Low-Cost Microarchitectural Support for Improved FlogtiRoint
Accuracy

William R. Dieter Henry G. Dietz
di et er @ngr. uky. edu hankd@ngr . uky. edu
Electrical and Computer Engineering Dept.
University of Kentucky
Lexington, KY 40506

Abstract

Some of the potentially fastest processors that could efasscientific computing do not have efficient floating-
point hardware support for precisions higher tlarbits. This is true of the CELL processor, all current comitod
Graphics Processing Units (GPUs), various Digital SignmakcBssing (DSP) chips, etc. Acceptably high accuracy
can be obtained without extra hardware by using pairs of@dkbating-point numbers to represent the base result
and a residual error term, but an order of magnitude slowdinamatically reduces the price/performance advantage
of these systems.

By adding a few simple microarchitectural features, acapt accuracy can be obtained with relatively little
performance penalty. To reduce the cost of native-paihmuetic, a residual register is used to hold information
that would normally have been discarded after each flogioigt computation. The residual register dramatically
simplifies the code, providing both lower latency and beitstruction-level parallelism. To support speculative
use of faster, lower precision, arithmetic, a peak expongnitor and an absorption counter are added to measure
potential loss of accuracy.

1 Introduction

Many of the problems that have motivated the developmentwiuters inherently involve real numbers that must be
approximated using finite representations. Fixed-sizeessmtations lead to the simplest and generally most efficie
hardware implementations, so computer hardware has beasded on providing support for operations on a small
number of fixed-size floating-point representations. Thebjgm addressed in this paper is that higher-precision
representations often carry circuit complexity costs thake the support of higher precisions economically infdasi

For example, Graphics Processing Units (GPUs) are desigrssive one purpose: real-time creation of pleasing
2D renderings of scenes involvirBP objects, textures, lighting, etc. For that purpasgbit floating point often is
sufficient, with only the most complex models requiring duiyg) like the accuracy provided [32-bit floating point.
Although a growing number of researchers are working towandg GPUs to accelerate scientific and engineering ap-
plications that require greater accuracy, the number of G&4s requiring higher accuracy th#bit floating-point
operations provide is insufficient to justify the extra citccomplexity required to suppoéti-bit floating point. One
64-bit pipeline has roughly the same implementation cost asttwfour 32-bit pipelines. More graphics applications
will profit from additional low-precision pipelines, andahis what ATI and nVidia build.

The irony is that even in the most sensitive floating-poiqtlaations, the precision d@f4-bit floating point rarely
is needed to represent the answer, but is merely used tossthstithe sequence of operations used in the computation
produces an accura2-bit floating-point result. Accuracy is not the same as ®ieadi; higher precision does not
necessarily imply higher accuracy, nor is higher precisi@only way to achieve better accuracy. Thus, the residual
register architecture discussed in this paper providesnanmaily intrusive way to allow multiple32-bit precision
floating-point values to be used to efficiently extend theus&cy of intermediate computations. Of course, this
approach also can be applied to similarly enhance the aogofany other native precision.

1.1 Floating-Point Hardware Approaches

Floating-point hardware is not a new thing; by 1941, Konrade’s Z3 was executirtp-bit floating-point operations
using a sign bity-bit exponent, and4-bit mantissa[1]. However, the long history of floating-pidiardware supportis
plagued by unavoidable tradeoffs between efficiency andracg. Accuracy traditionally has been associated with the
precision of the mantissas on which floating-point hardwgerates, though our work does not make this assumption.

Hardware efficiently supporting a wide range of floatingmgirecisions using “bit slice” implementations of
operations on a variable-length mantissa has never beemonpbut appears in a variety of systems. From the
late 1970s, the NorthStar FPB-A[2] was an S100 bus floatimigtfzoprocessor board using standard TTL parts to
implement microcoded Binary Coded Decimal (BCD) floatirgrp add, subtract, multiply, and divide with 4, 6,

8, 10, 12, or 14 digit precision and &-bit base10 exponent. In the early 1990s, each of 1lie384 SIMD processing
elements of the MasPar MP1 supercomputer[3] implementatirflp-point operations usingbit slice operations on
the mantissa and specialized normalization hardwarepadth standard microcode provided oBB-bit and 64-bit
IEEE 754 formats, the hardware could efficiently support any mudtipf 4 bits precision up t®4 bits. The primary
problem with sequential slicing approaches is that thegiiehtly yield latency which is a function of precision.

Many computers have processor hardware designed to imptg¢ust one precision of floating-point value which
is considered to be sufficient for the primary applicati@rgéted. This is particularly common in processors intdnde
to work with "natural” data types associated with audio amtew. For such types, the accuracy of commonly-
used analog converters tends to drive the choice of mardigeas-bit converters naturally led td6-bit floating
point and the proliferation of6-bit and20-bit converters has mad-bit floating point particularly appealing. This
evolutionary pattern has been followed by Digital Signatd&ssors (DSPs), SIMD Within A Register (SWAR) [4]
instruction set extensions for conventional processard,byy Graphics Processing Units (GPUS) in high-end video
cards. For example2-bit floating point is featured in many of the popular TI TM®&23x series DSPs[5]. SWAR
extensions such as AMD’s 3DNow![6], Intel's SSE[7], and Miatla’s AltiVec|[8] all initially provided only operations
on datapath-sized vectors 82-bit floating-point values (although these extensions toegal-purpose processors
have more recently taken advantage of the wider datapatiisacsupport4-bit floating-point operations). At this
writing, both nVidia and ATI are marketing high-end GPUsussed or82-bit floating-point support, as is the CELL
processor|[9].

Many mainframe and workstation processor makers have tadtesintage of the fact that the IEEE 754[10] stan-
dard allows operations to be performed using any equal dremnigrecision. The floating-point hardware pipeline(s)
have been designed to use just one precision. Results aed stdhe desired equal or lower precision with little addi-
tional hardware complexity. Perhaps the best known example Intel X87 floating-point model used in processors
from Intel, AMD, Cyrix, etc. The X87 floating-point mechamsallows32-bit, 64-bit, or 80-bit operands and results,
but is essentially aB0-bit pipeline with a small amount of additional hardwarevaling the pipeline to run at either
of the two reduced precisions. Without changing the pigsfirecision, conversions are applied at register loa@/stor
with the strange result that the accuracy of a computationbeadramatically different depending on whether the
intermediate values were kept in registers or convertedstoreéd/loaded from memory. Of course, careful register
allocation can use this fact to provide higher accuracy famgutations while using only as much memory space
and access bandwidth as the lower-precision formats. Ttiggm is that implementing a80-bit, or even a4-bit,
floating-point pipeline requires significantly more hardevthan &82-bit pipeline; further, pur@2-bit operations may
be slower than necessary thanks to pipeline timing beinignigetd for the higher-precision use of the function units.

The reason that2-bit, 64-bit, and80-bit floating-point formats are so common today is that theycadified in the
IEEE 754 standard[10]. IEEE 754 is closely linked to the digmment of Intel’s 8087[11] — the microcoded floating-
point coprocessor that first implemented X87. Before the 1880s, nearly every computer manufacturer had their
own floating-point formats — some manufacturers even hadipteilncompatible formats on different models. IBM’s
systems were well known for bagé floating point, many others used binary and still others usesk10. Floating-
point representations had different sizes as well; the raurob bits in a floating-point value on various machines
included16, 18, 22, 24, 32, 36, 48, etc. Generally, the standardization of floating-pointfats has been a huge help
in ensuring that predictably accurate and reasonably Iplerfioating-point code can be written, but the focus of the
IEEE 754 standard was on producing really good numericatdheristics for a few formats, not on minimizing the
hardware nor maximizing the flexibility.

