
SWARC
SIMD Within A Register C
Module Langua ge & Compiler

Scc versions from 061112

Targets supported by Scc :

• Gener ic 32-bit C code
• MMX, 3DNow!, or SSE
• Altivec
• ATI DPVM CTM†
• OpenGL shaders†
• OpenGL+nVidia extensions†

http://aggregate.org/SWAR/

Prof. Hank Dietz
Electr ical and Computer Engineering Dept.
University of Kentucky
Lexington, KY 40506-0046
hankd@engr.uky.edu

SWARC, pronounced swh-are-see, is a C-like
language designed to simplify writing portable code
modules using SWAR (Simd Within A Register)
parallelism. Scc is a module compiler for SWARC
code. The language and compiler have been
designed so that programmers can easily substitute
SWARC code for appropriate functions within ordinary
C programs, and ordinary C code can be used within
SWARC code (e.g., to perfor m I/O operations).
Given SWARC’s emphasis on efficiency, the typical
execution cost for each language construct is
indicated here by the sizes of for conventional
processors and for GPU targets: is fast parallel,

is somewhat parallel, and indicates slow/per-
field operations. Things marked with † may not be
fully implemented in the current version of Scc .

Data Types

SWARC Type Meaning
char C-layout 8-bit integer
short C-layout 16-bit integer
int C-layout 32-bit integer
float C-layout 32-bit float
signed type signed type
unsigned type unsigned type
const type read-only type
extern type exter nal/forward declaration
register type register storage class
static type static storage class
modular type modular type (default)
saturation type saturation version of type†
type: SWAR-layout type
type: prec SWAR-layout type, prec bits
type[width] array of width values
typeof(expr) same type as expr

Notes: char , short , and int types with the same
explicit precision are equivalent. prec and width can
be compile-time constant expressions; actual
precision is >=prec, but appears ==prec for
saturation . Arrays can have only one dimension.
Type Coercion Rules:
1. For mixed widths, a width=1 (scalar) object is
widened. For mixed widths>1, a war ning is generated
and the wider object is truncated.
2. Mixed C-layout and SWAR-layout yields the SWAR-
layout & precision, even if precision is reduced.
3. Mixed precision yields higher precision.
4. Mixed signed and unsigned yields signed.
5. Mixed modular and saturation yields saturation.
E.g., mixing signed int:2[20] and unsigned
char: yields signed int:8[20] ; mixing that with
signed int[100] yields signed int:8[100] .

Statements
SWARC statements implement “SIMD enable
masking” for parallel operations. All functions begin
with all elements enabled; if , where , everywhere ,
while , and for can change the enable set.
{ block }

as in C; block of declarations & statements
${ C_code $}

allows arbitrar y C code wherever a stat could
appear. Within C_code, the $ character is used to
represent # so that nested C preprocessor runs can
be used; e.g., $include "file.h" would include
file.h in the C code at C-compile time

label: stat
as in C; used with goto label;

if (expr) stat else stat’
if expr has width==1, as in C; for width>1, the

stat code is executed iff some enabled element is
non-0, the stat’ code is executed iff some enabled
element is 0

where (expr) stat elsewhere stat’
enable masking like if , but stat and stat’ are

always executed
everywhere stat

enable all elements so that stat is executed
without masking overhead

while (expr) stat
if expr has width==1, as in C; for width>1, the

stat code is executed while at least one enabled
element is non-0

for (expr; expr; expr) stat
as in C, same semantics as while

do stat while (expr)
if expr has width==1, as in C; if expr has

width>1, the enable mask is unaffected, repeating
stat while an enabled element is non-0

continue expr;
as in C, extended to allow expr nesting levels

break expr;
as in C, extended to allow expr nesting levels

return;
as in C, but SWARC only allows functions to

retur n void

ident(args...);
as in C; call a C or SWARC function ident,

retur ning void

expr;
as in C

;
as in C

Operator s (precedence order)
expr assignment_op expr

extends C operator set and perfor ms associative
reductions (with masking) when storing width>1
value into width==1 var iable; cost is for =, &&=,
||= , ?>=, ?<=, +/= , -= , *= , /= , %=; cost is for
>>=, <<=, &=, ˆ= , and |=

