32-bit floating-point values has only48
bits of mantissa, but typically can perform like49 or more bits. The primary problem is that native-pair arithmetic
is slow – usually taking about ten native operations for eachnative-pair operation. This paper introduces inexpensive
hardware to reduce the cost of native-pair operations.

Like the integer-based schemes above, it is possible to combine more than two native values to achieve still greater
accuracy. However, the native exponent range becomes the ultimate limit on how many times the native precision can
be multiplied. Because each additional native-format value must have an exponent that is adjusted to align its mantissa
as an extension of the mantissa of the previous value, the dynamic range of the constructed multi-precision values is
not equal to that of the native format, but effectively is narrower. Ignoring this effect was rarely a problem given the
number of exponent bits in an IEEE 754 compliant64-bit binary floating-point value, but a32-bit floating-point value
only has an8-bit exponent. Thus, a native-pair value will have twice thenative mantissa precision only if the exponent
of the low value is in range, which implies the high value exponent must be at least24 greater than the native bottom
of the exponent range. With an8-bit exponent, we have lost nearly10% of the dynamic range. Similarly, treating four
32-bit values as an extended-precision value reduces the effective dynamic range by3 × 24, or 72 exponent steps –
which is a potentially severe problem. Put another way, using more than ten32-bit floating-point values together would
constrain the exponent to the point that the data type is effectively a fixed-point value and no additional precision can
be obtained.

3

2 Microarchitectural Support For Native-Pair

Much of the overhead of native-pair arithmetic comes from computing the residual or error term resulting from
floating-point arithmetic operations. For addition, subtraction, and multiplication part or all of the residual term is
easily obtainable inside the floating-point unit as a side effect of the native floating-point operation. For example,
when two floating-point numbers are added, the addend with the smaller magnitude is shifted to the right to align the
radix points of the two addends. Any excess significant bits are discarded and a primary result is produced. Native-
pair addition achieves higher precision by storing the discarded bits in a second floating-point number. With standard
floating-point hardware, native-pair needs four instructions to compute precisely the bits that are discarded. Moreover,
division and square root use multiplication with a native-pair result, so speeding up native-pair multiplication will
speed up native-pair division and square root.

We propose adding aresidual registerto save this kind of “left over” information for floating-point addition,
subtraction, and multiplication. The residual register issimply a floating-point register with a sign bit,ne exponent
bits, andnm +2 mantissa bits, wherene is the number of exponent bits in a native floating-point number andnm is the
number of mantissa bits in a native floating-point, not including the leading one bit implied by the IEEE format [10].
The residual register also has a complement flag to indicate whether the residual mantissa should be complemented as
it is moved to an architectural register (see Section 2.1 fordetails.)

The value stored in the residual register is not necessarilynormalized, and does not have an implied leading1
bit. The lack of normalization is hidden from application programs, however, because the residual register cannot be
directly accessed. A simple way to access the residual register1 is by adding aMOVRR instruction to the instruction
set architecture. The ”MOVRR reg” instruction copies the residual register value to an architectural register and
normalizes it to IEEE 754 format. Each arithmetic operationoverwrites the previous value of the residual register with
the current residual value. The residual register does not change the primary result produced by any floating-point
instructions. That is, programs that do not use the residualregister will get the result mandated by the IEEE 754
standard whether they are run on a processor with or without residual register hardware.

Several definitions will be helpful to explain our notation.This paper presumes that any input number is precisely
represented in the format used. For example, a variablex cannot be assigned a value precisely equal to1/3, but it can
be assigned the32-bit IEEE 754 approximation to that value. The sign, exponent, and mantissa of the floating-point
numberx are denoted assign(x), exp(x), andmant(x), respectively. The primary result of a floating-point operation
is denotedfl(x◦y), and the residual isres(x◦y). Where◦ may be ‘+’, ‘ −’, or ‘×’. For these operations, the primary
and residual results ideally have the property thatx ◦ y = fl(x ◦ y) + res(x ◦ y).

IEEE floating-point arithmetic allows for several different rounding modes [10]. The propertyx ◦ y = fl(x ◦ y)+
res(x◦y) holds true for the round-to-nearest mode, but is not necessarily true for other modes. How the floating-point
unit determines which direction to round does not change theresidual computation. The residual logic only needs to
know that rounding occurred and if it did, which direction the primary result was rounded. Whenfl(a ◦ b) = a ◦ b,
the primary result is precisely correct and the residual is zero. Whenfl(a ◦ b) < a ◦ b, the primary resultp has been
rounded downto the floating-point value with the next lower magnitude. The residualr should have the same sign as
p to makea ◦ b = p + r. If fl(a ◦ b) > a ◦ b, then p has beenrounded upto the value with the next larger magnitude.
Ther should have an adjusted value and the opposite sign ofp to decrease the magnitude ofp when added to it.

2.1 Native-Pair Addition and Subtraction

When two floating-point numbersa andb are added, the addend with the smaller magnitude is shifted to make its
radix point align with the radix point of the larger-magnitude addend. If signs of both numbers are the same, the
magnitudes are added. If they are different, the magnitudesare subtracted. In either case the result gets the sign of the
larger addend. We discuss addition in detail, but the subtractiona − b is performed simply by toggling the sign bit of
b and adding the two numbers. Floating-point adders determine whethera or b has larger magnitude, and swap them
if necessary, so we can assumea has a larger magnitude thanb without loss of generality.

How the residual register is set depends on the signs of the two numbers and whether rounding occurred when
computing the sum. The mantissa bits inb with significance less than2exp(a)−(nm+1) are stored in the residual register
with the least significant bit in the rightmost position, andthe exponent set toexp(b) whenexp(a)−exp(b) ≤ nm +1
or the complement flag is not set. Whenexp(a)−exp(b) > nm+1 and the complement flag is set, the residual register

1More sophisticated handling of multiple residual registers is discussed in Section 2.1.1; the discussion here centerson a single residual register
to simplify the exposition.

4

gets the bits inb with significance ranging fromexp(a) − nm + 1 down toexp(a) − 2(nm + 1), and the exponent is
set toexp(a)−2(nm +1). The latter case only arises when the rounding mode is not setto round-to-nearest. The sign
and complement flag are set based on the signs ofa andb, and whetherp is rounded up or down. When the residual
register is moved to an architectural register it is normalized and potentially complemented as described below. There
are four cases:

Case 1: a and b have the same signs, the result is rounded down or precisely correct; Whena andb with the
same signs are added,b is shifted to the right to align its radix point witha and the magnitudes are added. The sign
of the residual register,sign(rr) is set tosign(a), and the complement flag is cleared. Whena andb have the same
signs and the primary result is not rounded,p + rr = a + b. The residual value,rr, need not be normalized until it is
stored to an architectural register.

