
All Together Now

When we built the world’s first Linux PC cluster supercomputer
in February 1994, we did it to test the little box shown above. That
box, the first PURDUE’S ADAPTER FOR PARALLEL EXECUTION
AND RAPID SYNCHRONIZATION (PAPERS) unit, implemented a
new communication model that we call AGGREGATE FUNCTION
COMMUNICATION. This model, perhaps best described by the
AGGREGATE FUNCTION APPLICATION PROGRAM INTERFACE
(AFAPI) specification, centers on N-way communications like:

• Confirmation of hardware reliability
• Barrier synchronization
• VLIW multiway branch support
• SIMD any and all tests
• Broadcast & multicast
• PutGet (conflict-free reverse-routed messages)
• Reductions
• Scans (parallel prefix operations)
• Searches (first, count, & quantify)
• Voting & scheduling operations
• Ranking (sorting)
• Parallel signaling (“Eurekas”)

We have built over two dozen types of custom AGGREGATE
FUNCTION NETWORK (AFN) hardware for clusters since 1994.
However, our work in this area now centers on how to make these
operations efficient on all machines... from chip multiprocessors
to GRAPHICS PROCESSING UNITS (GPUS).

AFNs For Multi-Core Processors. As multi-core processors
have become common, there has been much talk of scaling to
huge numbers of cores on a single chip. However, shared memory
communication does not scale well to large numbers of cores
due to a combination of competition for shared resources and
the overhead of dynamic arbitration. By tightly integrating an
AFN on chip, an alternative, more efficient, path is provided
for coordination and communication. Simulation of a detailed
structure for a CMP-AFN to be integrated with IA32 cores sped-
up OPENMP barrier synchronization by 6X on 4 cores and 12X
on 16 cores [1].

AFN concepts for GPUs. To improve scalability, GPUs sacrifice
many of the timing properties of traditional SIMD, making the
obvious implementation methods problematic. Despite that, by
2009 we had a complete set of efficient primitives for all compute
capability levels of CUDA devices [2,3]. For example, here’s the
logic for p_any(flag) within a block on CUDA with any
compute capability level:

if (flag) sharedtemp = serial; /* maskable store */

__syncthreads();

p_any = (sharedtemp == (serial++));

Here is the basic algorithm for barrier synchronization across
blocks, with O(1) time when blocks have significant time skew:

__syncthreads(); /* Sync within each Block */

/* Pick a representative from each block */

if (threadIdx.x == 0) {

/* Get my barrier number */

int barno = barnos[blockIdx.x] + 1;

int hisbarno;

int who = (blockIdx.x + 1) % gridDim.x;

/* Check in at barrier */

barnos[blockIdx.x] = barno;

do { /* Scan for all here or somebody passed */

/* Wait for who */

do {

hisbarno = barnos[who];

} while (hisbarno < barno);

/* Bump to next who */

if (++who >= gridDim.x) who = 0;

} while ((hisbarno == barno) && (who != blockIdx.x));

/* Tell others we are all here */

barnos[blockIdx.x] = barno + 1;

}

__syncthreads(); /* Sync within each Block */

There are a number of variants on most algorithms. Throughout
2010, we have been developing versions using fully portable
OPENCL. Algorithms like barrier synchronization have been
ported and tested in OPENCL on both NVIDIA and AMD/ATI
targets. All are/will be freely available via Aggregate.Org.

References:

[1] S. P. Kim, Chip Multiprocessors with On-Chip Aggregate Function
Network, http://docs.lib.purdue.edu/dissertations
/AAI3379419, 2009

[2] B. D. Young, MPI Within A GPU,
http://hdl.handle.net/10225/1085, July 2009

[3] D. A. Rivera-Polanco, Collective Communication and Barrier
Synchronization on NVIDIA CUDA GPU,
http://hdl.handle.net/10225/1158, Sept. 2009

This document should be cited as:
@techreport{sc10afapi,

author={Henry Dietz and Frank Roberts},

title={All Together Now},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc10afapi.pdf},

month={Nov}, year={2010}}