expr ? expr : expr
as in C, may use masking/arithmetic nulling

expr || expr
expr && expr

as in C, but yields 0 or -1
expr | expr
expr ˆ expr
expr & expr

as in C
expr equal_op expr

as in C, but yields 0 or -1; operators are: == and
!=

expr compare_op expr
as in C, but yields 0 or -1 on simple compares: <,

>, <=, and >=; extends C with minimum, maximum,
and average operators: ?<, ?>, and +/

expr shift_op expr
as in C; operators are: >> and <<

expr add_op expr
as in C; operators are: + and -

expr mul_op expr
as in C; operators are: * , / , and %

prefix_op expr
as in C: for - , ++, -- , and sizeof ; for ˜ ; like
C, but yielding 0 or -1 for integer masking: ! ;
extending C (including C*-like reductions):
widthof , precisionof , &&=, ||= , ?>=, ?<=,
+/= , +=, &=, *= , |= , and ˆ=

expr suffix_op
array shift/rotate by constant expr operations:

[<< expr] , [<<%expr] , [>> expr] , and [>>%expr]

Compile-Time Constants
widthof(expr)

Width of expr, maximum data parallelism
precisionof(expr)

Precision, in bits per element, of expr

Include files
#include "swarc.h"

SWARC equivalent to stdio.h

Suggested Development Procedure
Because SWARC is designed to be processed by a
module compiler and linked to C routines, you
probably will not develop codes using SWARC. The
recommended development procedure is:
1. Develop your complete program as pure, por table,

C code complying with the ANSI C specification
(with gcc extensions permitted).

2. Benchmark your compiled C code. Unix tools like
gprof are particular ly useful in determining which
functions dominate the execution time.

3. Multimedia instr uction sets need ver y little data
parallelism to achieve optimal speedup, no more
than 512 bits per array; GPU targets need much
longer vectors. If any of the functions identified in
step 2 can use the appropriate flavor of
parallelism, rewr ite them as SWARC code. Where
possible, use SWAR-layout data; this allows the
compiler to use storage for mats that are much
more efficient, e.g., alignment/packing and storage
in GPU texture memory.

4. Not all of the functions you rewrote will achieve
speedup over the serial C code. Use Scc ’s -p
option to obtain detailed perfor mance estimates.

5. Insert the SWARC functions in your C code. The
programmer must ensure that the SWARC-
generated code will be run only on hardware
suppor ting the special instructions or GPU code
generated; SWARC compilers do not
automatically generate code to check that the
correct hardware is present at runtime.

Note that, although SWARC code is somewhat
por table and complexity (shown by and) of most
operations is consistent across most targets, the
precise speedups are machine dependent.

Sample Program
The following sample program defines a SWARC
function called addfour that takes a C-layout first-
class array of 2 integers (passed by address) and
adds 4 to each of the elements. The main function is
C code, defined inline within this SWARC program:

void addfour(int[2]x) { x += 4; }

${
main()
{
int a[2]; a[0] = 1; a[1] = 2;
addfour(a);
printf("a={%d,%d}\n", a[0], a[1]);

}
$}

Compiled by the reference SWARC compiler using
Scc -Sc -P , the header file Scout.h is something
like:

extern void addfour(int *x);

For the default generic MMX target, the C code
generated in Scout.c is something like:

#include "Sc.h"
void addfour(int *x)
{
extern mmx_t mmx_cpool[];
register mmx_t *_cpool = &(mmx_cpool[0]);
{
movq_m2r(*(((mmx_t *) x) + 0), mm0);
paddd_m2r(*(_cpool + 0), mm0);
movq_r2m(mm0, *(((mmx_t *) x) + 0));

}
_return:
emms();

}

main()
{
int a[2]; a[0] = 1; a[1] = 2;
addfour(a);
printf("a={%d,%d}\n", a[0], a[1]);

}

/* MMX constant pool */
mmx_t mmx_cpool[] = {
/* 0 */ 0x0000000400000004LL
};

The actual assembly language translation of the
program, as generated by Scc test.Sc -S -O2 ,
includes code for addfour that looks like:

addfour:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
movl $mmx_cpool,%eax

#APP
movq (%edx), %mm0
paddd (%eax), %mm0
movq %mm0, (%edx)
emms

#NO_APP
leave
ret

Note that this final code incurs no additional overhead
from use of inline assembly macros in Scout.c .

