
Using the PBP library
The PBP library is written as highly portable, self-
contained, C++ code. All that is needed to use it is
inclusion of the header file with REWAYS set to the
desired number of entanglement dimensions.
#include “pbp.h”

Sample pint Layer Algorithms
It is easy to compute the square root of an 8-bit
number by exhaustive search. For example,
sqrt(169) will find 13.
void pintsqrt(int val){
 pint a(val); // 8-bit number
 pint b = pint(0).Had(4); // dim 0-3
 pint c = (b * b); // square them
 pint d = (c == a); // select answer
 int pos = d.First();
 printf("Square root of %d is %d\n",
 val, pos);
}

A less obvious algorithm factors an 8-bit number.
Here, possible 4-bit factors are assigned different
entanglement channel sets so the multiply produces
an 8-way entangled answer rather than 4-way. For
example, factor(143) will find 11 and 13.
#include “pbp.h”

void pintfactor(int val) {
 pint a(val); // 8-bit number
 pint b = pint(0).Had(4); // dim 0-3
 pint c = pint(0).Had(4,4); // dim 4-7
 pint d = b * c; // multiply 'em
 pint e = (d == a); // which were val?
 pint f = e * b; // zero non-answers
 int spot = f.First(); // factors
 int one = c.Meas(spot);
 int two = b.Meas(spot);
 printf("%d, %d are factors of %d\n",
 one, two, val);
}

As above, algorithms written for PBP tend to use
abilities that quantum computers do not have, most
notably entanglement channel-based operations and
the fact that measurement is not destructive. PBP
also can be used for traditional SIMD computation.

Sample pbit Layer Algorithm
There is little point in directly using the pbit layer
for PBP programs. However, quantum computer
algorithms at the Qubit level can be programmed
using the pbit layer. The following is a 4-bit ripple
carry adder, adding 1 to all 4-bit values, as per
Cuccaro et al, arXiv:quant-ph/0410184v1
void pbitripple() {
 pbit a0(0), a1(0), a2(0), a3(0);
 pbit b0(1), b1(0), b2(0), b3(0);
 pbit z(0), x(0);
 H(a0, 0); // unlike Qubits,
 H(a1, 1); // must specify groups of
 H(a2, 2); // entanglement channels
 H(a3, 3); // for Hadamard gates
 CNOT(a1,b1); CNOT(a2,b2);
 CNOT(a3,b3); CNOT(a1,x);
 CCNOT(a0,b0,x); CNOT(a2,a1);
 CCNOT(x,b1,a1); CNOT(a3,a2);
 CCNOT(a1,b2,a2); CNOT(a3,z);
 CCNOT(a2,b3,z); NOT(b1);
 NOT(b2); CNOT(x,b1);
 CNOT(a1,b2); CNOT(a2,b3);
 CCNOT(a1,b2,a2);
 CCNOT(x,b1,a1);
 CNOT(a3,a2); NOT(b2);
 CCNOT(a0,b0,x); CNOT(a2,a1);
 NOT(b1); CNOT(a1,x);
 CNOT(a0,b0); CNOT(a1,b1);
 CNOT(a2,b2); CNOT(a3,b3);
 SETMEAS(); // pick random channel
 printf("a=%d b=%d\n",
 MEAS(a0)+(MEAS(a1)<<1) +
 (MEAS(a2)<<2)+(MEAS(a3)<<3),
 MEAS(b0)+(MEAS(b1)<<1)+
 (MEAS(b2)<<2)+(MEAS(b3)<<3));
}

PBP References (oldest & newest)
H. Dietz, “How Low Can You Go?,” In: Rauchwerger, L. (eds)
Languages and Compilers for Parallel Computing. LCPC 2017.
Lecture Notes in Computer Science(), vol 11403. Springer.
10.1007/978-3-030-35225-7_8

H. Dietz, P. Eberhart and A. Rule, “Basic Operations And
Structure Of An FPGA Accelerator For Parallel Bit Pattern
Computation,” 2021 International Conference on Rebooting
Computing (ICRC), 2021, pp. 129-133.
10.1109/ICRC53822.2021.00029

Parallel Bit Pattern Computing
C++ Library version 20220730
http://aggregate.org/PBP

Professor Henry (Hank) Dietz
Electrical and Computer Engineering Department
University of Kentucky
Lexington, KY 40506-0046
hankd@engr.uky.edu

Parallel bit pattern computing is a quantum-inspired
model of computation. Superposition and n-way
entanglement are modeled by each pbit (pattern
bit) having an ordered set of 2n single-bit values.
Each position in the ordered set is an entanglement
channel. E.g., the 2-way entangled pbit values
{0,1,1,1} and {0,1,0,1} could represent {0,3,2,3},
with probabilities of 25% 0, 25% 1, and 50% 3.
These ordered bit sets are not directly stored, but
encode as compressed patterns, with duplicate sub-
patterns factored. Applicative caching avoids
recomputation of sub-pattern operations. Overall,
PBP can exponentially reduce both memory footprint
and total number of gate-level operations.
Unlike quantum systems, users are encouraged to
program parallel bit pattern computations at a
relatively high level. This CC BY 4.0 C++ library
provides automatically-managed pattern bits (pbit)
as well as variable-precision pattern integers (pint)
and floats (pfloat). Many optimizations are
applied dynamically at runtime to reduce the total
number of bit-level operations.