Within the IEEE 754 guidelines, there is really only one diand mechanism that facilitates higher accuracy
without moving to a higher precision. The concept of a “fusedtiply-add,” here called BADDinstruction, allows the
extra bits that naturally exist as two mantissas are midtifo be preserved through the addition. More specifically,

multiplication of twok-bit mantissas naturally createQk&-bit result, but only the properly-rounded tégbits would

be used as the multiplication result and some hardware amggtes these bits. Within a fudd8DD instruction that
generates albk bits, if the value added to happens to cancel some or all dfitjie bits of the multiplication result,
bits from the normally-discarded low portion of the mardissultiplication result can be retained. In this way, a fused
MADD instruction provides accuracy as high as twice the pretidicshould be noted th&AtADD instructions often are
notimplemented as true fused operations, in which case exsats not used in the addition and no improvementin
accuracy is obtained.

1.2 Floating-Point Software Approaches

Many processors — over 70% of all processors sold in 20024 12) not implement floating-point operations directly
in hardware, instead simulating floating-point operatios#g integer operations to explicitly operate on exponent
and mantissa components each stored as signed integes.vaihés approach has been employed not only in mi-
crocontrollers targeted at low-cost embedded-systemcagtigins, but also in supercomputers aimed at the scientific
computing community. For example, the SIMD processing elgnmardware of the Thinking Machines CM1 and
CM2[13] provided onlyl-bit multiplexor operations from which integer and floatipgint operations of any preci-
sion could be constructed. Thus, floating-point speed ohdividual processing element was traded for a reduction
in circuit complexity that allowed many more processingraats, achieving reasonable floating-point throughput
by parallel execution of up t65, 536 processing elements. There also were many “scaled integeihiques im-
plemented in software on various machines, but these tgabsiwere quickly forgotten as floating-point hardware
support became more common. Multiple precisions can beeimghted easily, if not efficiently, using any of these
integer-based approaches. For example, the Gnu Bignuamyift4] provides a wide range of precisions using native
integers in much the same way that bit-slice hardware imeteations use slices.

An interesting alternative, which is essentially the apgtothat this paper improves upon using new hardware
structures, involves use of multiple floating-point nunsbtr represent error residuals. Each higher-accuracy value
is spread across the mantissas of a sequence of native digatint values in which the exponents in the lower
components serve only to align the mantissas. This genppabach is perhaps best known in its application to
create an approximation to quad precision using 64ebit doubles, where it is commonly referred to dsuble-
doublg15],[16],[17]. Our previous work in this area focused oficéént GPU algorithms for using the approach on
16-bit, 24-bit, and32-bit floating-point formats, speculation algorithms to @vpaying the performance penalty for
more accuracy than necessary, and software implemendgatfahe algorithms optimized that run on a GPU[18]. We
generically refer to this “doubling” of mantissa precisiasnative-pairarithmetic, since a pair of native-precision
values are used to represent each more precise value. Noteative-pair values are not exactly double the precision
of a single native value. The IEEE format always has an indgliéin the most significant position, so the low half
may not be aligned flush with the high half. In other wordspzanay intervene between the two mantissas. The total
number of bits of precision represented by a native-painésrtumber of bits in the two mantissas plus the number
of zeroes between the two mantissas. As discussed in Secfipa pair 0f32-bit floating-point values has onig
bits of mantissa, but typically can perform lik® or more bits. The primary problem is that native-pair arigtio
is slow — usually taking about ten native operations for eative-pair operation. This paper introduces inexpensive
hardware to reduce the cost of native-pair operations.

Like the integer-based schemes above, it is possible to icemiore than two native values to achieve still greater
accuracy. However, the native exponent range becomestthmeaté limit on how many times the native precision can
be multiplied. Because each additional native-formateahust have an exponentthat is adjusted to align its mantissa
as an extension of the mantissa of the previous value, thamigrrange of the constructed multi-precision values is
not equal to that of the native format, but effectively ismoarer. Ignoring this effect was rarely a problem given the
number of exponent bits in an IEEE 754 compliétbit binary floating-point value, but 3-bit floating-point value
only has arg-bit exponent. Thus, a native-pair value will have twicetlagive mantissa precision only if the exponent
of the low value is in range, which implies the high value exgat must be at lea&tl greater than the native bottom
of the exponent range. With @&abit exponent, we have lost nead9% of the dynamic range. Similarly, treating four
32-bit values as an extended-precision value reduces thetigffelynamic range bg x 24, or 72 exponent steps —
which is a potentially severe problem. Put another way,gisinre than teB2-bit floating-point values together would
constrain the exponent to the point that the data type istiftdy a fixed-point value and no additional precision can
be obtained.

2 Microarchitectural Support For Native-Pair

Much of the overhead of native-pair arithmetic comes frormpating the residual or error term resulting from
floating-point arithmetic operations. For addition, sabtion, and multiplication part or all of the residual tersn i
easily obtainable inside the floating-point unit as a sidectfof the native floating-point operation. For example,
when two floating-point numbers are added, the addend watlsitialler magnitude is shifted to the right to align the
radix points of the two addends. Any excess significant bidsdéscarded and a primary result is produced. Native-
pair addition achieves higher precision by storing thealided bits in a second floating-point number. With standard
floating-point hardware, native-pair needs four instiutsito compute precisely the bits that are discarded. Mergov
division and square root use multiplication with a natiarpesult, so speeding up native-pair multiplication will
speed up native-pair division and square root.

We propose adding eesidual registerto save this kind of “left over” information for floating-pui addition,
subtraction, and multiplication. The residual registesimaply a floating-point register with a sign bit, exponent
bits, andn,,, + 2 mantissa bits, whene, is the number of exponent bits in a native floating-point nangmdn,,, is the
number of mantissa bits in a native floating-point, not idahg the leading one bit implied by the IEEE format [10].
The residual register also has a complement flag to indichéghver the residual mantissa should be complemented as
it is moved to an architectural register (see Section 2. Hédbails.)

The value stored in the residual register is not necessaoitynalized, and does not have an implied leading
bit. The lack of normalization is hidden from applicatiomgrams, however, because the residual register cannot be
directly accessed. A simple way to access the residualteggis by adding aVOVRR instruction to the instruction
set architecture. TheMOVRR r eg” instruction copies the residual register value to an dedtural register and
normalizes it to IEEE 754 format. Each arithmetic operativerwrites the previous value of the residual register with
the current residual value. The residual register does maige the primary result produced by any floating-point
instructions. That is, programs that do not use the resitkgister will get the result mandated by the IEEE 754
standard whether they are run on a processor with or witlesidwal register hardware.

Several definitions will be helpful to explain our notatidrhis paper presumes that any input number is precisely
represented in the format used. For example, a variablnnot be assigned a value precisely equa)8 but it can
be assigned th&2-bit IEEE 754 approximation to that value. The sign, expanand mantissa of the floating-point
numberx are denoted agign(x), exp(z), andmant(z), respectively. The primary result of a floating-point optiera
is denotedfi(z oy), and the residual iges(x o y). Whereo may be 4, * —’, or * x". For these operations, the primary
and residual results ideally have the property thaty = fl(x o y) + res(z o y).

IEEE floating-point arithmetic allows for several diffetenunding modes [10]. The propertyo y = fl(zoy) +
res(zoy) holds true for the round-to-nearest mode, but is not ned@ssae for other modes. How the floating-point
unit determines which direction to round does not changedhielual computation. The residual logic only needs to
know that rounding occurred and if it did, which directiom thrimary result was rounded. Whei(a o b) = a o b,
the primary result is precisely correct and the residuati®zWhenfi(a o b) < a o b, the primary resulp has been
rounded dowrio the floating-point value with the next lower magnitudeeThsidual should have the same sign as
ptomakeaob=p+r. If fl(aob) > aob, then p has beemunded upo the value with the next larger magnitude.
Ther should have an adjusted value and the opposite sigrimtiecrease the magnitudeivhen added to it.