Case 2: a and b have the same signs, the result is rounded up; When rounding occurs anda and b have the
same sign, the magnitude ofp is 2exp(a)−nm larger than if it had been rounded down. Fora + b = p + r to be
true,p + r = p − 2exp(a)−nm + rr = p − (2exp(a)−nm − rr) or r = (2exp(a)−nm − rr). Thus sign bit is set to
the opposite ofsign(a) and the complement flag is set. Whenrr is copied to an architectural register, theMOVRR
instruction computes2exp(a)−nm − rr, either using the floating-point adder or by computing the two’s complement of
the mantissa bits ofrr, after shifting to the appropriate position.

It is possible to perform this shifting at the timerr is stored to an architectural register, however, this would
require holdingexp(a) until that time. To avoid having to storeexp(a), rr can be shifted to the right andexp(rr)
increased if necessary so thatexp(rr) ≥ exp(a)− (nm + 1). Some accuracy may be lost due to this shift ifexp(b) <
exp(a)− (nm +1), but for round-to-nearest mode, this Case 2 only happens when |b| ≥ 2exp(a)−(nm+1). No mantissa
bits are lost when complementingrr, so the propertya + b = p− (2exp(a)−nm − rr) is preserved. Accuracy only will
be lost in a rounding mode that causesp to be rounded up when|b| < 2exp(a)−(nm+1).

Case 3: a and b have opposite signs, the result is rounded down; When a and b have opposite signs, their
magnitudes are subtracted. The least significant bit storedin mant(a) has a weight of2exp(a)−nm . All less significant
bits in a are assumed to be zero. To subtract the less significant mantissa bits ofb from a, the less significant bits
of a must borrow2exp(a)−nm from the more significant bits. This borrow makes setting themantissa, exponent, and
complement flag of the residual for this case identical to Case 2. However, the result should be added top, sosign(rr)
is set to the sign ofa.

As with Case 2,a + b = p + (2exp(a)−nm − rr) is always true for round-to-nearest, but not necessarily true for
other rounding modes.

Case 4: a and b have opposite signs, the result is rounded up; In Case 3, the magnitudes ofa andb are subtracted
to give a residual value of2exp(a)−nm − rr. In Case 2, rounding has increasedp, so we need to subtract the residual
from 2exp(a)−nm . In this case both situations are true, so we must subtract the residual value twice and subtract it from
p. That is,r = 2exp(a)−nm − (2exp(a)−nm − rr) = rr. Thus we clear the complement flag, but setsign(r) to the
opposite ofsign(a).

2.1.1 Architectural Requirements

Figure 1 shows a high-level schematic example of a floating-point adder with a residual register. There are many
ways to implement a floating-point adder, but the logic that performs the functions inside the dashed lines is typically
present somewhere in the adder. Whether the adder is structured very much like the one shown here, is a two-path
design, or some other design, we assume the residual register circuitry is able to use these signals. The logic inside the
area labeled “Residual Register” is added to the basic floating-point adder to support the residual register.

The adder is broken down into three logical stages: Pre-normalization, Addition, and Post-normalization, though
the actual implementation may have more or fewer stages. ThePre-normalization stage determines which addend is
smaller and shifts its mantissa to align it with the mantissaof the larger addend. During pre-normalization theSMASK
block masks off the bits in the smaller mantissa that werenot lost due to shifting, leaving those that were lost. The
least significant bit of the smaller mantissa is always in therightmost position, so no shifting is required. The exponent
difference, which is used to align the mantissas is also usedto determine how many bits to mask.

5

AS AE AM

CS CE CM

BS BE BM

EDIFFRSCF

Register File

Residual Register

Pre-normalization

Addition

Post-normalization

AE - BE

Shift

LMLELS SMSESS

BMBEBSAMAEAS

SMASK

SETG

RE RM

grs

grs+

Complement

Complement

SUB

+

-

Normalize

ROUNDEXP_ADJ

0 1

M

Cout

nm

0 1

MOVRR

0 10 1

Exp. Compare
EXP SHIFT

Compare & Swap

Figure 1: High-level schematic of a floating-point adder with a residual register

If the addition results in a carry out, the position that was the least significant bit of the addends will become the
guard bit of the primary result. This guard bit is inserted tothe left of the current most significant bit in the residual to
become the new most significant bit.

During anADD or SUB instruction, theMOVRR flag is zero, allowing the sign, exponent, and mantissa bits to
flow from Addition to Post-normalization as usual. After theprimary result has been normalized theROUND signal
indicates whether rounding occurred (i.e., the unrounded result is different from the rounded result.) The residual
register stores the complement flag, sign bit, and exponent,as described above, based on whether rounding occurred.

During aMOVRR instruction, Pre-normalization and Addition are skipped,and theMOVRR signal is asserted. The
residual sign is copied to the result. The exponent is computed from the stored exponent, the exponent difference, and
the complement flag, as described above. The exponent computation is essentially an addition. If the complement flag
is set, the mantissa is complemented. In any case, the mantissa is shifted to normalize the residual result using the
same alignment circuitry used byADD andSUB instructions for post-normalization.

The additional delay with the residual register is not much more than without the residual register. The multi-
plexers between Addition and Post-normalization are on thecritical path for getting results. Other residual register
computations will not affect the critical path unless the additional loading on signal lines causes significant delay.
Normalization of the residual could be done at the same time as the computation of the result, but an additional barrel
shifter would be needed. Having a residual register does notplace any additional demand on the existing floating-point
unit (FPU) unless and untilMOVRR is executed, at which time the FPU’s existing alignment circuitry can be used to
normalize the residual.

The residual register as described here holds the residual from the most recent FPU operation. In some processors,
it may be necessary to have multiple physical residual registers corresponding to the relevant positions within a su-
perscalar pipeline. Many designs can profit from having multiple addressable residual registers so that more complex
compile-time instruction orders can be accommodated. However, none of these variations requires circuitry that is
more complex than that usually used for tracking values as they move through the pipeline.

