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Word.

“A basic unit of data in a computer,
typically 16 or 32 bits long”

“Exclamation used to express agreement”

Well, I don’t agree: THE basic unit is a bit



  

All I really need is a lil bit...




  

LCPC 2017:

How Low Can You Go?
● Now it’s all about power / computation

● Work only on active bits (bit-serial)

● Aggressive gate-level optimization

● Potential exponential benefit from Quantum?



  

LCPC 2022:

How Low Do We Go Now?
● Now it’s all about power / computation – Yes!

● Work only on active bits (bit-serial) – Yes!

● Aggressive gate-level optimization – Yes!

● Potential exponential benefit from Quantum?
– No, but SIMD using Parallel Bit Pattern...



  

I hate these word crimes!




  

Reduce gates / word operation

int a,b,c; c=a+b;

● Fast 32-bit Carry Lookahead:
~645 gate actions, ~12 gate delays

● 32-bit Ripple Carry, get throughput by SIMD:
~153 gate actions, ~91 gate delays (3 per FA)



  

Only operate on active bits

int:4 a,b; int:5 c; c=a+b;

● 32-bit Ripple Carry:
~153 gate actions

● 4-bits active Ripple Carry:
17 gate actions



  

Gate-level optimization

int:4 a,b; int:5 c; b=1; c=a+b;

● 17 gates becomes 7 when optimized



  

Minimizing Number of Bits
● Use types like uint8_t instead of int

● Use compiler analysis to infer types
(done as early as 1964 Klerer-May System)

● Specify accuracy requirements rather than 
precision for floating-point

● Pack smaller representations into fixed-size 
memory locations or registers



  

Minimizing Gate-Level Ops

● Bit-slice hardware

● Bit-serial processing in SIMD supercomputers
○ DAP, STARAN, MPP, CM1/CM2, GAPP, …
○ 32 SIMD 1-bit full adders vs. one 32-bit adder:
same throughput over 32 clocks uses fewer 
gates and a much faster clock



  

No more words!




  

Our approach

● Wordless integer & floating-point variables†

● Dynamic optimization at the bit level using the 
Parallel Bit Pattern (PBP) execution model

● C++ classes & preliminary performance results

† 
We still use words for scalars.



  

Dynamic precision

● There are languages with static bit precisions:
Verilog, VHDL, and even C struct bitfields

● There are dynamic “Big Number” libraries:
GMP, BigDigits, ArPALib, etc.

● We want dynamic precision at the bit level…



  

That would be enough




  

Dynamically resizing an int
● Suppose an int has the value 4:

4 is an unsigned 3-bit integer, 100
● Now decrement to the value 3:

3 is an unsigned 2-bit integer, 11
● Take 2’s complement to make the value -3:

2’s complement of X is (~X)+1, so...
-3 is a signed 3-bit integer, 101



  

Pattern (PBP) int: pint
● Ordered set of k bit positions, b

k-1
, b

k-2
, …, b

1
, b

0

● Each b
i
 corresponds to a bit-index value, X

i
, 

across nproc SIMD PEs as PE[iproc].mem[X
i
]

bool has_sign;      //signed?
uint8_t prec;       //k
pbit bit[PINTBITS]; //X



  

Manipulating pint precision

● Iff PE[iproc].mem[X
k-1

]==PE[iproc].mem[X
k-2

] 
 ∀ iproc, then X

k-1
==X

k-2
 and bit k-1 is redundant

● Primitive precision operations:
○pint Minimize() const;
○pint Extend(const int p) const;
○pint Promote(const pint& b) const;



  

Pattern (PBP) float: pfloat
● Sign: a one-pbit pint, 0 if non-negative

● Exponent: pint power-of-2 multiplier
○ No fixed minimum/maximum value
○ No bias nor reserved values

● Mantissa: pint fractional part
○ Fixed maximum precision
○ No implicit leading 1



  

pfloat denormals

Mantissa==0 is exempt from normalization



  

pfloat normalization rules



  

Runtime optimizations




  

Compiler-like optimizations

● Primarily done on pbit descriptors, which are 
always unique (single assignment)

● Constant folding: 0, 1 are descriptors 0, 1

● Algebraic simplifications: 42 AND 1 ⇒ 42

● Common subexpressions: applicative cached



  

Optimizations across PEs
● A classical SIMD idles “disabled” PEs

● A GPU can skip “all disabled” warps of PEs

● Bit-serial SIMD using PBP can:
○ Like GPU, skip “all disabled” chunks of PEs
○ Skip chunk compuations that have been 
performed before on any chunk of PEs

○ Examine global chunk properties



  

An example of chunk handling

● For nproc=32, iproc is:
(apparently 5x8x4=160 bits to store)

● For 8-bit chunks, this is:
(only 5 chunks used, so just 5x8=40 bits stored)

● To add 1 to iproc, we add:
(only chunk operations with unique operands happen)



  

Putting a dream into action




  

Initial implementation

● PBP library for pint and pfloat classes
○ PBP was lazy C; now 3,644 lines eager C++
○pint operations include: all the usual C++ operators; value range 

initialization, scatter & gather; reductions & scans; sorts

○pfloat operations also include: reciprocal and various 
transcendentals (exponentiation, logarithm, sine, etc.)

● Targets 32/64-bit processors, up to 4G 1-bit PEs



  

Preliminary performance
● Surprisingly competitive with native code

● Instrumented active gate counts for pint library 
validation suite as words vs. PBP model:



  

Better than words!




  

Conclusion

● Preliminary results are very promising: 4-6 
orders of magnitude reduction in active gates!

● Bit-serial SIMD PBP has great potential, but we 
need PBP hardware to test power reduction

● Currently, no garbage collection on chunks...
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