2.1 Native-Pair Addition and Subtraction

When two floating-point numbeks andb are added, the addend with the smaller magnitude is shiftedaike its
radix point align with the radix point of the larger-magrduaddend. If signs of both numbers are the same, the
magnitudes are added. If they are different, the magnitadeesubtracted. In either case the result gets the sign of the
larger addend. We discuss addition in detail, but the satitraa — b is performed simply by toggling the sign bit of

b and adding the two numbers. Floating-point adders determtrethew or b has larger magnitude, and swap them

if necessary, so we can assumbas a larger magnitude thamwithout loss of generality.

How the residual register is set depends on the signs of thentunbers and whether rounding occurred when
computing the sum. The mantissa bit$ with significance less thaaf*»(«)—(»=+1) gre stored in the residual register
with the least significant bit in the rightmost position, ahd exponent set tarp(b) whenezp(a) — exp(b) < n,, +1
or the complementflag is not set. Wherp(a) —exp(b) > n,,, +1 and the complement flag is set, the residual register

IMore sophisticated handling of multiple residual registierdiscussed in Section 2.1.1; the discussion here cemersingle residual register
to simplify the exposition.

gets the bits irb with significance ranging frorazp(a) — n,, + 1 down toexp(a) — 2(n,,, + 1), and the exponent is
set toexp(a) — 2(n., +1). The latter case only arises when the rounding mode is ntd setind-to-nearest. The sign
and complement flag are set based on the sigmsasfdb, and whethep is rounded up or down. When the residual
register is moved to an architectural register it is norpealiand potentially complemented as described below. There
are four cases:

Case 1: a and b have the same signs, the result is rounded down or precisely correct; Whena andb with the
same signs are addddis shifted to the right to align its radix point withand the magnitudes are added. The sign
of the residual registegign(rr) is set tosign(a), and the complement flag is cleared. Wheandb have the same
signs and the primary result is not roundge; »r = a + b. The residual value;r, need not be normalized until it is
stored to an architectural register.

Case 2: a and b have the same signs, the result is rounded up; When rounding occurs and andb have the
same sign, the magnitude pfis 2¢#?(2)="= |arger than if it had been rounded down. Fo#- b = p + r to be
true,p +r = p — 262 ""m 4 pp = p — (2%P()=nm _) or = (2¢7P(@)=mm _). Thus sign bit is set to
the opposite okign(a) and the complement flag is set. Whenis copied to an architectural register, tREVRR
instruction computegc*r(®)—"m _ - either using the floating-point adder or by computing the’sweomplement of
the mantissa bits ofr, after shifting to the appropriate position.

It is possible to perform this shifting at the time is stored to an architectural register, however, this would
require holdingezp(a) until that time. To avoid having to stokerp(a), r can be shifted to the right and:p(rr)
increased if necessary so thap(rr) > exp(a) — (n,, + 1). Some accuracy may be lost due to this shifuip(b) <
exp(a) — (n., + 1), but for round-to-nearest mode, this Case 2 only happena fhe 2¢2r(4)=(mm+1) No mantissa
bits are lost when complementing, so the property + b = p — (2¢*P(@)—"m _) is preserved. Accuracy only will
be lost in a rounding mode that cauge® be rounded up whej| < 2¢#P(@) = (nm+1),

Case 3: a and b have opposite signs, the result is rounded down; Whena andb have opposite signs, their
magnitudes are subtracted. The least significant bit siaredint(a) has a weight oge*r(@)—"m All less significant
bits in a are assumed to be zero. To subtract the less significant sariiits ofb from a, the less significant bits
of a must borrow2¢*?(@)—"=from the more significant bits. This borrow makes settingrtrantissa, exponent, and
complement flag of the residual for this case identical tee@adHowever, the result should be added,teosign(rr)
is set to the sign od.

As with Case 2g + b = p + (2¢*P(@)—"m _ pr) is always true for round-to-nearest, but not necessarily for
other rounding modes.

Case4: a and b have opposite signs, theresult isrounded up; In Case 3, the magnitudes@findb are subtracted
to give a residual value a¢*r(®)—"m _ rr_In Case 2, rounding has increagedo we need to subtract the residual
from 2¢#P(@)=nm |n this case both situations are true, so we must subtracesidual value twice and subtract it from
p. Thatis,r = 2¢#P(@)=nm _ (2¢xp(@)=nm _ 1) — . Thus we clear the complement flag, but sgtn(r) to the
opposite ofsign(a).

2.1.1 Architectural Requirements

Figure 1 shows a high-level schematic example of a floatimigtadder with a residual register. There are many
ways to implement a floating-point adder, but the logic thaf@rms the functions inside the dashed lines is typically
present somewhere in the adder. Whether the adder is sedotary much like the one shown here, is a two-path
design, or some other design, we assume the residual megjisigtry is able to use these signals. The logic inside the
area labeled “Residual Register” is added to the basic figgibint adder to support the residual register.

The adder is broken down into three logical stages: Pre-alization, Addition, and Post-normalization, though
the actual implementation may have more or fewer stages.Pf&@ormalization stage determines which addend is
smaller and shifts its mantissa to align it with the mantisfsihe larger addend. During pre-normalization 8MASK
block masks off the bits in the smaller mantissa that weydost due to shifting, leaving those that were lost. The
least significant bit of the smaller mantissa is always irritjletmost position, so no shifting is required. The expdnen
difference, which is used to align the mantissas is also tesddtermine how many bits to mask.

Register File

lAS | AE | AM l l BS | BE | BM
————— [
1]
SuB AS AE AM BS BE BM
Compare & Swap AE - BE
LS LE LM SS SE_SM
D ﬁﬁ@
Pre-normalization
Addition Qm‘:

Exp. Compare
EXP__ SHIFT
ﬁ\o 1 ﬁ\o 1
MOVRR

’Xo 1
RS lEDIFFl l RE | RM l

[‘
I
w L e
+
Post-normalization \ ‘

Residual Register

Normalize

EXP_ADJ M ROUND

] N
%ﬂ

3]

[s[ee [on]

Figure 1: High-level schematic of a floating-point adderwatresidual register

If the addition results in a carry out, the position that waess least significant bit of the addends will become the
guard bit of the primary result. This guard bit is inserteth® left of the current most significant bit in the residual to
become the new most significant bit.

During anADD or SUB instruction, theMOVRR flag is zero, allowing the sign, exponent, and mantissa bits t
flow from Addition to Post-normalization as usual. After tiémary result has been normalized tROUND signal
indicates whether rounding occurred (i.e., the unroundsdlt is different from the rounded result.) The residual
register stores the complement flag, sign bit, and expoasrescribed above, based on whether rounding occurred.

During aMOVRR instruction, Pre-normalization and Addition are skippald theMOVRR signal is asserted. The
residual sign is copied to the result. The exponent is coatpiibm the stored exponent, the exponent difference, and
the complement flag, as described above. The exponent catiguus essentially an addition. If the complement flag
is set, the mantissa is complemented. In any case, the mamdishifted to normalize the residual result using the
same alignment circuitry used BOD andSUB instructions for post-normalization.

The additional delay with the residual register is not muadrerthan without the residual register. The multi-
plexers between Addition and Post-normalization are orcthigal path for getting results. Other residual register
computations will not affect the critical path unless thaiéidnal loading on signal lines causes significant delay.
Normalization of the residual could be done at the same tmte@computation of the result, but an additional barrel
shifter would be needed. Having a residual register doeplaoé any additional demand on the existing floating-point
unit (FPU) unless and untNOVRR is executed, at which time the FPU’s existing alignmentuitrg can be used to
normalize the residual.