6

Algorithm 1 Native-pair normalization without using the residual register
nativepair nativepair_normalize(native hi, native lo) {

nativepair r; native hierr;
r.hi = hi + lo; hierr = hi - r.hi; r.lo = hierr + lo;

return(r); }

Algorithm 2 Native-pair normalization using the residual register
nativepair nativepair_normalize(native hi, native lo) {

nativepair r;
r.hi = hi + lo; r.lo = getrr();

return(r); }

Furthermore, the use of one or more implicitly-set residualregisters does not require that changes be made to a
machine’s basic floating-point instruction encoding or out-of-order instruction scheduling. The only change to the
instruction set architecture would be the addition of aMOVRR instruction, which could either implicitly operate on the
preceding instruction’s residual register or, preferably, can be parameterized to specify the residual from a particular
operation. For example, the residual from thekth most recent residual-generating operation might be selected by
specifyingk in theMOVRR instruction as ”MOVRR reg,k”. In this case, a fixed-size pool ofq residual registers is
treated as a circular queue, and aMOVRR instruction could be placed anywhere after the instructionthat generates
the desired residual up toq − 1 residual-generating instructions later. The translationof k into a renamed register
reference can be done at instruction decode. Additional flexibility in out-of-order execution can be obtained by simply
constrainingMOVRR instructions to specifyingk < q − 1 .

Alternatively, if the residual register(s) are made accessible as operand sources for the basic floating-point opera-
tions, there would be no need forMOVRR instructions. This would require modifying the instruction set architecture by
either reserving existing register names or changing the instruction encoding to allow an increased register namespace
that would include residual registers. To obtain the maximum benefit from this approach, the residual results need to
be immediately available as operands to later instructions; depending on details of the FPU architecture, that might
require normalization of the residual values using additional hardware dedicated to that purpose.

2.1.2 Using the Addition Residual Register for Native-Pair Arithmetic

In general, multiple different native pairs of floating-point numbers can represent the same number. To avoid the
awkwardness of non-unique value representations, all of the basic native-pair operations end with a normalization
step, shown in Algorithm 1, to convert the native-pair result into a canonical normal form. We use simple C syntax
with the equivalent of one instruction per statement as a portable assembler for this and all of our other algorithm
listings. Given an unnormalizedhi andlo native pair, the normalizednativepair value is created without the
residual register. The resulting native-pair is equal to the original number, but normalized so that the exponents of the
hi andlo components are set so that the most significant bit oflo has less significance than the least significant bit of
hi. Two native numbers can be added usingnativepair_normalize to produce a native-pair result, assuming
the magnitude of thehi input is not smaller than that of thelo input. In fact, this constraint on the inputs comes from
a deliberate choice made in favor of reducing computationalcost; throughout the native-pair routines discussed in this
paper, simplifications have been made where the accuracy would be affected only in the least significant bit.

The nativepair_normalize function can use the residual register to get the low component directly, as
shown in Algorithm 2 – and this version needs no constraints on the magnitude of its inputs. We assumegetrr()
is an inline function that returns the residual register using a singleMOVRR instruction. This implementation re-
moves one instruction by storing the residual resulting from adding the high and low components. While one in-
struction may not seem like much, every basic operation endswith a normalization step. Saving an instruction in
nativepair_normalize reduces the instruction count of every other operation.

Addition and subtraction can make good use of the residual register too. Adding a native floating-point number
to a native-pair is common when processing input data. Algorithm 3 adds a native number to a native-pair without
residual register hardware. It first adds the native numberb to the high component ofa, then computes the residual
result, adds it to the low component, and finally normalizes the result. Algorithm 4 computes the same result using the
residual register. It replaces the five instructions to compute the residual with a single instruction to get the residual.

7

Algorithm 3 Add a native floating point number to a native-pair without residual register hardware
nativepair nativepair_native_add(nativepair a, native b) {

native hi = a.hi + b; native bhi = hi - a.hi;
native ahi = hi - bhi; native bhierr = b - bhi;
native ahierr = a.hi - ahi; native hierr = bhierr + ahierr;
native lo = a.lo + hierr;

return(nativepair_normalize(hi, lo)); }

Algorithm 4 Add a native floating point number to a native-pair using residual register hardware
nativepair nativepair_native_add(nativepair a, native b) {

native hi = a.hi + b; native hierr = getrr();
native lo = a.lo + hierr;

return(nativepair_normalize(hi, lo)); }

Adding two native-pair numbers requires one more instruction than adding a native to a native-pair. Algorithm 5
shows a branch-free native-pair addition algorithm. The residual from adding the two hi components is stored in
ahierr orbiherr, depending on the values ofa andb. Whena > b, bhierr contains the residual andahierr
is zero, otherwiseahierr contains the residual andbhierr is zero. Both residual terms are computed because on
modern architectures computing bothahierr andbhierr is faster than using a conditional to decide which one
to compute. Algorithm 6 shows an equivalent algorithm usingthe residual register. It eliminates five floating-point
operations to computehierr by simply retrieving the residual from the residual register. Overall, addition without
the residual register takes11 instructions compared with6 for addition with the residual register.

The algorithms for subtraction are similar to addition, except that thehi andlo components of the two operands
are subtracted instead of added. Algorithm listings are omitted from this paper in the interest of space.

2.1.3 Instruction-Level Performance Implications

The multitude of different variations in instruction set architecture and floating point unit design make it difficult
to determine the precise impact of the proposed residual mechanism on instruction-level performance; for example,
IA32’s use of two-register rather than three-register instruction formats forces insertion of an additional instruction
where neither source register can be overwritten. Delays infetching memory operands also can hide the performance of
the processor [19]. Examination of the instruction data flowgraphs enables the properties to be compared independent
of these issues. Native-pair addition without and with addition residual support is shown in Figure 2. Note that SUBR
is used to represent a subtract instruction in which the operand order shown in the graph is reversed from the usual
left-to-right minuend-to-subtrahend order.

