
SIMDC12 Parser

February 14, 2012

This document summarizes the second phase of the �rst compiler project:
construction of the parser for SIMDC'08. You should be able to reuse your lexer
and symbol table code with only minor editing.

1 SIMDC12 Language Syntax

SIMDC12 is based on a C subset extended for parallelism. Consequently, it
follows C's syntax and semantics fairly closely. The following extended BNF
grammar, combined with the same lexical conventions used by C, de�ne the
language structure.

prog: (decl)* (func)* EOF

;

func: WORD {':' NUMBER} '(' typ WORD (',' typ WORD)* ')' stat

;

decl: typ {'[' NUMBER ']'} WORD (',' WORD)* ';'

;

typ: (�mono� | �poly�) {':' NUMBER}

;

stat: '{' (decl)* (stat)* '}'

| �if� expr stat

| �where� expr stat

| �while� expr stat

| �return� expr ';'

| expr ';'

| ';'

;

expr: expr1 {'=' expr}

;

expr1: expr2 ('|' expr2)*

;

expr2: expr3 ('^' expr3)*

;

expr3: expr4 ('&' expr4)*

;

1

expr4: expr5 (('<' | '>') expr5)*

;

expr5: expr6 (('+' | '-') expr6)*

;

expr6: expr7 ('*' expr7)*

;

expr7: expr8 {':' NUMBER}

;

expr8:

| WORD {qual}

| '-' expr8

| '!' expr8

| '~' expr8

| '(' expr ')'

| �NPROC�

| �IPROC�

;

qual: '(' {expr (',' expr)*} ')'

| '[' expr ']'

| '.' NUMBER

;

2 SIMDC12 Symbol Table

The SIMDC dialect described above allows declarations to appear within braces,
implementing the usual nested lexical scoping rules. You will need to make your
symbol table appropriately deal with this. Further, for local variables, you will
need to keep track of the position of each variable in the stack frame � the value
associated with a local variable should be its o�set in the stack frame for the
current function.

You also need to keep track of mono vs. poly, the bit precision, and the
array size for each variable. For example, poly:4[5] i; declares i to be an
array of �ve 4-bit integers with potentially di�erent values in each PE. Without
a :, all values are assumed to have 8 bits. Declaring without a : yields 8-bit
precision and unary su�x : can be used as an rvalue precision cast.

3 Error Handling

For this project, you are to output warning/error messages to stderr. Do not
worry about errors and warnings in general; you may assume that the input is
correct except in the following two ways:

1. In the above syntax, there are two places in which ',' occurs. In each of
these cases, ',' should be treated as optional, producing a warning message
like �5: warning: missing ',' assumed� and continuing to process

2

the rest of the input as if nothing was wrong. The line number (5 in the
example) need not be precisely correct.

2. Issue a warning like �5: warning: this precision may be expensive�
each time a variable with more than 12 bits is used.

3. In each case where a WORD appears in the grammar, your parser should
issue an appropriate error message if the WORD has already been de�ned
in the current scope or if the WORD is being used in an expression and has
not been de�ned. An appropriate error message would thus be something
like �5: error: conflicting definition of yuck� or �5: error:

yuck has not been defined� � assuming the WORD is yuck. Your parser
may exit after reporting an error.

4 Output

Your parser is going to function as a simple �pretty printer� for the input
SIMDC12 program generating preformatted HTML output to stdout. Here
are the formatting rules:

• Your complete output should start with <PRE> and end with </PRE>

• Every lexeme should output itself except & becomes & , < becomes
< , and > becomes >

• Every keyword should be made strong, e.g., return becomes return

• Every mono variable should be made red, e.g., yuk becomes yuk

• Every function name or poly variable should be made green, e.g., yuk
becomes yuk

• Additionally, every local variable should be emphasized, e.g., local poly
yuk becomes yuk

• Every declaration (decl), function de�nition, or statement (stat) should
start on a new line

• A stat involving braces changes indentation; the { and } should each be
on their own lines, and identation of each line within should equal twice
the number of enclosing braces

• After the indentation, you may use whatever spacing rules you wish within
expressions and statements and may also insert blank lines

5 Submission

See the course WWW site, http://aggregate.org/STCH/, for details.

3