The residual register as described here holds the residumalthe most recent FPU operation. In some processors,
it may be necessary to have multiple physical residual tegi<orresponding to the relevant positions within a su-
perscalar pipeline. Many designs can profit from having ipleliaddressable residual registers so that more complex
compile-time instruction orders can be accommodated. KMewaone of these variations requires circuitry that is
more complex than that usually used for tracking values eg tove through the pipeline.

Algorithm 1 Native-pair normalization without using the residual stgr

nativepair nativepair_nornalize(native hi, native lo) {
nativepair r; native hierr
r.hi =hi +lo; hierr =hi - r.hi; r.lo=hierr +1o0

return(r); }

Algorithm 2 Native-pair normalization using the residual register

nativepair nativepair_nornalize(native hi, native lo) {
nativepair r
r.hi = hi +10; r.lo = getrr()
return(r); }

Furthermore, the use of one or more implicitly-set residegisters does not require that changes be made to a
machine’s basic floating-point instruction encoding or-ofibrder instruction scheduling. The only change to the
instruction set architecture would be the addition M@/RR instruction, which could either implicitly operate on the
preceding instruction’s residual register or, preferabhn be parameterized to specify the residual from a péaticu
operation. For example, the residual from #td most recent residual-generating operation might bectezleby
specifyingk in the MOVRR instruction as MOVRR r eg, k”. In this case, a fixed-size pool gfresidual registers is
treated as a circular queue, and/@vRR instruction could be placed anywhere after the instructi@t generates
the desired residual up ®— 1 residual-generating instructions later. The translatibk into a renamed register
reference can be done at instruction decode. Additionabiléy in out-of-order execution can be obtained by simply
constrainingOVRR instructions to specifying < ¢ — 1.

Alternatively, if the residual register(s) are made acitdssas operand sources for the basic floating-point opera-
tions, there would be no need fRDVRRinstructions. This would require modifying the instructiget architecture by
either reserving existing register names or changing thtelintion encoding to allow an increased register namespac
that would include residual registers. To obtain the maxinbenefit from this approach, the residual results need to
be immediately available as operands to later instructidapending on details of the FPU architecture, that might
require normalization of the residual values using addéldardware dedicated to that purpose.

2.1.2 Usingthe Addition Residual Register for Native-Pair Arithmetic

In general, multiple different native pairs of floating-ppnumbers can represent the same number. To avoid the
awkwardness of non-unique value representations, all@btsic native-pair operations end with a normalization
step, shown in Algorithm 1, to convert the native-pair regutb a canonical normal form. We use simple C syntax
with the equivalent of one instruction per statement as &apte assembler for this and all of our other algorithm
listings. Given an unnormalized andl o native pair, the normalizedat i vepai r value is created without the
residual register. The resulting native-pair is equal ®dtiginal number, but normalized so that the exponentsef th
hi andl o components are set so that the most significant Bibdfias less significance than the least significant bit of
hi . Two native numbers can be added usireg i vepai r _nor nal i ze to produce a native-pair result, assuming
the magnitude of thbi inputis not smaller than that of theo input. In fact, this constraint on the inputs comes from
a deliberate choice made in favor of reducing computatioost; throughout the native-pair routines discussed & thi
paper, simplifications have been made where the accuradg\welaffected only in the least significant bit.

Thenati vepai r _nor mal i ze function can use the residual register to get the low compbdigectly, as
shown in Algorithm 2 — and this version needs no constraintthe magnitude of its inputs. We assuget r r ()
is an inline function that returns the residual registengsa singleMOVRR instruction. This implementation re-
moves one instruction by storing the residual resultingnfradding the high and low components. While one in-
struction may not seem like much, every basic operation &uitlisa normalization step. Saving an instruction in
nati vepai r _nor mal i ze reduces the instruction count of every other operation.

Addition and subtraction can make good use of the residggdter too. Adding a native floating-point number
to a native-pair is common when processing input data. Atlgor3 adds a native number to a native-pair without
residual register hardware. It first adds the native numterthe high component af, then computes the residual
result, adds it to the low component, and finally normalibesresult. Algorithm 4 computes the same result using the
residual register. It replaces the five instructions to comphe residual with a single instruction to get the redidua

Algorithm 3 Add a native floating point number to a native-pair withowideial register hardware
nati vepair nativepair_native_add(nativepair a, native b) {

native hi = a.hi + b; native bhi = hi - a.hi;
native ahi = hi - bhi; native bhierr = b - bhi;
native ahierr = a.hi - ahi; native hierr = bhierr + ahierr;

native lo = a.lo + hierr;
return(nativepair_normalize(hi, 10)); }

Algorithm 4 Add a native floating point number to a native-pair usingdeal register hardware
nati vepair nativepair_native_add(nativepair a, native b) {

native hi = a.hi + b; native hierr = getrr();
native lo = a.lo + hierr;
return(nativepair_normalize(hi, 10)); }

Adding two native-pair numbers requires one more instamcthan adding a native to a native-pair. Algorithm 5
shows a branch-free native-pair addition algorithm. Thedgal from adding the two hi components is stored in
ahi err orbi herr, depending on the valuesafandb. Whena > b, bhi err contains the residual arahi er r
is zero, otherwisanhi er r contains the residual arighi er r is zero. Both residual terms are computed because on
modern architectures computing bathi er r andbhi er r is faster than using a conditional to decide which one
to compute. Algorithm 6 shows an equivalent algorithm ughmgresidual register. It eliminates five floating-point
operations to computei er r by simply retrieving the residual from the residual registeverall, addition without
the residual register takés instructions compared with for addition with the residual register.

The algorithms for subtraction are similar to addition,epicthat thehi andl o components of the two operands
are subtracted instead of added. Algorithm listings areteshirom this paper in the interest of space.

2.1.3 Instruction-Level Performance | mplications

The multitude of different variations in instruction sethitecture and floating point unit design make it difficult
to determine the precise impact of the proposed residuahamsm on instruction-level performance; for example,
IA32’'s use of two-register rather than three-registerringtion formats forces insertion of an additional instioiat
where neither source register can be overwritten. Delafgg¢hing memory operands also can hide the performance of
the processor [19]. Examination of the instruction data fipaphs enables the properties to be compared independent
of these issues. Native-pair addition without and with &ddiresidual support is shown in Figure 2. Note that SUBR
is used to represent a subtract instruction in which theaykorder shown in the graph is reversed from the usual
left-to-right minuend-to-subtrahend order.

Figure 2 clearly shows that use of residual hardware yielsigificantly less complex structure. To determine
how dramatic the improvement s, it is necessary to obtaisorable estimates of the pipeline timing characteristics
Detailed pipeline performance numbers have been publifdrettie latest processors from Intel[20] and AMD[21]
using the scalar SSE floating point instructions; these rarsan serve to approximate the expected pipeline charac-
teristics independent of the instruction set. ADDSS or ADDSD instruction has a latency &f 4, or 5 clock cycles on
various Intel processors addn AMD64 processors, thus, ea8bBD or SUB typically would have a latency af clock
cycles. TheMOVRR operation only uses the normalization hardware at the erldeofioating-point pipeline, clearly
yielding a lower latency; a latency dfclock cycle might be practical, but let us conservativelsuese a latency of
2 clock cycles. By these numbers, the complete latency of #tigerpair add without use of residual hardware is the

Algorithm 5 Native-pair addition without the residual register
nativepair nativepair_add(nativepair a, nativepair b) {

native hi = a.hi + b.hi; native lo = a.lo + b.lo;
native bhi = hi - a.hi; native ahi = hi - bhi;
native bhierr = b.hi - bhi; native ahierr = a.hi - ahi;

native hierr = bhierr+ahierr; lo += hierr;
return(nativepair_normalize(hi,lo)); }