Figure 2 clearly shows that use of residual hardware yields asignificantly less complex structure. To determine
how dramatic the improvement is, it is necessary to obtain reasonable estimates of the pipeline timing characteristics.
Detailed pipeline performance numbers have been publishedfor the latest processors from Intel[20] and AMD[21]
using the scalar SSE floating point instructions; these numbers can serve to approximate the expected pipeline charac-
teristics independent of the instruction set. AnADDSS orADDSD instruction has a latency of3, 4, or5 clock cycles on
various Intel processors and4 on AMD64 processors, thus, eachADD orSUB typically would have a latency of4 clock
cycles. TheMOVRR operation only uses the normalization hardware at the end ofthe floating-point pipeline, clearly
yielding a lower latency; a latency of1 clock cycle might be practical, but let us conservatively assume a latency of
2 clock cycles. By these numbers, the complete latency of the native-pair add without use of residual hardware is the

Algorithm 5 Native-pair addition without the residual register
nativepair nativepair_add(nativepair a, nativepair b) {

native hi = a.hi + b.hi; native lo = a.lo + b.lo;
native bhi = hi - a.hi; native ahi = hi - bhi;
native bhierr = b.hi - bhi; native ahierr = a.hi - ahi;
native hierr = bhierr+ahierr; lo += hierr;

return(nativepair_normalize(hi,lo)); }

8

Algorithm 6 Native-pair addition with the residual register
nativepair nativepair_add(nativepair a, nativepair b) {

native hi = a.hi + b.hi; native hierr = getrr();
native lo = a.lo + b.lo; lo += hierr;

return(nativepair_normalize(hi,lo)); }

a.hi

Add

Sub

SubR

a.lo

Add

b.hi

Sub

b.lo

Sub

Add

Sub

Add

Add

Add

r.hi

r.lo

a.hi

Add

a.lo

Add

b.hi b.lo

MovRR

Add

Add

r.hi MovRR

r.lo

Figure 2: Native-Pair Addition Data Flow, Conventional & Residual Algorithms

9

PROD[2nm-1:0]

AS AE AM BS BE BM

Register File

X

nm

2nm

nm

CS CE CM

RSCF

Residual RegisterNormalization

RE RM

Complement

+

-

Normalize

ROUNDEXP_ADJ M

nm0 1

MOVRR

0 10 1

+

+

EXP_OFFSET

PROD[nm-1:0]PROD[2nm-1:nm]

Figure 3: High-level schematic for the multiply residual register

time for a critical path containing9 instructions:9 × 4 = 36. Using the proposed residual hardware, there are just
3 conventional instructions in the critical path. However, accessing the residuals might require executing two more
instructions that also are on the critical path – theMOVRR instructions discussed earlier. Thus, the residual support
yields a total latency of3 × 4 + 2 × 2 = 16 cycles, for an expected2.25× speedup. Alternatively, at the significant
additional expense of duplicating normalization hardware, it would be possible to absorb theMOVRR instructions into
theADDs that generated the residuals, yielding3 × 4 = 12 cycle latency, for an expected3× speedup.

Due to overlap, a sequence of dependent native-pair adds does not incur the full latency for each operation. Without
residual hardware, the hi portion of the result is available8 cycles before the lo portion and, fortuitously, delaying the
lo portions of an input to the algorithm by8 cycles is not sufficient to alter the critical path; thus, thethroughput per
native-pair add is one new operation every36 − 8 = 28 cycles. Using the residual hardware, the same effect occurs,
but the extraMOVRR in generating a lo result precisely matches the extraMOVRR on the path that does not use the lo
inputs; this leaves16 − 2 = 14 cycles, or exactly2× speedup over the algorithm not using the residual hardware.

Although the amount of parallel execution permitted by eachof the two approaches is primarily a function of the
pipeline structure, both methods can be executed with minimum total latency within a2-way pipeline. However, the
simpler and more regular dependence graph for the residual hardware algorithm yields a lower average number of live
values. A smaller live count means fewer registers are needed to hold temporaries, which in turn implies more other
work can be intermingled with the native-pair add’s instructions to fill empty pipeline slots.

2.2 Native-Pair Multiplication

Setting the residual register after multiplication is muchsimpler than after addition or subtraction. Multiplication of
two n bit numbers produces a result with up to2n bits. Themant(rr) stores the lown bits of the product after
a multiply, andexp(rr) is set toexp(p) − (nm + 1) to align themant(rr) with p. When the result is rounded
down, the sign is set to match the sign of the product and the complement flag is cleared. Ifp is rounded up then
a · b = p+ r = p−2exp(p)−nm + rr, sor = 2exp(p)−nm − rr. That is, residual register gets the opposite sign ofp and
the complement flag is set. A high-level schematic to implement the multiply residual register is shown in Figure 3.

The residual is computed and stored in the residual registeraccording to the rules outlined above. TheMOVRR
instruction optionally complements the mantissa before aligning and storing it. As with the addition residual register,
this design adds multiplexers in the critical path. The delay added by the multiplexers may limit the clock cycle time.
The implementation in Figure 3 assumes that all2n product bits are available. Many current multiplier architectures
only compute the carries for low order bits in the product. For these multipliers, additional hardware is required

10

Algorithm 7 Native-pair multiply without the residual register
nativepair nativepair_mul(nativepair a, nativepair b) {

nativepair tops = native_mul(a.hi, b.hi);
native hiloa = a.hi * b.lo;
native hilob = b.hi * a.lo;
native hilo = hiloa + hilob;
tops.lo += hilo;
return(nativepair_normalize(tops.hi, tops.lo));

}
#define NATIVEBITS 24
#define NATIVESPLIT ((1<<(NATIVEBITS-(NATIVEBITS/2)))+1.0)
nativepair native_mul(native a, native b) {

nativepair c;
#ifdef HAS_FUSED_MULADD

/* Actually written for fused multiply-subtract... */
c.hi = a * b; c.lo = a * b - c.hi;

#else
native asplit = a * NATIVESPLIT;
native bsplit = b * NATIVESPLIT;
native as = a - asplit;
native bs = b - bsplit;
native atop = as + asplit;
native btop = bs + bsplit;
native abot = a - atop;
native bbot = b - btop;
native top = atop * btop;
native mida = atop * bbot;
native midb = btop * abot;
native mid = mida + midb;
native bot = abot * bbot;
c = nativepair_normalize(top, mid);
c.lo += bot;

#endif

return(c); }

Algorithm 8 Native-pair multiply using the residual register
nativepair nativepair_mul(nativepair a, nativepair b) {

native tophi = a.hi * b.hi; native toplo = getrr();
native hiloa = a.hi * b.lo; native hilob = b.hi * a.lo;
native hilo = hiloa + hilob; toplo += hilo;
return(nativepair_normalize(tophi, toplo)); }

to compute the bottomn bits of the product. Though adding support for the low order bits adds complexity to the
multiplier, no more hardware is required than is needed to implement a fusedMADD instruction.

2.2.1 Using the Multiply Residual Register for Native-Pair Arithmetic

Algorithm 7 shows how to multiply two native-pair numbers without residual register hardware. Thenativepair_mul
function begins by usingnative_mul to multiply the two high components, which produces a native-pair result from
the multiplication of a native value with a native-pair. If the processor has a fused multiply-subtract instruction that
preserves the full precision of the product before adding,native_mul can be implemented in just two instructions.
The first computes the product in native precision and the second subtracts the rounded product from the full product
to get the residual. If fused multiply add is available, but not fused multiply subtract, a negate instruction is required
to compute-c.hi.

