
The Ghost in the Machine

Prof. Hank Dietz

University of Kentucky
Electrical & Computer Engineering

Things You Already Know

∙ There is a computer inside
∙ There's an analog sensor to digitize
∙ There's a lot of processing to be done
∙ There are lots of I/O devices

What Is The processor?

∙ Lots of “branding” going on...
Sony Bionz, Canon Digic, etc.

∙ Most cameras use ARM processors,
cross compilers for development

∙ CHDK PowerShots use ARM946ES
∙ ARM9E-S Thumb 32-bit SoC
∙ ARM5vTE DSP enhancements
∙ Other special function units...?

ARM946ES

∙ SRAM on chip
∙ More RAM off chip
∙ Stuff gets copied from

flash mem to run
∙ ARM core(s) augmented

by I/O, coprocessors,
special fn units...

The Processor? Only One?

∙ Of course not!
∙ Multiple cores, coprocessors (e.g., JPEG)
∙ Interchangeable lenses usually talk via SPI
∙ SD cards contain processors

∙ Usually, just fakes disk drive interface
∙ Transcend WiFi SD runs hackable Linux

∙ Even batteries often contain processors...

An Example: Canon EF Lenses

∙ 8-bit + 1 stop bit SPI (mode 3)
∙ Protocol at http://birger.us/downloads.htm
∙ Pin layout:

http://birger.us/downloads.htm

Other Examples

∙ Minolta AF / Sony A was first:
https://www.dyxum.com/dforum/lens-rom-data_topic6371.html

∙ Sony E mount is open, right?
https://support.d-imaging.sony.co.jp/www/e_mount/en/detail.html

http://camera-wiki.org/wiki/Sony_E_mount_reverse_engineer
https://github.com/LexOptical/E-Mount

∙ Canon’s latest mount, RF, is not only closed,
but Canon has sent cease-and-desist letters
to all 3rd-party lens makers..

https://www.dyxum.com/dforum/lens-rom-data_topic6371.html
https://support.d-imaging.sony.co.jp/www/e_mount/en/detail.html
http://camera-wiki.org/wiki/Sony_E_mount_reverse_engineer
https://github.com/LexOptical/E-Mount

The Sensor Is A Processor

∙ In many cases, the sensor now contains the
ADCs and at least a DMA engine; stacked
sensors usually have a layer of DRAM

∙ The main processor can set parameters
∙ Sensor data is provided in a “raw” buffer

∙ The raw data can be saved (e.g., as DNG)
∙ JPEGs are compressed from the raw
∙ Live view is sampled/scaled from raw or

takes an alternative raw path

Operating System

∙ ARM provides full protected environment
∙ Various versions of Linux (e.g., in Sony)
∙ Proprietary real-time Oses (e.g., in Canon)

∙ Canon A4000 is DryOS v2.3
∙ VxWorks

∙ Real-time OSes usually provide a DOS
environment – C:AUTOEXEC.BAT

Camera Internal I/O Devices

∙ Lens extend/retract ∙ Accelerometers
∙ Power zoom ∙ Stabilization
∙ Image sensor ∙ PD & light sensors
∙ Power focus ∙ Battery level
∙ Focus assist ∙ Temp sensors
∙ Aperture control ∙ Clock, GPS
∙ ND/NightShot filters ∙ Flash (strobe)
∙ Shutter ...

External I/O Devices

∙ User interface:
∙ Buttons, dials, touch, eye sensing ...
∙ LEDs, LCDs, EVF, etc.

∙ Audio mics & speakers
∙ Audio/Video outputs (e.g., HDMI)
∙ Mass storage (internal + SD card)
∙ NIR/wired remote
∙ USB, 802.11, NFC, …

Camera Control

∙ Is stunningly complicated...
∙ Lots of the process is from sensor SDK or

purchased code (e.g., both Sony DRO
and Nikon ADL came from Apical iridix)

∙ Packages like CHDK & ML do not replace
basic camera control, but augment it;
you can still call any known functions in
the original camera control code

∙ Webcams often don't allow programming

Internal Camera Control

∙ Not standardized since cameras diverged
from http://photopc.sourceforge.net/protocol.html

∙ Fake camera UI events:
+ works for everything UI can do
- version dependent, awkward, nothing new

∙ API call for each type of operation:
+ extendable, potentially more portable
- complexity, danger, not reflected in UI

http://photopc.sourceforge.net/protocol.html

External Camera Control

∙ Not standardized since cameras diverged
from http://photopc.sourceforge.net/protocol.html
but there are standards like PTP...

∙ Often, image upload only
∙ FireWire standardizes camera control
∙ UVC (Universal Video Class) allows a fair

degree of video-centric webcam control
∙ CHDK now pretty much allows everything

http://photopc.sourceforge.net/protocol.html

Conclusion

∙ There is a lot of compute power inside,
and it can be programmably extendable

∙ Most cameras lock users out
∙ Nothing is standardized/open
∙ Security features prevent hacking

∙ It is very difficult to make major changes,
even for the manufacturer

∙ We use CHDK/ML sites for details