Algorithm 6 Native-pair addition with the residual register

nativepair nativepair_add(nativepair a, nativepair b) {
native hi = a.hi + b.hi; native hierr = getrr();
native lo = a.lo + b.lo; lo += hierr;

return(nativepair_normalize(hi,lo)); }

Figure 2: Native-Pair Addition Data Flow, Conventional &dRdual Algorithms

Register File
[Asl AE | AM] [le BE | BM]

PRODI[2n,,-1:0]
2n,
PROD[2n -1:n] | PRODIn -1:0]
MOVRR -
Normalize
EXP_ADJ M ROUND
RM
Y l
I |
[cs| CE | cM]

Normalization Residual Register

Figure 3: High-level schematic for the multiply residuaister

time for a critical path containing instructions:9 x 4 = 36. Using the proposed residual hardware, there are just
3 conventional instructions in the critical path. Howevearcessing the residuals might require executing two more
instructions that also are on the critical path — M®&/RR instructions discussed earlier. Thus, the residual suppor
yields a total latency o8 x 4 + 2 x 2 = 16 cycles, for an expecte2i25x speedup. Alternatively, at the significant
additional expense of duplicating normalization hardwaneould be possible to absorb tthMOVRR instructions into
the ADDs that generated the residuals, yielding 4 = 12 cycle latency, for an expecték speedup.
Due to overlap, a sequence of dependent native-pair addsxdbmcur the full latency for each operation. Without
residual hardware, the hi portion of the result is availabdgcles before the lo portion and, fortuitously, delaying th
lo portions of an input to the algorithm t8/cycles is not sufficient to alter the critical path; thus, theoughput per
native-pair add is one new operation ev86y— 8 = 28 cycles. Using the residual hardware, the same effect occurs
but the extraMOVRR in generating a lo result precisely matches the eMP&ERR on the path that does not use the lo
inputs; this leave$6 — 2 = 14 cycles, or exactl2 x speedup over the algorithm not using the residual hardware.
Although the amount of parallel execution permitted by eafcthe two approaches is primarily a function of the
pipeline structure, both methods can be executed with munirtotal latency within 2-way pipeline. However, the
simpler and more regular dependence graph for the residudiare algorithm yields a lower average number of live
values. A smaller live count means fewer registers are redkold temporaries, which in turn implies more other
work can be intermingled with the native-pair add’s instiags to fill empty pipeline slots.

2.2 Native-Pair Multiplication

Setting the residual register after multiplication is msampler than after addition or subtraction. Multiplicatiof
two n bit numbers produces a result with up2e bits. Themant(rr) stores the lown bits of the product after
a multiply, andezxp(rr) is set toexp(p) — (n,, + 1) to align themant(rr) with p. When the result is rounded
down, the sign is set to match the sign of the product and theptament flag is cleared. # is rounded up then
a-b=p+r=p—2PP)=nm 4 pp sor = 2¢°P(P)="m _ - Thatis, residual register gets the opposite signard
the complement flag is set. A high-level schematic to implettige multiply residual register is shown in Figure 3.
The residual is computed and stored in the residual registeording to the rules outlined above. THMBVRR
instruction optionally complements the mantissa befagnalg and storing it. As with the addition residual registe
this design adds multiplexers in the critical path. The geldded by the multiplexers may limit the clock cycle time.
The implementation in Figure 3 assumes thaRallroduct bits are available. Many current multiplier arebttires
only compute the carries for low order bits in the product.r rese multipliers, additional hardware is required

10

Algorithm 7 Native-pair multiply without the residual register
nativepair nativepair_nul (nativepair a, nativepair b) {
nati vepair tops = native_mul (a.hi, b.hi);
native hiloa = a.hi * b.lo;
native hilob b.hi * a.lo;
native hilo = hiloa + hil ob;
tops.lo += hilo;
return(nativepair_nornalize(tops.hi, tops.lo0));

#def i ne NATI VEBI TS 24
#defi ne NATIVESPLI T ((1<<(NATI VEBI TS-(NATI VEBI TS/ 2))) +1. 0)
nativepair native_mul (native a, native b) {
nativepair c;
#i f def HAS_FUSED_MJLADD
/+ Actually witten for fused nultiply-subtract... */
c.hi =a=* b; c.lo=a=* b - c.hi;
#el se
native asplit = a * NATIVESPLIT;
native bsplit = b » NATI VESPLIT;

native as = a - asplit;
native bs = b - bsplit;
native atop = as + asplit;
native btop = bs + bsplit;
nati ve abot = a - atop;
nati ve bbot = b - btop;

native top = atop * btop;

native mda = atop * bbot;

native m db bt op * abot;

native md = mda + mdb;

nati ve bot = abot * bbot;

c = nativepair_normalize(top, md);
c.lo += bot;

#endi f

return(c); }

Algorithm 8 Native-pair multiply using the residual register
nativepair nativepair_mnul (nativepair a, nativepair b) {
native tophi = a.hi * b.hi; native toplo = getrr();
native hiloa = a.hi * b.lo; native hilob = b.hi * a.lo;
native hilo = hiloa + hilob; toplo += hilo;
return(nativepair_normalize(tophi, toplo)); }

to compute the bottom bits of the product. Though adding support for the low ordés &dds complexity to the
multiplier, no more hardware is required than is needed fément a fuse®/ADD instruction.

2.21 Usingthe Multiply Residual Register for Native-Pair Arithmetic

Algorithm 7 shows how to multiply two native-pair numberghaut residual register hardware. Tin&t | vepai r _nul
function begins by usingat i ve_nul to multiply the two high components, which produces a napig@ result from
the multiplication of a native value with a native-pair. lifet processor has a fused multiply-subtract instruction tha
preserves the full precision of the product before addivad,i ve_rul can be implemented in just two instructions.
The first computes the product in native precision and thersksubtracts the rounded product from the full product
to get the residual. If fused multiply add is available, bat fused multiply subtract, a negate instruction is regliire
to compute c. hi .

Some CPUs have no multiply-add instruction and some procgdbat do, like GPUs, are not guaranteed to
preserve precision with their multiply-add instructior?]2 For these processors the code in #ed se clause of
native_mul is used. This code splits the two factors into high and low ponents and does component-wise
multiplication of the components. The residual registexatlly simplifies native-pair multiplication when a fused
multiply-add is not available.

11

Figure 4: Native-Pair Multiplication Data Flow; Convemil, Fused Operation, & Residual

Algorithm 8 shows anat i vepai r _nul implementation using the residual register. It requiresséime number
of floating-point instructions as the fused multiply-addsien, counting bottVOVRR andMADD instructions as single
floating-point operations. When fused multiply-add is nadikable, the residual register repladgsinstructions in
nati ve_nul with two instructions, reducing the number of FLOPsti@at i vepai r _nmul from 24 instructions to
8 instructions. When a fused-multiply add instruction isikl#e, the residual register does not reduce the number of
instructions. However, fused multiply-add requires a wialdder.

2.2.2 Instruction-Level Performance | mplications

To better understand the instruction-level performancthefnative-pair multiply alternatives, it is useful to agai
apply the methodology used in Section 2.1.3. According ®fipeline performance numbers published for the
latest processors from Intel [20] and AMD [21] using the ac&8SE floating point instructions,MJLSS or MULSD
instruction has a latency of 6 or 7 on various Intel procesaad 4 on AMD64 processors. Because this is a relatively
large difference, we will compute the timing twice, oncengsét and again using 6.