Some CPUs have no multiply-add instruction and some processors that do, like GPUs, are not guaranteed to
preserve precision with their multiply-add instruction [22]. For these processors the code in the#else clause of
native_mul is used. This code splits the two factors into high and low components and does component-wise
multiplication of the components. The residual register greatly simplifies native-pair multiplication when a fused
multiply-add is not available.

11

Mul

SubR

Add

a.hi

Mul Mul

a.lo

Mul

b.hi b.lo

r.hi

r.lo

Add

Sub

Add

Add

a.hi

Mul Mul

a.lo

Mul

b.hi b.lo

r.hi

r.lo

MovRR

Add

Add

MovRR

Add

NATIVESPLIT

Mul Mul

a.hi

SubR

SubR

Mul

a.lo

Mul

b.hi

SubR

SubR

b.lo

r.hi

r.lo

Add Add

Mul

MulMul Mul

Add

Sub

Add

Add

Add

Add

Sub

Add

Add

Add

Figure 4: Native-Pair Multiplication Data Flow; Conventional, Fused Operation, & Residual

Algorithm 8 shows anativepair_mul implementation using the residual register. It requires the same number
of floating-point instructions as the fused multiply-add version, counting bothMOVRR andMADD instructions as single
floating-point operations. When fused multiply-add is not available, the residual register replaces17 instructions in
native_mul with two instructions, reducing the number of FLOPs fornativepair_mul from 24 instructions to
8 instructions. When a fused-multiply add instruction is available, the residual register does not reduce the number of
instructions. However, fused multiply-add requires a wider adder.

2.2.2 Instruction-Level Performance Implications

To better understand the instruction-level performance ofthe native-pair multiply alternatives, it is useful to again
apply the methodology used in Section 2.1.3. According to the pipeline performance numbers published for the
latest processors from Intel [20] and AMD [21] using the scalar SSE floating point instructions, aMULSS or MULSD
instruction has a latency of 6 or 7 on various Intel processors and 4 on AMD64 processors. Because this is a relatively
large difference, we will compute the timing twice, once using 4 and again using 6.

Figure 4 shows the data flow graphs for the three alternative native-pair multiply algorithms. The conventionally
coded native-pair multiply critical path consists of12 ADD or SUB operations and2 MUL, which produce a total
latency of either14×4 = 56 or 12×4+2×6 = 60 cycles. Using an expensive-to-implement fused multiply-subtract
instruction dramatically improves the total critical pathlatency, yielding6× 4 = 24 or 5× 4+1× 6 = 26 cycles for a
speedup of about2.3× in either case. The use of residual hardware is even more effective. The five-instruction critical
path using the proposed residual hardware costs either4 × 4 + 1 × 2 = 18 or 3 × 4 + 1 × 6 + 1 × 2 = 20 cycles to

12

Algorithm 9 Native-pair division without a residual register
nativepair nativepair_div(nativepair a, nativepair b) {

native qhi = a.hi / b.hi;
nativepair d = native_mul(qhi, b.hi);
native ahierr = a.hi - d.hi; native aerr = ahierr - d.lo;
native anew = aerr + a.lo; native divb = qhi * b.lo;
native lo = anew - divb; native qlo = lo / b.hi;

return(nativepair_normalize(qhi, qlo)); }

execute, producing3.1× or 3× speedup over the conventional code and about1.3× speedup over the fused multiply
add code.

While the critical path length serves as a lower limit on the code’s latency, it is appropriate to also consider the level
of parallel execution that must be sustained so that performance is not limited by pipeline width. Here, a2-way pipeline
structure is not sufficient to complete in the critical path time for either the conventional or fused multiply-subtract
implementations. In contrast, the residual algorithm has only one spot that might appear to need a3-way pipeline
structure, and the latency of theMOVRR instruction is low enough so that this can be avoided by careful instruction
scheduling. If throughput of theMUL operation is at least one operation every two clock cycles (both Intel [20] and
AMD [21] quote one operation every cycle), scheduling theMUL of a.hi andb.hi to come after the other twoMUL
operations have been initiated allows the residual algorithm to achieve the minimum possible latency using a2-way
pipeline structure.

As for native-pair add, the complete latency is not experienced when a dependent series of native-pair multiply
operations is executed using the conventional algorithm;8 cycles can be saved by overlapping generation ofr.lo
with the start of the next computation. Although both the other algorithms also share the characteristic thatr.lo is
completed later thanr.hi, thea.lo andb.lo inputs are on the critical path, so no speedup by overlap is possible.
A sequence of native-pair operations interleaving add and multiply will allow overlap using these algorithms, but only
between the end of multiply and start of add. This improves the multiply throughput to one operation every16 or 18
cycles using the fused multiply-subtract or one every17 or 19 cycles using the residual algorithm. While this sounds
better for the fused operation, in fact the pipeline width needed to handle the native-pair multiply in that many cycles
would actually allowtwo such operations to be performed every17 or 19 cycles using the residual algorithm.

2.3 Native-Pair Division and Square Root

Without any additional hardware, Algorithm 9 implements native-pair division by computing an approximation of the
quotient and then multiplying the approximation by the divisor to obtain a refined quotient term. This error term is
essentially the remainder of the first division.

Compared to addition, subtraction, and multiplication, floating-point divide instructions typically have a very high
latency. Current processors from Intel [20] take23 or 32 cycles forDIVSS and32, 38, or 39 for DIVSD; those from
AMD [21] take 16 for DIVSS and20 for DIVSD. Although it is possible to implement a residual register for divide,
the savings in cycles per native-pair operation is not sufficient to justify the circuit complexity because the execution
time still would be dominated by the two divide instructionsneeded. The native-pair square root algorithm has similar
issues.

A modest speedup, typically less than1.2× , can be obtained by using the multiply and add residual registers for
native_mul andnativepair_normalize.

