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Abstract. Most mathematical formulae are defined in terms of operations on real
numbers, but computers can only operate on numeric values with finite precision
and range. Using floating-point values as real numbers does not clearly identify
the precision with which each value must be represented. Too little precision
yields inaccurate results; too much wastes computational resources.

The popularity of multimedia applications has made fast hardware support for
low-precision floating-point arithmetic common in Digital Signal Processors
(DSPs), SIMD Within A Register (SWAR) instruction set extensions for general
purpose processors, and in Graphics Processing Units (GPUs). In this paper, we
describe a simple approach by which the speed of these low-precision opera-
tions can be speculatively employed to meet user-specified accuracy constraints.
Where the native precision(s) yield insufficient accuracy, a simple technique is
used to efficiently synthesize enhanced precision using pairs of native values.

1 Introduction

In the early 1990s, the MasPar MP1 was one of the most cost-effective supercomputers
available. It implemented floating-point arithmetic using four-bit slices, offering much
higher performance for lower precisions. Thus, Dietz collected production Fortran pro-
grams from various researchers and analyzed them to see if lower precisions could be
used without loss of accuracy. The discouraging unpublished result: using the maxi-
mum precision available, static analysis could not guarantee that even one digit of the
results was correct! The insight behind the current paper is that most results were ac-
ceptably accurate despite using insufficient precision. Why not deliberately use fast low
precision, repeating the computation at higher precision only when a dynamic test of
result accuracy demands it?

Bit-slice floating-point arithmetic is no longer in common use, but the proliferation
of multimedia applications requiring low-precision floating-point arithmetic has pro-
duced DSP (Digital Signal Processor), SWAR (SIMD Within A Register)[1], and GPU
(Graphics Processing Unit) hardware supporting only 16-bit or 32-bit floating-point
arithmetic. Scientific and engineering applications often require accuracy that native
multimedia hardware precisions cannot guarantee, but by using relatively slow (syn-
thesized) higher-precision operations only to recompute values that did not meet accu-
racy requirements, the low cost and high performance of multimedia hardware can be
leveraged.
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Section 2 overviews our method for synthesizing higher precision operations using
pairs of native values and gives microbenchmark results for native-pair arithmetic op-
timized to run on DSPs, SWAR targets, and GPUs. Section 3 presents a very simple
compiler/preprocessor framework that supports speculative use of lower precision, au-
tomatically invoking higher precision recomputations only when dynamic analysis of
the result accuracy demands it. Conclusions are summarized in Section 4.

2 Multi-precision Arithmetic Using Error Residuals

There are many ways to synthesize higher-precision operations [2]. The most efficient
method for the target multimedia hardware is what we call native-pair arithmetic, in
which a pair of native-precision floating point values is used with the lo component
encoding the residual error from the representation of the hi component. We did not
invent this approach; it is well known as double-double when referring to using two
64-bit doubles to approximate quad precision [3, 4]. Our contributions center on tuning
the analysis, algorithms, data layouts, and instruction-level coding for the multimedia
hardware platforms and performing detailed microbenchmarks to bound performance.

More than two values may be used to increase precision, however, successive values
reduce the exponent range by at least the number of bits in the mantissa extensions.
Ignoring this effect was rarely a problem given the number of exponent bits in an IEEE
754[5] compliant 64-bit binary floating-point double, but a 32-bit float has a 24-bit
mantissa and only an 8-bit exponent. A float pair will have twice the native mantissa
precision only if the exponent of the low value is in range, which implies the high value
exponent must be at least 24 greater than the native bottom of the exponent range; thus,
we have lost approximately 10% of the dynamic range. Similarly, treating four float
as an extended-precision value reduces the effective dynamic range by at least 3×24, or
72 exponent steps – which is a potentially severe problem. Put another way, precision
is limited by the exponent range to less than 11 float values.