Figure 4 shows the data flow graphs for the three alternagtigerpair multiply algorithms. The conventionally
coded native-pair multiply critical path consists f ADD or SUB operations and MJL, which produce a total
latency of eithel4 x 4 = 56 or 12 x 4+ 2 x 6 = 60 cycles. Using an expensive-to-implement fused multiplipteact
instruction dramatically improves the total critical pédtency, yieldings x 4 = 24 or5 x 4+ 1 x 6 = 26 cycles fora
speedup of abot3x in either case. The use of residual hardware is even moretigffe The five-instruction critical
path using the proposed residual hardware costs eftlet + 1 x 2 =180r3 x4+ 1 x 6 4+ 1 x 2 = 20 cycles to

12

Algorithm 9 Native-pair division without a residual register
nativepair nativepair_div(nativepair a, nativepair b) {
native ghi = a.hi / b.hi;
nativepair d = native_mul (ghi, b.hi);

native ahierr = a.hi - d.hi; native aerr = ahierr - d.lo;
nati ve anew = aerr + a.lo; native divb = ghi * b.lo;
native lo = anew - divb; native glo =10/ b.hi;

return(nativepair_normalize(ghi, glo)); }

execute, producing.1x or 3x speedup over the conventional code and abd speedup over the fused multiply
add code.

While the critical path length serves as a lower limit on tbdes latency, it is appropriate to also consider the level
of parallel execution that must be sustained so that pedoomis not limited by pipeline width. Here2awvay pipeline
structure is not sufficient to complete in the critical pathe for either the conventional or fused multiply-subtract
implementations. In contrast, the residual algorithm haly one spot that might appear to need-way pipeline
structure, and the latency of thdOVRR instruction is low enough so that this can be avoided by careétruction
scheduling. If throughput of th®UUL operation is at least one operation every two clock cycleth(intel [20] and
AMD [21] quote one operation every cycle), schedulinghié of a. hi andb. hi to come after the other twidUL
operations have been initiated allows the residual algorito achieve the minimum possible latency usirzyaay
pipeline structure.

As for native-pair add, the complete latency is not expeeeinwhen a dependent series of native-pair multiply
operations is executed using the conventional algorithizycles can be saved by overlapping generation.dfo
with the start of the next computation. Although both theeothlgorithms also share the characteristic thdto is
completed later than. hi , thea. | o andb. | o inputs are on the critical path, so no speedup by overlapssiple.

A sequence of native-pair operations interleaving add amigipiy will allow overlap using these algorithms, but only
between the end of multiply and start of add. This improvesttultiply throughput to one operation ever§y or 18
cycles using the fused multiply-subtract or one evirwr 19 cycles using the residual algorithm. While this sounds
better for the fused operation, in fact the pipeline widtkded to handle the native-pair multiply in that many cycles
would actually allowtwo such operations to be performed evéryor 19 cycles using the residual algorithm.

2.3 Native-Pair Division and Square Root

Without any additional hardware, Algorithm 9 implementsivexpair division by computing an approximation of the
guotient and then multiplying the approximation by the slrito obtain a refined quotient term. This error term is
essentially the remainder of the first division.

Compared to addition, subtraction, and multiplicationafieg-point divide instructions typically have a very high
latency. Current processors from Intel [20] te&keor 32 cycles forDl VSS and32, 38, or 39 for DI VSD; those from
AMD [21] take 16 for DI VSS and20 for DI VSD. Although it is possible to implement a residual registerdivide,
the savings in cycles per native-pair operation is not defiicto justify the circuit complexity because the executio
time still would be dominated by the two divide instructiareeded. The native-pair square root algorithm has similar
issues.

A modest speedup, typically less thal x , can be obtained by using the multiply and add residual texgigor
native_mul andnati vepair_normalize.

2.4 Native Fused Multiply-Add

A fused multiply-add is advantageous when computingd + c if a x b has the opposite sign asand a magnitude
close tac. A fused multiply-add instruction uses an adder with th&ful,,-bits of precision in the product to minimize
the loss of accuracy. If the hardware does not support fusdtiply-add, it can be simulated in software using the
nati ve_nul function listed in Algorithm 7. Thenati ve_nul function takesl7 instructions to multiplya x b
and two more instructions to addo the high and low components of the product. Algorithm 16wshhow residual
register hardware can implement a fused multiply-add usixgstructions and approximatel$ to 20 cycle latency
from the multiply inputs; the latency from the add inpufiisto 14 cycles. The produat x b is stored inpr od_hi

13

Algorithm 10 Simulated Fused Multiply-Add using a residual register

native fused_nmadd(native a, native b, native c) {
native prod_hi = a * b; native prod_lo = getrr();
native sum= prod_lo + c; native sumres = getrr();
sum = sum + prod_hi; return sum+ sumres; }

andpr od_| o, the sum is accumulated sum and the residual bits are storedsinm r es. The high component of
the product is then added, followed by them r es, in case addingr od_hi causes heavy cancellation.

The residual register hardware is simpler than that for edusultiply-add instruction because the multiply-add
requires an adder twice as wide as the native floating-piat Moreover, completing both the multiply and the add
within the same cycle can force a longer clock period.

3 Residual Register Algorithm Validation

Pairs of numbers in pseudo-random sequences based on thasefdescribed by McNamee [23] are used to validate
the residual register computations for both add and myltillumbers in the first sequence are randomly generated
with a Gaussian distribution having a zero mean and unitdst@hdeviation. The second sequence has pseudo-
random numbers of the formt10”:. The sign is randomly determined with each sign equallyyik&he z;’s are
pseudo-random numbers with Gaussian distribution haweng mean and standard deviationsgfout values greater
than+o are limited to+o, and values less thano are limited to—o. The addition test uses =35 to exercise large
portion of the floating point range. The multiplication tesesoc = 17 to avoid a large number of the results being
out of the range representable with an 8-bit exponent.

The adder simulation program computestiag i vepai r sum of twonat i ve numbers using both Algorithm 3
and Algorithm 4. Since both numbers are nativd o is set to zero in both algorithms. Algorithm 3 is implemented
straightforwardly as listed. The residual result for Aligfam 4 is computed by decomposing the input floating-point
numbers: andb into their sign, exponent, and mantissa components. Thalaiion program emulates the hardware
described in Section 2.1 to compute the primary sum anduakiésults of adding andb. The results of the two
algorithms are compared and an error is flagged if they differ each test sequence, one billion pairs of numbers
were evaluated and no errors were found.

The multiplier testing program computes th&t i vepai r product of twonat i ve numbers using one algorithm
that does not rely on a residual register and one that doessisailated residual register. The software-only algarith
is similar to Algorithm 7, but optimized for twoat i ve multiplicands, rather than tweat i vepai r multiplicands.
Likewise the simulated residual register algorithm is ldagse Algorithm 8, but withnat i ve multiplicands. As
with the addition simulation, the residual is computed bgateposing the input floating-point numbers into integers
representing their sign, exponent, and mantissa compentmé simulated floating-point numbers are manipulated as
described in Section 2.1 to compute the primary and resighsallts. The results of the two algorithms are compared
and an error is flagged if they differ. For each sequence, dienbpairs of numbers were evaluated and no errors
were found.

4 Speculation Support

With or without a residual register, native-pair arithmetquires multiple native floating-point operations foey
native-pair operation. The only reason to use native-paatifig-point is if the native result is natcurateenough.
With speculative precision [18], an application optingstly tries parts of its computation at a low precision. If an
algorithm-dependent accuracy check fails, the computatm be re-executed using higher-precision arithmetif; [18
or the low-accuracy results can be refined using higherigioecarithmetic [24],[25].

This paper introduces inexpensive hardware extensionstoatically decrease the computation required to track
two common causes of summation errors: cancellation andrpiien. Cancellationoccurs primarily in summing
long sequences. When numbers with opposite signs and simédgnitudes are added, the most significant bits
cancel, leaving fewer significant bits in the result. Masdibits from smaller numbers added before or between the
canceling numbers are logtbsorptionhappens when the magnitudes of two numbers being addedtoacigdl differ
by enough so that the smaller is treated as zero.