2.4 Native Fused Multiply-Add

A fused multiply-add is advantageous when computinga × b + c if a × b has the opposite sign asc, and a magnitude
close toc. A fused multiply-add instruction uses an adder with the full 2nm-bits of precision in the product to minimize
the loss of accuracy. If the hardware does not support fused multiply-add, it can be simulated in software using the
native_mul function listed in Algorithm 7. Thenative_mul function takes17 instructions to multiplya × b
and two more instructions to addc to the high and low components of the product. Algorithm 10 shows how residual
register hardware can implement a fused multiply-add usingsix instructions and approximately18 to 20 cycle latency
from the multiply inputs; the latency from the add input is12 to 14 cycles. The producta × b is stored inprod_hi

13

Algorithm 10 Simulated Fused Multiply-Add using a residual register
native fused_madd(native a, native b, native c) {

native prod_hi = a * b; native prod_lo = getrr();
native sum = prod_lo + c; native sum_res = getrr();

sum = sum + prod_hi; return sum + sum_res; }

andprod_lo, the sum is accumulated insum, and the residual bits are stored insum_res. The high component of
the product is then added, followed by thesum_res, in case addingprod_hi causes heavy cancellation.

The residual register hardware is simpler than that for a fused multiply-add instruction because the multiply-add
requires an adder twice as wide as the native floating-point size. Moreover, completing both the multiply and the add
within the same cycle can force a longer clock period.

3 Residual Register Algorithm Validation

Pairs of numbers in pseudo-random sequences based on two of those described by McNamee [23] are used to validate
the residual register computations for both add and multiply. Numbers in the first sequence are randomly generated
with a Gaussian distribution having a zero mean and unit standard deviation. The second sequence has pseudo-
random numbers of the form±10xi. The sign is randomly determined with each sign equally likely. The xi’s are
pseudo-random numbers with Gaussian distribution having zero mean and standard deviation ofσ, but values greater
than+σ are limited to+σ, and values less than−σ are limited to−σ. The addition test usesσ =35 to exercise large
portion of the floating point range. The multiplication testusesσ = 17 to avoid a large number of the results being
out of the range representable with an 8-bit exponent.

The adder simulation program computes thenativepair sum of twonative numbers using both Algorithm 3
and Algorithm 4. Since both numbers are nativea.lo is set to zero in both algorithms. Algorithm 3 is implemented
straightforwardly as listed. The residual result for Algorithm 4 is computed by decomposing the input floating-point
numbersa andb into their sign, exponent, and mantissa components. The simulation program emulates the hardware
described in Section 2.1 to compute the primary sum and residual results of addinga andb. The results of the two
algorithms are compared and an error is flagged if they differ. For each test sequence, one billion pairs of numbers
were evaluated and no errors were found.

The multiplier testing program computes thenativepair product of twonative numbers using one algorithm
that does not rely on a residual register and one that does usea simulated residual register. The software-only algorithm
is similar to Algorithm 7, but optimized for twonativemultiplicands, rather than twonativepairmultiplicands.
Likewise the simulated residual register algorithm is based on Algorithm 8, but withnative multiplicands. As
with the addition simulation, the residual is computed by decomposing the input floating-point numbers into integers
representing their sign, exponent, and mantissa components. The simulated floating-point numbers are manipulated as
described in Section 2.1 to compute the primary and residualresults. The results of the two algorithms are compared
and an error is flagged if they differ. For each sequence, one billion pairs of numbers were evaluated and no errors
were found.

4 Speculation Support

With or without a residual register, native-pair arithmetic requires multiple native floating-point operations for every
native-pair operation. The only reason to use native-pair floating-point is if the native result is notaccurateenough.
With speculative precision [18], an application optimistically tries parts of its computation at a low precision. If an
algorithm-dependent accuracy check fails, the computation can be re-executed using higher-precision arithmetic [18],
or the low-accuracy results can be refined using higher-precision arithmetic [24],[25].

This paper introduces inexpensive hardware extensions to dramatically decrease the computation required to track
two common causes of summation errors: cancellation and absorption. Cancellationoccurs primarily in summing
long sequences. When numbers with opposite signs and similar magnitudes are added, the most significant bits
cancel, leaving fewer significant bits in the result. Mantissa bits from smaller numbers added before or between the
canceling numbers are lost.Absorptionhappens when the magnitudes of two numbers being added or subtracted differ
by enough so that the smaller is treated as zero.

14

Algorithm 11 Usingmax_sum to detect heavy cancellation
native array_sum(native ar[], int len, native *sum) {

native lsum = ar[0]; native max_sum = lsum; int i;
for (i=1 ; i<len; ++i) max_sum = max(max_sum, lsum += ar[i]);

return(((max_sum - (*sum = lsum)) > THRESH) ? SPEC_FAIL : SUCCESS); }

The IEEE 754 standard requires a flag to be set, and provides the option of an exception occurring, whenever a
floating-point operation generates an inexact result. Mostsoftware does not enable the inexact result exception because
handling an interrupt every time a result is rounded up or down would seriously impact performance. We propose two
additional hardware features to help software decide whether recomputing at higher precision is warranted.

The first is theabsorption counter.Many processor architectures have performance counters totrack CPU events
like cache misses, floating-point operations, and pipelinestalls. The absorption counter is a performance counter that
is incremented whenever absorption occurs during an addition or subtraction. An application can use it to gauge how
much error may be accumulating due to absorption. For example, an application using round-to-nearest rounding may
sum a long sequence of numbers. If at the end of the sequence, the absorption counter is above a threshold, then the
sequence should be recomputed. The setting of the thresholddepends on the application; in general, the error directly
caused by2n absorption events is expected to be no more thann bit positions worth of accuracy. Thus, it might also
be useful to allow triggering an interrupt based on a specificcount being reached.

To help reduce error due to cancellation, we propose adding apeak exponent register. The concept of measuring
cancellation also was used by Dumas and Matula; they proposed hardware that sums separate positive and negative
lists of numbers using “un-normal addition” and counting leading zero bits in an extended summation mantissa [26]. In
contrast, our peak exponent register works with a conventional adder and normalization, without requiring an extended
mantissa (although it also works with native-pairs). Whenever two numbers are added or subtracted, the exponent of
the larger magnitude number is compared with the peak exponent register. If an operand has a larger exponent than is
stored in the register, the register is updated with the current operand’s exponent. A program can test for cancellation
by clearing the exponent register before beginning the sum and comparing it with the exponent of the result at the end
of the sum. The difference between the peak exponent and the sum exponent indicates how much cancellation has
occurred.

The simplest equivalent software technique would be to keeptrack of the maximum intermediate sum, as shown
in Algorithm 11. Compared with simply summing the numbers, this technique would require dedicating a register and
executing a maximum operation per element summed. At the endof the sum, the exponent ofmax_sum is the same
as the information in the peak exponent register.

