PBP as Efficient Bit-Serial SIMD

Parallel bit pattern (PBP) computing is a quantum-in-
spired computation model, but it was not created to re-
place quantum computing: the goal is to reduce power
per computation by orders of magnitude.

LCPC17: How Low Can You Go?

Our 2017 paper at Languages and Compilers for Parallel
Computing, DOI 10.1007/978-3-030-35225-7_8, observed
that the best way to reduce power/computation is to elimi-
nate unnecessary gate-level operations:

* Work only on active bits (bit-serial), not words
» Aggressively optimize computations at the gate-level
» Leverage entangled superposition

As our latest paper, Wordless Integer and Floating-Point
Computing described at LCPC22, we now have a C++ li-
brary that accomplishes all three of those goals. It not
only implements quantum-like pbit (pattern bit), but
also pint (pattern integer) and pfloat (pattern float)
with runtime variable precision and compiler-like symbolic
optimization at the pbit and lower levels. The interesting
thing is that pbit entangled superpositions are not used
to implement quantum-like computation, but to dramati-
cally improve the efficiency of bit-serial SIMD execution.

Bit-Serial SIMD Execution

Bit-serial processing basically means that multi-bit values
are evaluated one bit position at a time. Consider:

Using 32-bit words, a carry lookahead addition would re-
quire ~645 gate actions to produce one 32-bit result every
clock cycle. Using ripple carry would only take ~153 gate
actions, and could be done bit serially in 32 faster clock
cycles. The throughput can then be multiplied by having
many bit-serial SIMD processing elements; this was done
in early supercomputers including MPP and CM1/CM2.

We can do much better with a little runtime symbolic opti-
mization. If the current values of a and b each fit in just 4
bits, we only need 17 gate actions or four clock cycles. If

happens to be 1, instead of a 32-bit adder, a 4-bit incre-
menter with just 7 gate actions suffices! Our PBP C++ li-
brary tracks precision of both pint and pfloat data,
also applying symbolic optimization at the pbit level to
avoid unnecessary gate-level operations.

Leveraging PBP Entangled Superposition

An E-way entangled pbit is logically equivalent to an ar-
ray of 2F bit values, one bit in each of 2 fully addressable
entanglement channels — each of which can be treated
as a virtual SIMD processing element. For example, con-
sider a pint that holds the PE number, from 0 to 31, in
each of 32 PEs (E=5). With PEO in the rightmost entan-
glement channel, this would look like:

10101010 10101010 10101010
11001100 11001100 11001100
11110000 11110000 11110000
11111111 00000000 11111111
11111111 11111111 00000000

10101010
11001100
11110000
00000000
00000000

The grouping into chunks of 8 channels each isn't just to
increase readability here; PBP fragments pbit values
into chunks of 2¢ bits. Only a single copy of each unique
chunk pattern is stored and a pbit's value is actually
stored as a regular expression treating each chunk as a
symbol. Thus, the example would really be:

chunk (2) chunk (2) chunk (2) chunk (2)
chunk (3) chunk (3) chunk (3) chunk (3)
chunk (4) chunk (4) chunk(4) chunk (4)
chunk (1) chunk (0) chunk (1) chunk (0)
chunk (1) chunk (1) chunk (0) chunk(0)

and would use only 5*8=40 bits of storage, not 160. Sym-
bolic analysis eliminates many chunk operations: for ex-
ample, chunk (1) & chunk (42) is chunk (42) without
examining any bits, and any chunk operation that has
been done before on any PEs is available to all, hence is
never repeated. This is a huge reduction in gate opera-
tions needed. A PBP chunk behaves like a generalization
of a GPU warp, allowing computation to be skipped under
far more circumstances than just when all component
PEs are disabled. Of course, chunks are typically K=8,
not K=3, and up to 4G PEs are supported.

In Our SC22 Exhibit (booth #3013)

An ESP32 not only runs PBP
stand alone, but also drives an
OLED display and serves a
WWW form that allows you to
submit pint code to be parsed
and run in it: access it by scan-
ning the QR code. The WWW
form includes an editable sam-
ple pint program (prime fac-
torization) and documentation
of the operators and directives supported. The display
also summarizes pbit, AoB chunk, and gate usage.

@techreport{sc22pint,

author={Dietz, Henry},

title={{PBP as Efficient Bit-Serial SIMD}},
institution={{University of Kentucky}},
url={{http://aggregate.org/WHITE/sc22pint .pdf}},
month={Nov}, year=2022}

¥

University of

Kentucky

Aggre gate 0zg<

UNBRIDLED COMPUTING


http://aggregate.org/WHITE/sc22pint.pdf

