
  

Wordless Integer and
Floating-Point Computing

Henry Dietz
LCPC, 9:30-10:00 October 14, 2022

University of Kentucky
Electrical & Computer Engineering



  

Word.

“A basic unit of data in a computer,
typically 16 or 32 bits long”



  

Word.

“A basic unit of data in a computer,
typically 16 or 32 bits long”

“Exclamation used to express agreement”



  

Word.

“A basic unit of data in a computer,
typically 16 or 32 bits long”

“Exclamation used to express agreement”

Well, I don’t agree: THE basic unit is a bit



  

All I really need is a lil bit...




  

LCPC 2017:

How Low Can You Go?
● Now it’s all about power / computation

● Work only on active bits (bit-serial)

● Aggressive gate-level optimization

● Potential exponential benefit from Quantum?



  

LCPC 2022:

How Low Do We Go Now?
● Now it’s all about power / computation – Yes!

● Work only on active bits (bit-serial) – Yes!

● Aggressive gate-level optimization – Yes!

● Potential exponential benefit from Quantum?
– No, but SIMD using Parallel Bit Pattern...



  

I hate these word crimes!




  

Reduce gates / word operation

int a,b,c; c=a+b;

● Fast 32-bit Carry Lookahead:
~645 gate actions, ~12 gate delays

● 32-bit Ripple Carry, get throughput by SIMD:
~153 gate actions, ~91 gate delays (3 per FA)



  

Only operate on active bits

int:4 a,b; int:5 c; c=a+b;

● 32-bit Ripple Carry:
~153 gate actions

● 4-bits active Ripple Carry:
17 gate actions



  

Gate-level optimization

int:4 a,b; int:5 c; b=1; c=a+b;

● 17 gates becomes 7 when optimized



  

Minimizing Number of Bits
● Use types like uint8_t instead of int

● Use compiler analysis to infer types
(done as early as 1964 Klerer-May System)

● Specify accuracy requirements rather than 
precision for floating-point

● Pack smaller representations into fixed-size 
memory locations or registers



  

Minimizing Gate-Level Ops

● Bit-slice hardware

● Bit-serial processing in SIMD supercomputers
○ DAP, STARAN, MPP, CM1/CM2, GAPP, …
○ 32 SIMD 1-bit full adders vs. one 32-bit adder:
same throughput over 32 clocks uses fewer 
gates and a much faster clock



  

No more words!




  

Our approach

● Wordless integer & floating-point variables†

● Dynamic optimization at the bit level using the 
Parallel Bit Pattern (PBP) execution model

● C++ classes & preliminary performance results

† 
We still use words for scalars.



  

Dynamic precision

● There are languages with static bit precisions:
Verilog, VHDL, and even C struct bitfields

● There are dynamic “Big Number” libraries:
GMP, BigDigits, ArPALib, etc.

● We want dynamic precision at the bit level…



  

That would be enough




  

Dynamically resizing an int
● Suppose an int has the value 4:

4 is an unsigned 3-bit integer, 100
● Now decrement to the value 3:

3 is an unsigned 2-bit integer, 11
● Take 2’s complement to make the value -3:

2’s complement of X is (~X)+1, so...
-3 is a signed 3-bit integer, 101



  

Pattern (PBP) int: pint
● Ordered set of k bit positions, b

k-1
, b

k-2
, …, b

1
, b

0

● Each b
i
 corresponds to a bit-index value, X

i
, 

across nproc SIMD PEs as PE[iproc].mem[X
i
]

bool has_sign;      //signed?
uint8_t prec;       //k
pbit bit[PINTBITS]; //X



  

Manipulating pint precision

● Iff PE[iproc].mem[X
k-1

]==PE[iproc].mem[X
k-2

] 
 ∀ iproc, then X

k-1
==X

k-2
 and bit k-1 is redundant

● Primitive precision operations:
○pint Minimize() const;
○pint Extend(const int p) const;
○pint Promote(const pint& b) const;



  

Pattern (PBP) float: pfloat
● Sign: a one-pbit pint, 0 if non-negative

● Exponent: pint power-of-2 multiplier
○ No fixed minimum/maximum value
○ No bias nor reserved values

● Mantissa: pint fractional part
○ Fixed maximum precision
○ No implicit leading 1



  

pfloat denormals

Mantissa==0 is exempt from normalization



  

pfloat normalization rules



  

Runtime optimizations




  

Compiler-like optimizations

● Primarily done on pbit descriptors, which are 
always unique (single assignment)

● Constant folding: 0, 1 are descriptors 0, 1

● Algebraic simplifications: 42 AND 1 ⇒ 42

● Common subexpressions: applicative cached



  

Optimizations across PEs
● A classical SIMD idles “disabled” PEs

● A GPU can skip “all disabled” warps of PEs

● Bit-serial SIMD using PBP can:
○ Like GPU, skip “all disabled” chunks of PEs
○ Skip chunk compuations that have been 
performed before on any chunk of PEs

○ Examine global chunk properties



  

An example of chunk handling

● For nproc=32, iproc is:
(apparently 5x8x4=160 bits to store)

● For 8-bit chunks, this is:
(only 5 chunks used, so just 5x8=40 bits stored)

● To add 1 to iproc, we add:
(only chunk operations with unique operands happen)



  

Putting a dream into action




  

Initial implementation

● PBP library for pint and pfloat classes
○ PBP was lazy C; now 3,644 lines eager C++
○pint operations include: all the usual C++ operators; value range 

initialization, scatter & gather; reductions & scans; sorts

○pfloat operations also include: reciprocal and various 
transcendentals (exponentiation, logarithm, sine, etc.)

● Targets 32/64-bit processors, up to 4G 1-bit PEs



  

Preliminary performance
● Surprisingly competitive with native code

● Instrumented active gate counts for pint library 
validation suite as words vs. PBP model:



  

Better than words!




  

Conclusion

● Preliminary results are very promising: 4-6 
orders of magnitude reduction in active gates!

● Bit-serial SIMD PBP has great potential, but we 
need PBP hardware to test power reduction

● Currently, no garbage collection on chunks...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