4.1 Speculation Experiments

To test the effectiveness of speculation, we used two data sets taken from those McNamee [23] used to evaluate
summation accuracy. The first data set, we call “N(0, 1)”, is a sequence of4, 096 Gaussian distributed pseudo-random
numbers with zero mean and unit standard deviation. The second data set is called “Random Heavy Cancellation”.
It is a sequence of4, 096 pseudo-random numbers of the form±10xi. Thexi’s are pseudo-random numbers with
Gaussian distribution having zero mean and standard deviation of 35, but values greater than+35 are limited to+35,
and values less than−35 are limited to−35. The sign is also randomly determined with each sign equallylikely. All
the test data values were mapped into exact representationsin the IEEE 75432-bit format so that the inputs are exactly
the same for all precisions tested.

A simulation program computed the sum of1, 000, 000 sequences from each data set using32-bit floating point,
64-bit floating point, and32-bit native-pair and compared them with304-bit floating-point sum generated with the
GNU Multi-Precision library (GMP) [14]. For each sequence,we computed the number of bits equivalent to the GMP
answer.

Figure 5 shows the number of bits in the32-bit sum equivalent to the GMP reference sum as a function of the
difference between the peak and sum exponents. For both datasets, the lower bound on number of bits equivalent
decreases linearly as the difference between the peak exponent and the sum exponent increases. The number of bits
equivalent varies widely at each exponent difference, indicating that cancellation often does not cause the worst case
behavior.

The difference between peak exponent and sum exponent can beused as a speculation threshold. Figure 6 shows

15

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20
B

its
 E

qu
iv

al
en

t

Peak Exponent - Sum Exponent

N(0,1)
Random Heavy Cancellation

Figure 5: Number of bits in the32-bit sum equivalent to the GMP reference sum

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20

%
 o

f T
im

es
 S

pe
cu

al
tio

n
F

ai
le

d

Speculation Threshold

N(0,1)
Random Heavy Cancellation

Figure 6: Speculation failure rate as a function of speculation threshold

what percentage of the time speculation will fail when the difference between peak exponent and sum exponent being
greater than the threshold triggers speculation failure. The y-axis is plotted in log scale to show the exponential
decrease in speculation failure as more sum bits are allowedto be in error. For example, in Figure 5, the minimum
number of bits equivalent for a difference of five is13 bits, and for a difference of eight the minimum bits equivalent
is 10. With a threshold of five we would expect a speculation failure rate of about1.5 %, and about0.2 % at a
threshold of eight. Previous work has shown native-pair arithmetic to be about11 times slower on several different
architectures [18] (without hardware support.) Thus on average computing a sum of4, 096 number with speculation
would take about17 % longer with a threshold of five or about2.2 % longer with a threshold of8.

Figure 7 shows log scale histograms of the percentage of bitsin each sum that are equivalent to the GMP reference
sum. In both data sets64-bit data preserves precision significantly better than32-bit floating point. In fact, for the
worst case in Figure 7(a), the32-bit sum had only three bits equivalent to the reference, compared to47-bits for64-bit
floating point. For over99 % of cases,32-bit floating point had15 bits or more equivalent to the reference as opposed
to 53 bits for 64-bit floating point. Native-pair had a worst case of38 bits equivalent with over99 % of all cases
having49 bits or more equivalent. Native-pair getting over48 bits equivalent is somewhat surprising since there are
only 48 bits available in the two24-bit mantissas. However, when zeros follow the high component of a native-pair,
the exponent of the low component is decreased, allowing more bits to be represented. In a few cases, the native-pair
numbers had more than100 bits equivalent to the reference answer, but this happened in only 52 out of 1, 000, 000
sums.

The curve labeled “32-Bit Float with Speculation”, was generated by setting a threshold difference between peak
and sum exponent of eight. When the difference falls below eight, the sum is recomputed with native-pair. As a result
the “32-Bit Float with Speculation” curve matches the “32-Bit Float” curve down to10 bits equivalent. Below10 bits
equivalent, the difference between peak exponent and the sum exponent is greater than eight, speculation fails, and

16

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140

P
er

ce
nt

 o
f S

am
pl

es

Bits Equivalent

32-Bit Float
64-Bit Float
Native-Pair

32-Bit Float, with Speculation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60

P
er

ce
nt

 o
f S

am
pl

es

Bits Equivalent

32-Bit Float
64-Bit Float
Native-Pair

32-Bit Float, with Speculation

(a)N(0, 1) (b) Random Heavy Cancellation

Figure 7: A histogram showing the percentage of bits equivalent to the reference for each of the32-bit floating point,
64-bit floating point,32-bit native-pair, and32-bit floating point with speculation

native-pair is used. For theN(0, 1) data set, speculation failed2, 002 out of1, 000, 000 times, and for Random Heavy
Cancellation it failed1, 933 out of 1, 000, 000 times. In other words,32-bit precision was accurate enough for about
98 % of the sums, and the performance penalty of native-pair only had to be paid for2 % of the sums.

The execution time for these summations can be estimated from the speculation failure statistics. The summation
of n native-pair numbers using a native-pair accumulator will taketnp,sum = ntnnp,add, wheretnnp,add is the time
required to add a native number to a native-pair number. The summation of the same sequence will takentadd time
when speculation succeeds, wheretadd is the time required to perform a native addition. When speculation fails, the
summation will takentadd + ntnnp,add time. Thus, the expected summation time for a given sequenceof numbers is
tsum = P (speculation succeeds)(ntadd) + (1 − P (speculation succeeds))(ntadd + ntnnp,add), and the expected
speedup compared with native-pair summation is:

speedup =
tnp,sum

tsum

=
tnnp,add

tadd + tnnp,add(1 − P (speculation succeeds))

Assumingtadd = 4 andtnnp,add = 16 as in Section 2.1.3, and a speculation success rate of98%, the expected speedup
using speculation is3.7× that of using a native pair summation.

The expected gain from successful speculation is balanced by the cost of having to recompute the sum at a higher
precision when the expected speedup is1. Using the above latencies and solving forP (speculation succeeds), we
getP (speculation succeeds) = 0.25 when speedup is1. Thus, for the given addition latencies, speculation will be
faster on average as long it succeeds at least25% of the time.

We use native-pair for the summation for simplicity. Similar techniques can preserve residual terms during the
sum [23],[27]. Others get better accuracy by reordering theinput data set [23],[27],[28] but sorting is often impractical
either for memory consumption or performance reasons. The type of speculative execution at lower precision described
above is equally applicable independent of the mechanism used to obtain higher accuracy when such is required.