One would expect, and earlier work generally assumes, that the exponents of the lo
and hi components of a native-pair will differ by precisely the number of bits in the
mantissa. However, values near the bottom of the dynamic range have a loss of preci-
sion when the lo exponent falls below the minimum representable value. A component
value of 0 does not have an exponent per se, and is thus a special case. For non-zero
component values, normalization actually ensures only that the exponent of lo is at
least the number of component mantissa bits less than that of hi. Using float compo-
nents, if the 25th bit of the higher-precision mantissa happens to be a 0, the exponent
of lo will be at least 25 less – not 24 less. In general, a run of k 0 bits logically at
the top of the lower-half of the higher-precision mantissa are absorbed by reducing the
lo exponent by k. For this reason, some values requiring up to k bits more than twice
the native mantissa precision can be precisely represented! However, this also means
that, if the native floating-point does not implement denormalized arithmetic (many
implementations do not[6, 7]), a run of k 0 bits will cause lo to be out of range (i.e., rep-
resented as 0) if an exponent of k less than that of hi is not representable; in the worst
case, if the hi exponent is 24 above the minimum value and k=1, the result has only
25 rather than 48 bit precision. Earlier work[8] is oblivious to these strange numerical
properties; our runtime accuracy checks are a more appropriate response.
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Space does not permit listing our optimized algorithms in this paper. Although we
used C for some development and testing, most compilers cannot generate good code
for the routines in C because they tend to “optimize” the floating-point operations in
a way that does not respect precision constraints. Further, significantly higher per-
formance may be obtained by careful use of instruction set features and architecture-
specific data layouts. The following subsections summarize the microbenchmark per-
formance of our machine-specific, hand-optimized, assembly-level code for each target
architecture.

2.1 Performance Using Host Processor Instructions

If native-pair operations using attached multimedia processors are too slow to be com-
petitive with higher-precision operations on the host processor, then these operations
should be performed on the host or can be divided for parallel execution across the
host and multimedia hardware. Table 1 lists the official clock-cycle latencies for host
processor native (X87) floating point operations using an AMD ATHLON[9] and INTEL

PENTIUM 4[10].

Table 1. Performance, in clock cycles, of host processor instructions

type processor add sub mul sqr div sqrt

32-bit float ATHLON 4 4 4 4 16 19
32-bit float PENTIUM 4 5 5 7 7 23 23

64-bit double ATHLON 4 4 4 4 20 27
64-bit double PENTIUM 4 5 5 7 7 38 38
80-bit extended ATHLON 4 4 4 4 24 35
80-bit extended PENTIUM 4 5 5 7 7 43 43

Native-pair operations constructed using these types are approximately an order of
magnitude slower, so it is fairly obvious that pairing 32-bit float values is not pro-
ductive. However, pairing 64-bit double values or 80-bit extended values is useful (al-
though loading and storing 80-bit values is relatively inefficient). Thus, a host processor
can effectively support at least five precisions, roughly corresponding to mantissas of
24, 53, 64, 106, and 128 bits with a separate sign bit.

2.2 DSP Targets

There are many different types of DSP chips in common use, most of which do not have
floating-point hardware. Of those that do, nearly all support only precisions less than 64
bits. Our example case is the Texas Instruments TMS320C31[6], which provides non-
IEEE 754 floating-point arithmetic using an 8-bit exponent and 24-bit mantissa, both
represented in 2’s complement. This DSP has specialized multiply-add support, which
accelerates the multiply, square, and divide algorithms, but neither add nor subtract.
Table 2 gives the experimentally-determined clock cycle counts for each of the native
and nativepair operations.
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Table 2. Cycle counts and instructions required for DSP operations

(a) Opertaion cycle counts
type add sub mul sqr div sqrt

native 1 1 1 1 42 51
nativepair 11 11 25 19 112 119

(b) Instructions required
type add sub mul sqr div sqrt

native 1 1 1 1 33 39
nativepair 11 11 25 19 64 99

In general, an order of magnitude slowdown is incurred for nativepair operations,
but divide and square root do better because they require executing many instructions
for native operands. It is worth noting that the additional code size for nativepair
operation sequences is modest enough to allow their use in embedded systems even if
ROM space is tight; the number of instruction words for each operation is summarized
in Table 2.

2.3 SWAR Targets and SWAR Data Layout

The most commonly used floating-point SWAR instruction sets are 3DNOW![11, 7],
SSE[12] (versions 1, 2, and 3[13] and the AMD64 extensions[14]), and ALTIVEC[15].
These instruction sets differ in many ways; for example, 3DNOW! uses 64-bit registers
while the others use 128-bit registers. However, there are a few common properties. The
most significant commonality is that all of these SWAR instruction sets use the host
processor memory access structures. Thus, the ideal data layout is markedly different
from the obvious layout assumed in earlier multi-precision work.