14

Algorithm 11 Usingmax_sumto detect heavy cancellation

native array_sum(native ar[], int len, native *sum {
native Isum= ar[0]; native nmax_sum = | sum int i;
for (i=1; i<len; ++i) max_sum = max(max_sum |sum+= ar[i]);

return(((max_sum- (*sum = |lsun)) > THRESH) ? SPEC FAIL : SUCCESS); }

The IEEE 754 standard requires a flag to be set, and provigespiion of an exception occurring, whenever a
floating-point operation generates an inexact result. Igafftvare does not enable the inexact result exception secau
handling an interrupt every time a result is rounded up orrdexwuld seriously impact performance. We propose two
additional hardware features to help software decide véreftomputing at higher precision is warranted.

The first is theabsorption countefMany processor architectures have performance countérsdio CPU events
like cache misses, floating-point operations, and pipedtalts. The absorption counter is a performance countér tha
is incremented whenever absorption occurs during an additi subtraction. An application can use it to gauge how
much error may be accumulating due to absorption. For ex@raplapplication using round-to-nearest rounding may
sum a long sequence of numbers. If at the end of the sequérecabsorption counter is above a threshold, then the
sequence should be recomputed. The setting of the thredapkhds on the application; in general, the error directly
caused by" absorption events is expected to be no more théit positions worth of accuracy. Thus, it might also
be useful to allow triggering an interrupt based on a specdimt being reached.

To help reduce error due to cancellation, we propose addpaai exponent registeifhe concept of measuring
cancellation also was used by Dumas and Matula; they prdguselware that sums separate positive and negative
lists of numbers using “un-normal addition” and countirgdiang zero bits in an extended summation mantissa [26]. In
contrast, our peak exponent register works with a conveatadder and normalization, without requiring an extended
mantissa (although it also works with native-pairs). Wheméwo numbers are added or subtracted, the exponent of
the larger magnitude number is compared with the peak expoeegister. If an operand has a larger exponent than is
stored in the register, the register is updated with theettiwperand’s exponent. A program can test for cancellation
by clearing the exponent register before beginning the suohtamparing it with the exponent of the result at the end
of the sum. The difference between the peak exponent andutheegponent indicates how much cancellation has
occurred.

The simplest equivalent software technique would be to kesgk of the maximum intermediate sum, as shown
in Algorithm 11. Compared with simply summing the numbehgs technique would require dedicating a register and
executing a maximum operation per element summed. At thegtiee sum, the exponent afax_sumis the same
as the information in the peak exponent register.

4.1 Speculation Experiments

To test the effectiveness of speculation, we used two dasataken from those McNamee [23] used to evaluate
summation accuracy. The first data set, we cal(0, 1)”, is a sequence of, 096 Gaussian distributed pseudo-random
numbers with zero mean and unit standard deviation. Thensedata set is called “Random Heavy Cancellation”.
It is a sequence of, 096 pseudo-random numbers of the foea10”:. Thex;’s are pseudo-random numbers with
Gaussian distribution having zero mean and standard dmviat 35, but values greater than35 are limited to+35,

and values less than35 are limited to—35. The sign is also randomly determined with each sign equiéyy. All

the test data values were mapped into exact representatithes|EEE 75432-bit format so that the inputs are exactly
the same for all precisions tested.

A simulation program computed the sumigf00, 000 sequences from each data set usid¢pit floating point,
64-bit floating point, and32-bit native-pair and compared them wido4-bit floating-point sum generated with the
GNU Multi-Precision library (GMP) [14]. For each sequenee,computed the number of bits equivalent to the GMP
answer.

Figure 5 shows the number of bits in tB2-bit sum equivalent to the GMP reference sum as a functiohef t
difference between the peak and sum exponents. For bottsdisathe lower bound on number of bits equivalent
decreases linearly as the difference between the peak empand the sum exponent increases. The number of bits
equivalent varies widely at each exponent difference ciaitig that cancellation often does not cause the worst case
behavior.

The difference between peak exponent and sum exponent assedeas a speculation threshold. Figure 6 shows

15

30

N(0,1)
Random Heavy Cancellation

25

S S

S

CoN A S S

I S S

15| AR S
A S

Bits Equivalent

+++++++
++++++
++++++

Peak Exponent - Sum Exponent
Figure 5: Number of bits in th&2-bit sum equivalent to the GMP reference sum

100

N(0,1) ——
Random Heavy Cancellation

10 ¢

0.1

0.01 |

% of Times Specualtion Failed

0.001 ¢

0.0001

0 5 10 15 20
Speculation Threshold

Figure 6: Speculation failure rate as a function of speanahreshold

what percentage of the time speculation will fail when thféedénce between peak exponent and sum exponent being
greater than the threshold triggers speculation failuree ¥-axis is plotted in log scale to show the exponential
decrease in speculation failure as more sum bits are alléavbd in error. For example, in Figure 5, the minimum
number of bits equivalent for a difference of fiveli bits, and for a difference of eight the minimum bits equinale

is 10. With a threshold of five we would expect a speculation failuate of about.5 %, and aboub.2% at a
threshold of eight. Previous work has shown native-patharéetic to be about1 times slower on several different
architectures [18] (without hardware support.) Thus orrage computing a sum df 096 number with speculation
would take about7 % longer with a threshold of five or aboi2 % longer with a threshold df.

Figure 7 shows log scale histograms of the percentage ahbésch sum that are equivalent to the GMP reference
sum. In both data sets!-bit data preserves precision significantly better tBa+bit floating point. In fact, for the
worst case in Figure 7(a), tl3-bit sum had only three bits equivalent to the reference amed tol7-bits for 64-bit
floating point. For ovef9 % of cases32-bit floating point hadl5 bits or more equivalent to the reference as opposed
to 53 bits for 64-bit floating point. Native-pair had a worst case 3% bits equivalent with ovef9 % of all cases
having49 bits or more equivalent. Native-pair getting ov&rbits equivalent is somewhat surprising since there are
only 48 bits available in the tw@4-bit mantissas. However, when zeros follow the high compboéa native-pair,
the exponent of the low component is decreased, allowingrhits to be represented. In a few cases, the native-pair
numbers had more tha0 bits equivalent to the reference answer, but this happemedly 52 out of 1,000, 000
sums.

The curve labeled32-Bit Float with Speculation”, was generated by setting &shiold difference between peak
and sum exponent of eight. When the difference falls belghitethe sum is recomputed with native-pair. As a result
the “32-Bit Float with Speculation” curve matches th#2=Bit Float” curve down tol0 bits equivalent. Belowt0 bits
equivalent, the difference between peak exponent and theegponent is greater than eight, speculation fails, and

16

32-Bit Float 32-Bit Float
64-Bit Float 64-Bit Float
100 | Native-Pair 100 | Native-Pair

32-Bit Float, with Speculation

32-Bit Float, with Speculation

0.1 0.1

Percent of Samples
Percent of Samples

0.01 | 0.01 |

0.001 ¢ 0.001 ¢

M

0 20 40 60 80 100 120 140 0 10 20 30 40 50 60

0.0001

Bits Equivalent Bits Equivalent
(@nN(0,1) (b) Random Heavy Cancellation

Figure 7: A histogram showing the percentage of bits eqeivzb the reference for each of tB2-bit floating point,
64-bit floating point,32-bit native-pair, an®2-bit floating point with speculation

native-pair is used. For th¥ (0, 1) data set, speculation fail@d002 out of 1, 000, 000 times, and for Random Heavy
Cancellation it failedl, 933 out of 1, 000, 000 times. In other words32-bit precision was accurate enough for about
98 % of the sums, and the performance penalty of native-payr load to be paid fo2 % of the sums.