5 Conclusion

Although32-bit floating-point hardware is now widely available in DSP,SWAR, and GPU processors, and is relatively
cheap to implement even in an FPGA, a significant number of potential applications require higher accuracy results
than32-bit intermediate calculations directly provide. Becausethe primary applications targeted by these processors
do not need higher precision arithmetic, it is not economically justifiable to implement64-bit floating point hardware
support.

Native-pair arithmetic can increase the accuracy of32-bit floating point to be competitive with that of64-bit
floating point; usually slightly poorer, on rare occasions markedly better. This enables applications requiring higher
accuracy to be run on these machines, but native-pair arithmetic typically carries an order of magnitude performance

17

penalty that cancels much of the price/performance advantage enjoyed by32-bit floating point systems. The main
hurdle to using native-pair is the high cost of computing residual terms using standard floating-point instructions.

The cost of using native-pair can be reduced by adding several simple microarchitectural features, without requiring
that higher-precision function units be implemented. The primary change is the augmentation of addition, subtraction,
and multiplication hardware with residual registers: a modest hardware enhancement, changing the instruction set
only in that a new instruction is added to access the residualvalue. Using this modification, a typical floating-point
processor’s native-pair latency is reduced by2.25× for add or subtract and3× for multiply, with additional benefits
in terms of improved instruction-level parallelism.

Still greater savings can be obtained by providing simple hardware support allowing speculative use of native
precision. It is not easy to statically predict when a particular precision will yield sufficient accuracy, but it can
be inexpensive to detect when a result might not have the desired accuracy. Without detrimental impact on latency
or instruction-level parallelism, the peak exponent register and absorption counter implement dynamic detection of
common cases where accuracy might be lost; experiments found that native sufficed more than 98% of the time and
speculation was worthwhile if it succeeded at least 25% of the time.

References

[1] R. Rojas, “Konrad Zuse’s legacy: the architecture of theZ1 and Z3,”Annals of the History of Computing, vol. 19,
pp. 5–16, 1997.

[2] North Star Computers Inc.,Hardware Floating Point Board FPB-A Manual, 25015B, 1977.

[3] T. Blank, “The MasPar MP-1 architecture,”35th IEEE Computer Society International Conference (COMP-
CON), February 1990.

[4] H. G. Dietz and R. J. Fisher, “Compiling for simd within a register,” inLanguages and Compilers for Parallel
Computing(S. Chatterjee, J. F. Prins, L. Carter, J. Ferrante, Z. Li, D.Sehr, and P.-C. Yew, eds.), pp. 290–304,
Springer-Verlag, 1999.

[5] Texas Instruments,TMS320C3x User’s Guide, Texas Instruments Literature Number: SPRU031E, July 1997.

[6] Advanced Micro Devices,3DNow! Technology Manual, 21928, March 2000.

[7] A. Klimovitski, “Using SSE and SSE2: Misconceptions andreality,” Intel Developer UPDATE Magazine, March
2001.

[8] Freescale Semiconductor,AltiVec Technology Programming Interface Manual, June 1999.

[9] O. Hwa-Joon, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. Cottier, B. W. Michael, H. Nishikawa, Y. Totsuka,
T. Namatame, N. Yano, T. Machida, and S. H. Dhong, “A fully-pipelined single-precision floating point unit in
the synergistic processor element of a cell processor,”Symposium on VLSI Circuits, June 2005.

[10] IEEE, IEEE Standard for Binary Floating Point Arithmetic Std 754-1985, 1985.

[11] C. Severance, “IEEE 754: An interview will William Kahan,” IEEE Computer Magazine, vol. 31, pp. 114–115,
March 1998.

[12] J. Turley, “The two percent solution,”Embedded Systems Design, December 2002.

[13] Thinking Machines Corporation,Connection Machine Model CM-2 Technical Summary, Version 5.1, May 1989.

[14] “The GNU MP bignum library.” http://www.swox.com/gmp/.

[15] T. J. Dekker, “A floating-point technique for extendingthe available precision,”Numer. Math., vol. 18, pp. 224–
242, 1971.

[16] S. Linnainmaa, “Software for doubled-precision floating-point computations,”ACM Trans. Math. Softw., vol. 7,
no. 3, pp. 272–283, 1981.

18

[17] D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li, and B. Thompson, “Multiprecision software directory,”
http://crd.lbl.gov/˜dhbailey/mpdist/.

[18] H. G. Dietz, W. R. Dieter, R. Fisher, and K. Chang, “Floating-point computation with just enough accuracy,”
Lecture Notes in Computer Science, vol. 3991, pp. 226 – 233, Apr 2006.

[19] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the efficiency of GPU algorithms for matrix-matrix
multiplication,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware
(HWWS), (New York, New York), pp. 133–137, ACM Press, 2004.

[20] Intel, IA-32 Intel Architecture Optimization Reference Manual, Order Number: 248966-013US, April 2006.

[21] AMD, Software Optimization Guide for AMD64 Processors, Pub. # 25112, September 2005.

[22] B. Lipchak, B. Beretta, P. Brown, M. Craighead, C. Everitt, E. Hart, J. Leech, B. Licea-Kane, B. Poddar, J. Sand-
mel, J. P. Schelter, A. Seetharamaiah, and N. Triantos, “ARB_fragment_program,”OpenGL Extension Registry,
Aug. 2002.

[23] J. M. McNamee, “A comparison of methods for accurate summation,” SIGSAM Bull., vol. 38, no. 1, pp. 1–7,
2004.

[24] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. Dongarra, “Exploiting the performance of 32 bit
floating point arithmetic in obtaining 64 bit accuracy,” Computer Science Tech Report UT-CS-06-574, University
of Tennessee, 2006.

[25] K. O. Geddes and W. W. Zheng, “Exploiting fast hardware floating point in high precision computation,” in
ISSAC ’03: Proceedings of the 2003 International Symposiumon Symbolic and Algebraic Computation, (New
York, NY, USA), pp. 111–118, ACM Press, 2003.

[26] M. Daumas and D. W. Matula, “Validated roundings of dot products by sticky accumulation,”IEEE Trans.
Comput., vol. 46, no. 5, pp. 623–629, 1997.

[27] N. J. Higham, “The accuracy of floating point summation,” SIAM Journal on Scientific Computing, vol. 14, no. 4,
pp. 783–799, 1993.

[28] K. A. Klein, “A generalized Kahan-Babuska summation algorithm,” Computing, vol. 76, pp. 279–293, January
2006.

19

