
Performance-Engineered Computer Networks

INTERCONNECTION NETWORKS, sometimes called SYSTEM
AREA NETWORKS (SANs), play a critical role in all types of
parallel computers – be they clusters spanning many racks
or many cores on the same chip. A well-engineered network
can dramatically outperform the obvious alternatives. At
Aggregate.Org, we have created public domain technolo-
gies and tools for performance-engineered networks.

AGGREGATE FUNCTION NETWORKS (AFNs). An AFN is a
parallel function unit that collects global state information
and computes functions of that state. In 1994, we built
the world’s first Linux PC cluster supercomputer to test
our PAPERS AFN (PURDUE’S ADAPTER FOR PARALLEL
EXECUTION AND RAPID SYNCHRONIZATION); using secure
OS-bypass I/O, it delivered 3μs barrier synchronization.
Other AFN operations include broadcast & multicast, putget,
reductions, scans, searches (e.g., first or count), voting
& scheduling, and parallel signaling (eurekas). A 2017
software-implemented AFN uses shared memory and TCP.

FLAT NEIGHBORHOOD NETWORKS (FNNs). FNNs provide
single-switch latency, and better bisection bandwidth than
a fat tree with comparable hardware complexity, by using
multiple network interfaces per node. As shown above for 4-
port switches connecting 8 nodes, an FNN connects nodes
to switches such that each node pair has at least one switch
in common. The best wiring pattern usually is asymmetric;
the design is evolved from random wiring patterns using a
genetic algorithm (GA).
FNN design problems and solution quality are summarized
by square maps in which the darkness of each point in-
dicates how many single-switch paths exist between the
corresponding pair of nodes; the lower left triangle is the
minimum design requirement, the upper right is what the
FNN design actually provides. The photo and map above
are for the world’s first FNN, KLAT2 (KENTUCKY LINUX
ATHLON TESTBED 2), built in 2000.
SPARSE and FRACTIONAL FLAT NEIGHBORHOOD NET-
WORKS (SFNNs and FFNNs). Surprisingly, very few parallel
programs depend on every node talking to every other; usu-
ally, each node talks to at most O(log(N)) other nodes. This
is true even using personalized all-to-all as MPI typically
implements it.

SFNNs ensure single-switch latency only for all node pairs
that are expected to communicate, thus requiring shock-
ingly few cheap, narrow, switches even for systems having
many thousands of nodes. The first SFNN was KASY0
(KENTUCKY ASYMMETRIC ZERO) in 2003 (above). FFNNs
flip priorities, finding the best coverage possible with a fixed
network cost. For example, using far less hardware than
KASY0, the above map shows coverage of an FFNN in
green – only the red spots deliver poorer latency.

KENTUCKY’S NETWORK IMPLEMENTATION TOPOLOGY
TOOL (KNITT). Knitting converts 1D material, such
as yarn or network cable, into a 2D or 3D structure.
KNITT uses genetic algorithm (GA) evolutionary search
technology to create the physical placement structure that
will most efficiently implement the wiring of a given logical
interconnection pattern. Above is partitioning of a fat tree
with 64 nodes and 16-port switches into 3 racks; only 26 of
the 96 cables cross racks instead of the expected 40.
NETWIRES and NODESCAPE. As networks become more
complex, visualizing networked systems becomes more im-
portant. NETWIRES draws static diagrams of networks, like
the fat tree above. NODESCAPE colors a diagram or actual
photo of a parallel computer according to properties sam-
pled from the running system, such as node temperature
(below) or load average – which is very useful for KNITT-
scrambled physical node placements.

@techreport{sc17pecn,

author={Henry Dietz},

title={Performance-Engineered Computer Networks},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc17pecn.pdf},

month={Nov}, year={2017}}