Logically, the hi and lo parts of a nativepair may together be one object, but
that layout yields substantial alignment-related overhead for SWAR implementations
even if the nativepair values are aligned: different fields within the aligned objects
have to be treated differently. The ideal layout separates the hi and lo fields to create
contiguous, aligned, interleaved, vectors of the appropriate length. For example, 32-
bit 3DNOW! works best when pairs of nativepair values have their components
interleaved as a vector of the two hi fields and a vector of two lo fields; for SSE and
ALTIVEC, the vectors should be of length four. The creation of separate, Fortran-style,
arrays of hi and lo components is not as efficient; that layout makes write combining
ineffective, requires rapid access to twice as many cache lines, and implies address
accesses separated by offsets large enough to increase addressing overhead and double
the TLB/page table activity.

Given the appropriate data layout, for 3DNOW! the primary complication is that
the instruction set uses a two-register format that requires move instructions to avoid
overwriting values. Table 3 the experimentally-determined cycle counts using the cycle
count performance register in an AMD ATHLON XP.

All measurements were taken repeating the operation within a tight loop, which did
allow some parallel overlap in execution (probably more than average for swarnative
and less for swarnativepair). All counts given are for operations on two-element
SWAR vectors of the specified types; for example, two nativepair_add operations
are completed in 24 clock cycles. Although 3DNOW! offers twice the 32-bit floating-
point performance of the X87 floating-point support within the same processor, the
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Table 3. Cycle counts for 3DNow! and SSE operations

type add sub mul sqr div sqrt

3DNow! swarnative 1 1 1 1 9 9
3DNow! swarnativepair 24 28 27 14 57 40

SSE float swarnativepair 51 50 148 129 173 199
SSE double swarnativepair 45 48 48 42 50 -

X87 double arithmetic is faster than 3DNOW! nativepair for all operations except
reciprocal and square root.

The SSE code is very similar to that used for 3DNOW!, differing primarily in data
layout: there are four 32-bit values or two 64-bit values in each swarnative value.
Thus, the float version produces twice as many results per swarnativepair oper-
ation. The code sequences were executed on an INTEL PENTIUM 4 and the cycle
counter performance register was used to obtain the cycle counts in Table 3, which show
that float swarnativepair does not compete well with host double, but double
swarnativepair is very effective.

2.4 GPU Targets

DSP parts tend to be slow, but can function in parallel with a host processor; SWAR
is fast, but does not work in parallel with the host. The excitement about GPU targets
comes from the fact that they offer both the ability to operate in parallel with the host
and speed that is competitive with that of the host.

Although there are many different GPU hardware implementations, all GPUs share
a common assembly-language interface for vertex programs[16, 17] and for fragment
(pixel-shading) programs[16, 17]. All GPUs use SWAR pixel operations on vectors of
4 components per register (corresponding to the red, green, blue, and alpha channels),
with relatively inefficient methods for addressing fields within registers. Thus, the op-
timal data layout and coding for native-pair operations is very similar to that used for
SSE. Oddly, the precision of GPU arithmetic is not standardized, ranging from 16-bit to
32-bit. For our latest experiments, we purchased a $600 NVIDIA GEFORCE 6800 UL-
TRA, which was then the fastest commodity GPU with roughly IEEE-compliant 32-bit
floating point support; Table 4 shows the performance results .

Table 4. Relative cost of GPU operations

type add sub mul sqr div sqrt

swarnative 1 1 * * 4 20
swarnativepair 11 11 18 10 35 28

To obtain the above numbers, it was necessary to resort to fractional factorial exper-
imental procedures that timed combinations of operations and used arithmetic methods
to extract times for individual operations. Each experiment was repeated 220 times
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to determine a 95% confidence interval for each time, which was then used to com-
pute upper and lower bound times for the individual operations. Quirks of the NVIDIA

GEFORCE 6800 ULTRA GPU and its assembler yielded inconsistent timing for some
combinations of operations; there were insufficient consistent timings for the multi-
plication and squaring operations to determine the execution cost (probably about the
same as add). All the other costs are listed in the above table relative to the cost of a
swarnative add; in no case was the 95% confidence error greater than 1 unit. These
results also are generally consistent with preliminary experiments we performed using
an ATI RADEON 9800 XT with a less sophisticated timing methodology.

3 Compiler and Language Support

As mentioned earlier in this paper, traditional compiler technology is somewhat incom-
patible with the already awkward nativepair codings. Assembly-level coding is not
viable for implementing complicated numerical algorithms. Implementation and bench-
marking are beyond the scope of this paper, but we suggest that the compilation system
should explicitly manage precision, including support for speculative precision.