mailto:hankd@engr.uky.edu

pbit Layer
A pattern bit, or pbit, is logically a vector of 2ways

bits, but is generally stored and operated upon in a
heavily compressed form – a 32-way entangled
pbit can take as little as 16 bits of storage space. A
pbit is similar to a Qubit in a quantum computer,
but pbit values are automatically allocated,
maintain their value forever, and allow arbitrary fan-
out; thus, they are not restricted to reversible gate
operations. The basic operations include:
∘ pbit(), pbit(v)

Create a pbit initialized to NaN or pbit
register v: 0 is 0, 1 is 1, 2 is H0, 3 is H1, etc.

∘ p.Valid()
True iff pbit p has a valid value (is not NaN)

∘ p.Rot(e)
Create value of p rotated by e entanglement
channels (a simple phase shift)

∘ p.Reset(e), p.Set(e)
Create value of p with entanglement channel e
reset or set

∘ p.Dom(e)
Create value of p with bits dominoed (logically
inverted) in entanglement channels 0..e

∘ p.Meas(e), p.Meas()
Create int 0/1 value of p from entanglement
channel e or a random sample

∘ p.First()
Create int value of first entanglement channel in
p that holds a 1; returns 2ways if none

∘ p.Ones()
Create int value number of entanglement
channels in p that holds a 1

∘ p.Any(), p.All()
Create pbit value that is 1 iff any or all
entanglement channels in p are non-zero

∘ p.Show()
Print debugging info for pbit p value: complete
bit patterns

There analogous operations for all the above at the
pint and pfloat levels. For example,
p.Set(e,v) sets entanglement channel e within
the pint or pfloat value p to the value v.

Additional reversible pbit operations are provided
solely for porting Qubit-level quantum algorithms:
∘ NOT(q)

Pauli X gate; replaces q with ~q
∘ CNOT(c,t)

Controlled not gate; where c, replaces t with ~t
∘ CCNOT(a,b,c)

Toffoli gate; where a and b, replaces c with ~c
∘ SWAP(i0,i1)

Swap values of i0 and i1
∘ CSWAP(c,i0,i1)

Fredkin gate; where c, swap i0 and i1
∘ H(q,c)

Hadamard gate; replaces q with q ^ Hadamard
entanglement pattern for dimension c

∘ SETMEAS(), SETMEAS(m)
Set measurement of rand() channel or m

∘ MEAS(q)
Measure and collapse state of q, returns 0/1

pint Layer
A pattern integer, or pint, is an array of 1-32 pbit
treated as a signed/unsigned integer. The precision
and signedness of pint are variable at runtime so
that the minimum possible number of bits are active.
The following C++ operators are implemented:
= *= /= %= += -= >>= <<= &= |= ^=

&& || & | ^ == != > < >= <= >> <<

+ - * / % ! ~ ++ --

The pint functions implemented include:
∘ pint(), pint(v), pint(v,p)

Create a pint initialized to an integer value:
NaN, the int value v, or v with precision p

∘ p.Had(w), p.Had(w,d)
XOR p with Hadamard pattern w ways
entangled starting with dimension d

∘ Cover(lo,hi,d), Range(lo,hi,d)
Create a pint starting with dimension d and
covering [lo..hi], or range padded with 0s

∘ Gather(int*a,n)
Decode pint superposition into a[0..n-1]

∘ Scatter(int*a,n)
Encode a[0..n-1] as a superposed pint

∘ p.Mul(q,b)
Create pint product of p and q, but limit
result precision to b pbit to save effort

∘ p.ReduceOp(), p.ScanOp()
Reduce entangled superposition to one int
value or to parallel prefix (scan) pint; Op can
be And, Or, XOr, Add, Mul, Min, or Max

pfloat Layer
A pattern float, or pfloat, contains separate pint
values for the sign, exponent, and fraction of a
floating-point value. The precision and exponent
range of pfloat are variable at runtime so that the
minimum possible number of bits are active.
The following C++ operators are implemented:
= *= /= += -= >>= <<= &= |= ^=

&& || == != > < >= <= >> <<

+ - * / ! ++ --

Boolean operations on pfloat produce pint
results with 1 for true and 0 for false, but any non-0
is true. The pfloat functions implemented include:
∘ pfloat(f), pfloat(f,b)

Create a pfloat initialized to a float value f
with b bit maximum precision

∘ Range(lo,hi,b,d)
Create a pfloat starting with dimension d and
covering values [lo..hi] with b bits precision

∘ p.Recip(i)
Compute 1/p with i Newton-Raphson iterations

∘ p.Exp(), p.Log(), p.Sqrt(),
p.Cos(), p.Sin(), p.Tan(), p.ArcTan()
The usual math functions using base e, radians

∘ p.ReduceOp(), p.ScanOp()
As for pint, but Op is Add, Mul, Min, or Max

∘ Scatter(float*a,n,b)
Gather works as for pint, but Scatter needs
specification of b-bit precision for pfloat values

RE, AC, and AoB Layers
Users should avoid these layers, but you can use
re.Stats() to summarize performance.