The execution time for these summations can be estimatedtfre speculation failure statistics. The summation
of n native-pair numbers using a native-pair accumulator &Het,,, surm = ntnnp add, Wheret,,p qqq is the time
required to add a native number to a native-pair number. Thergtion of the same sequence will takeg ;4 time
when speculation succeeds, wheyg; is the time required to perform a native addition. When sfzimn fails, the
summation will takent,qq + ntnnp.ada time. Thus, the expected summation time for a given sequeinmembers is
tsum = P(speculation succeeds)(ntqaq) + (1 — P(speculation succeeds))(ntadd + Nnnp,add), @nd the expected
speedup compared with native-pair summation is:

tnp,sum _ tnnp,add

tsum tadd + tanpadd(1 — P(speculation succeeds))

speedup =

Assumingtqqq = 4 andt,..;, o4q = 16 @s in Section 2.1.3, and a speculation success ra®bfthe expected speedup
using speculation i8.7 x that of using a native pair summation.

The expected gain from successful speculation is balangétebcost of having to recompute the sum at a higher
precision when the expected speedup.idJsing the above latencies and solving #fspeculation succeeds), we
get P(speculation succeeds) = 0.25 when speedup i$. Thus, for the given addition latencies, speculation wéll b
faster on average as long it succeeds at [t of the time.

We use native-pair for the summation for simplicity. Simitachniques can preserve residual terms during the
sum [23],[27]. Others get better accuracy by reorderingrthat data set [23],[27],[28] but sorting is often impraeti
either for memory consumption or performance reasons. yifeedf speculative execution at lower precision described
above is equally applicable independent of the mechanigah iasobtain higher accuracy when such is required.

5 Conclusion

Although32-bit floating-point hardware is now widely available in DSWVAR, and GPU processors, and is relatively
cheap to implement even in an FPGA, a significant number afriiat applications require higher accuracy results
than32-bit intermediate calculations directly provide. Becatise primary applications targeted by these processors
do not need higher precision arithmetic, it is not econotihjigastifiable to implement4-bit floating point hardware
support.

Native-pair arithmetic can increase the accuracydbit floating point to be competitive with that @#-bit
floating point; usually slightly poorer, on rare occasiorerkedly better. This enables applications requiring highe
accuracy to be run on these machines, but native-pair agtihrtypically carries an order of magnitude performance

17

penalty that cancels much of the price/performance adgandéajoyed by32-bit floating point systems. The main
hurdle to using native-pair is the high cost of computingcheal terms using standard floating-point instructions.

The cost of using native-pair can be reduced by adding sksierple microarchitectural features, without requiring
that higher-precision function units be implemented. Thmary change is the augmentation of addition, subtraction
and multiplication hardware with residual registers: a esichardware enhancement, changing the instruction set
only in that a new instruction is added to access the resihlak. Using this modification, a typical floating-point
processor’s native-pair latency is reduced2®6 x for add or subtract an8ix for multiply, with additional benefits
in terms of improved instruction-level parallelism.

Still greater savings can be obtained by providing simplelware support allowing speculative use of native
precision. It is not easy to statically predict when a pattc precision will yield sufficient accuracy, but it can
be inexpensive to detect when a result might not have theetkaccuracy. Without detrimental impact on latency
or instruction-level parallelism, the peak exponent regiand absorption counter implement dynamic detection of
common cases where accuracy might be lost; experimentsl filvavt native sufficed more than 98% of the time and
speculation was worthwhile if it succeeded at least 25% etithe.

References

[1] R. Rojas, “Konrad Zuse’s legacy: the architecture ofZieand Z3,"Annals of the History of Computingol. 19,
pp. 5-16, 1997.

[2] North Star Computers IncHardware Floating Point Board FPB-A Manual, 25015877.

[3] T. Blank, “The MasPar MP-1 architecture35th IEEE Computer Society International Conference (COMP
CON), February 1990.

[4] H. G. Dietz and R. J. Fisher, “Compiling for simd within agister,” inLanguages and Compilers for Parallel
Computing(S. Chatterjee, J. F. Prins, L. Carter, J. Ferrante, Z. LiSéhr, and P.-C. Yew, eds.), pp. 290-304,
Springer-Verlag, 1999.

[5] Texas Instrument§MS320C3x User's Guide, Texas Instruments Literature Nun®PRUO31EJuly 1997.
[6] Advanced Micro Devices3DNow! Technology Manual, 2192Blarch 2000.

[7] A. Klimovitski, “Using SSE and SSE2: Misconceptions anedlity,” Intel Developer UPDATE Magazin®March
2001.

[8] Freescale SemiconductétitiVec Technology Programming Interface Manuhine 1999.

[9] O. Hwa-Joon, S. M. Mueller, C. Jacobi, K. D. Tran, S. R. fzot B. W. Michael, H. Nishikawa, Y. Totsuka,
T. Namatame, N. Yano, T. Machida, and S. H. Dhong, “A fullpglined single-precision floating point unit in
the synergistic processor element of a cell procesSgrjiposium on VLSI Circujtdune 2005.

[10] IEEE,IEEE Standard for Binary Floating Point Arithmetic Std 75985 1985.

[11] C. Severance, “IEEE 754: An interview will William Kahd IEEE Computer Magazin&ol. 31, pp. 114-115,
March 1998.

[12] J. Turley, “The two percent solutionEmbedded Systems Desifrecember 2002.
[13] Thinking Machines Corporatioonnection Machine Model CM-2 Technical Summary, Versiayibay 1989.
[14] “The GNU MP bignum library.” http://www.swox.com/gmp

[15] T. J. Dekker, “A floating-point technique for extenditige available precisionNumer. Math,.vol. 18, pp. 224—
242,1971.

[16] S. Linnainmaa, “Software for doubled-precision flogtipoint computationsACM Trans. Math. Softywol. 7,
no. 3, pp. 272-283, 1981.

18

[17] D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li, and B. Thosgm, “Multiprecision software directory,”
http://crd.Ibl.gov/"dhbailey/mpdist/

[18] H. G. Dietz, W. R. Dieter, R. Fisher, and K. Chang, “Flogtpoint computation with just enough accuracy,”
Lecture Notes in Computer Sciepwel. 3991, pp. 226 — 233, Apr 2006.

[19] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Undedstg the efficiency of GPU algorithms for matrix-matrix
multiplication,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conferem€raphics Hardware
(HWWS) (New York, New York), pp. 133-137, ACM Press, 2004.

[20] Intel, IA-32 Intel Architecture Optimization Reference Manuail€ Number: 248966-013U3pril 2006.
[21] AMD, Software Optimization Guide for AMD64 Processors, Pub. #125September 2005.

[22] B. Lipchak, B. Beretta, P. Brown, M. Craighead, C. EtteE. Hart, J. Leech, B. Licea-Kane, B. Poddar, J. Sand-
mel, J. P. Schelter, A. Seetharamaiah, and N. Triantos, “AR§ment_program©penGL Extension Registry
Aug. 2002.

[23] J. M. McNamee, “A comparison of methods for accurate mation,” SIGSAM Bull. vol. 38, no. 1, pp. 1-7,
2004.

[24] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buterd J. Dongarra, “Exploiting the performance of 32 bit
floating point arithmetic in obtaining 64 bit accuracy,” Cpuater Science Tech Report UT-CS-06-574, University
of Tennessee, 2006.

[25] K. O. Geddes and W. W. Zheng, “Exploiting fast hardwagafing point in high precision computation,” in
ISSAC '03: Proceedings of the 2003 International SymposinrBymbolic and Algebraic ComputatigiNew
York, NY, USA), pp. 111-118, ACM Press, 2003.

[26] M. Daumas and D. W. Matula, “Validated roundings of dobgucts by sticky accumulationfEEE Trans.
Comput, vol. 46, no. 5, pp. 623-629, 1997.

[27] N. J. Higham, “The accuracy of floating point summatid&iAM Journal on Scientific Computipgpl. 14, no. 4,
pp. 783-799, 1993.

[28] K. A. Klein, “A generalized Kahan-Babuska summatiogaithm,” Computing vol. 76, pp. 279-293, January
2006.

19