Analysis and code generation for explicit precisions allows the compiler not only
to maintain correctness while optimizing finite-precision computations, but also to se-
lect the fastest implementation for each operation individually – for example, using
3DNOW! swarnativepair for square root and X87 double for other operations. Pre-
cision directives have been used to preprocess Fortran code to make use of an arbitrary-
precision arithmetic package[8]. Better, the notation used in our SWARC[18] dialect of
C can be extended: int:5 specifies an integer of at least five bits precision, so float:5
could specify a floating-point value with at least five mantissa bits. A less elegant nota-
tion can be supported using C++ templates. Requirements on dynamic range, support of
IEEE 754 features like NAN and INFINITY, etc., are more complex and less commonly
an issue; they can be specified using a more general, if somewhat awkward, syntax.

Speculative precision is based on specifying accuracy constraints. Accuracy require-
ments can be specified directly or, more practically, as both an accuracy required and
a functional test to determine the accuracy of a result. The compiler would generate
multiple versions of the speculative-precision code, one for each potentially viable pre-
cision. A crude but effective implementation can be created for C++ using a simple
preprocessor with straightforward directives like:

#faildef failure_code Defines failure_code as the code to execute when all preci-
sion alternatives fail; this definition can be used for many speculative blocks, not
just one

#specdef name(item1, item2, ...) Definesnameastheorderedsequenceof types item1,
item2, etc.; this definition can be used for many speculative blocks, not just one

#speculate name1 name2 ... Defines the start of a region of code which is to be spec-
ulatively executed for name1, name2, etc. taking each of the values specified in
sequence

#fail Defines the position at which the failure action should be applied
#commit Defines the position at which the speculate region ends
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In practice, the accuracy check would be a much cheaper computation than the specu-
lative computation; for example, Linpack and many other math libraries compute error
terms that could be examined, but we prefer a short example for this paper. Suppose that
there are both float and double versions of sqrt(), overloaded using the usual C++
mechanisms, and our goal is to use the cheapest version that can pass a simple accuracy
test mytest(). Our short example could be coded as:

#faildef exit(1);
#specdef fd(float, double)
#speculate fd
fd a = x; double b = sqrt(a); if (!mytest(b, x)) {

#fail
} y = b;

#commit

Which would be preprocessed to create C++ code like:

#define faildef { exit(1); }
#define fd float
{ fd a = x; double b = sqrt(a);
if (!mytest(b, x)) {goto fail0_0;} y = b; } goto commit0;
#define fd double
fail0_0: ; { fd a = x; double b = sqrt(a);
if (!mytest(b, x)) { faildef } y = b; } commit0: ;

The syntax could be prettier, but this speculation mechanism has very little overhead
and is general enough to handle many alternative-based speculations, not just specula-
tion on types. Further, although the sample generated code simply tries the alternatives
in the order specified (which would typically be lowest precision first), one could use a
history mechanism resembling a branch predictor to intelligently alter the type sequence
based on past behavior.

Another possible improvement is to optimize the higher-precision computations to
incrementally improve the precision of the already-computed results, but this is much
more difficult to automate. For example, using the native results as the initial top-
halves of the nativepair computations may be cheaper than computing nativepair
results from scratch, but the computation is changed in ways far too complex to be
managed by a simple preprocessor.

4 Conclusions

Although floating-point arithmetic has been widely used for decades, the fact that it is
a poor substitute for real numbers has continued to haunt programmers. Unexpected
accuracy problems manifest themselves far too frequently to ignore, so specifying ex-
cessive precision has become the norm. Even the highest precision supported by the
hardware sometimes proves insufficient. This paper suggests a better way.

Rather than statically fixing guessed precision requirements in code, we suggest a
more dynamic approach: code to try the lowest potentially viable precision and try
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successively higher precisions only when the accuracy is (dynamically at runtime) de-
termined to be inadequate. Thanks to demand in the multimedia community, lower-
precision floating-point arithmetic is now often implemented with very high perfor-
mance and very low cost. The techniques we have developed for extending precision
using optimized native-pair arithmetic are commonly an order of magnitude slower than
native. However, the large speed difference actually makes speculation more effective.
Even if speculating lower precision usually fails to deliver the desired accuracy, an oc-
casional success will reap a significant speedup overall. Only experience with a range
of applications will determine just how often speculation succeeds.
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